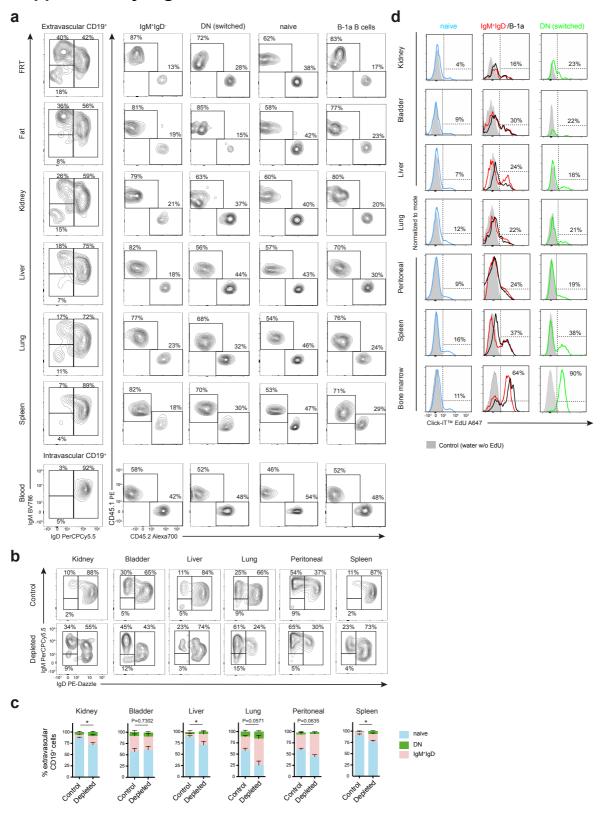
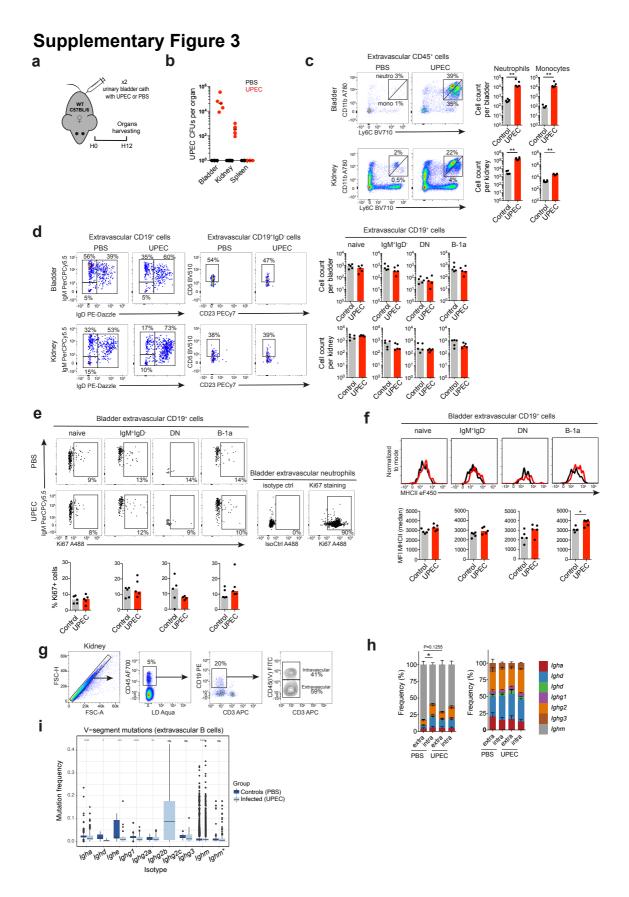
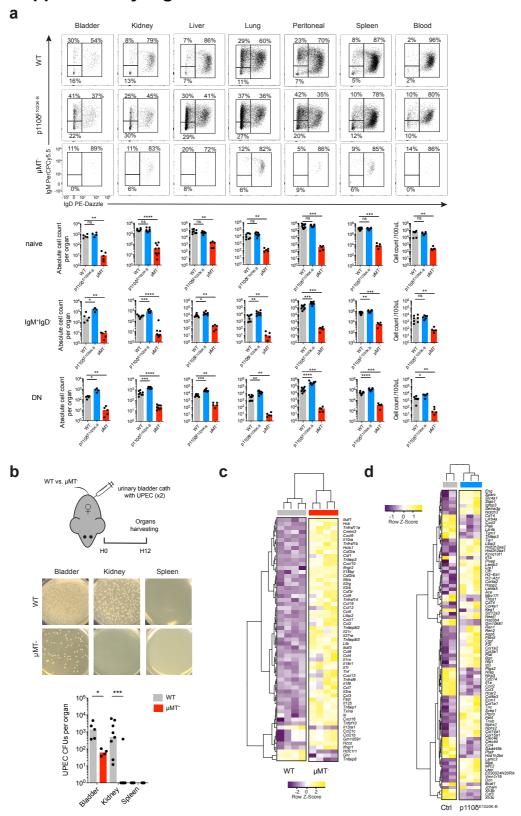

B cells orchestrate macrophage polarisation and function


Ondrej Suchanek^{1,2}, John R. Ferdinand¹, Zewen K. Tuong¹, Sathi Wijeyesinghe³, Anita Chandra⁴, Ann-Katrin Clauder⁵, Larissa N. Almeida⁵, Simon Clare⁶, Katherine Harcourt⁶, Christopher J. Ward¹, Rachael Bashford-Rogers⁷, Trevor Lawley⁶, Rudolf A. Manz⁵, Klaus Okkenhaug⁴, David Masopust³, Menna R. Clatworthy^{1,2,6,*}

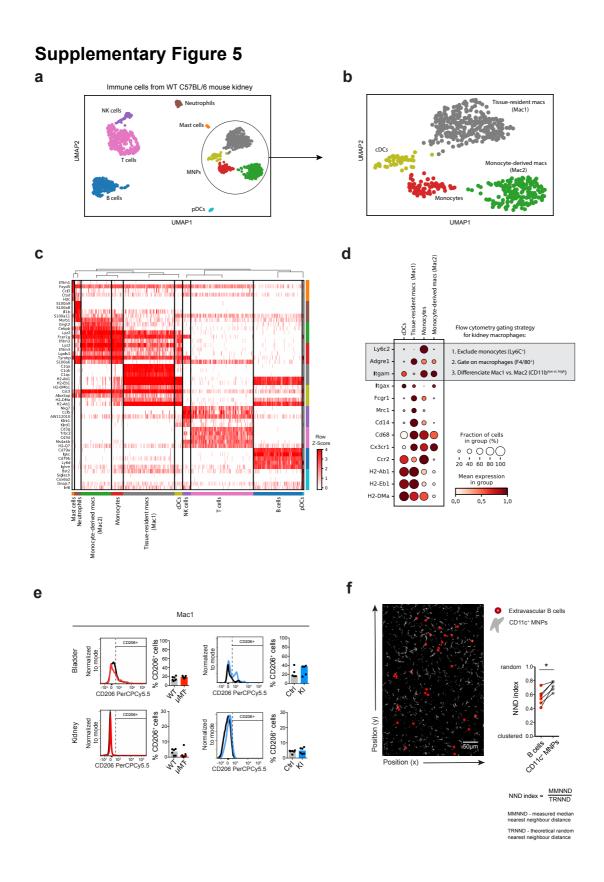
Supplementary Information


Supplementary Figure 1. Extravascular B cells present across murine organs in homeostasis. (a) Absolute extravascular B cell counts per organ shown in Fig.1a. Medians are shown. (b) Human organ donor characteristics related to Fig.1e. Causes of death abbreviations: MI – myocardial infarction, ICH – intracerebral heamorrhage, RTA – road traffic accident, Ca – cancer. (c) Deeper flow cytometry

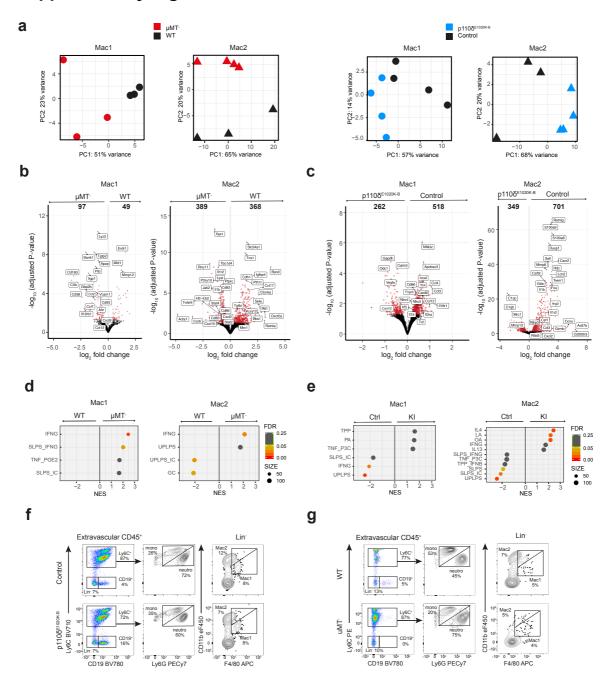
immunophenotyping of four extravascular B cells subsets from organs shown in Fig. 1a. Representative histograms of MFI normalized to mode for B220, CD23, CD5, CD9, CD138, IgM, CD21 and CD11b expression in naïve (blue), double negative (green), IgM⁺IgD⁻ (pink), B-1a (black) B cells. (d) Confocal microscopy of neonatal (7 days old) wild-type C57BL/6 mouse liver, lung and spleen focusing on extravascular localization of CD5⁺ B cells. Sections were stained for CD19 (red), CD5 (green) and CD31 (grey). Scale bars represent 20um. Representative of three independent experiments. Blue arrows point at extravascular CD19⁺CD5⁺ B cells. Source data are provided with this paper.


Supplementary Figure 2. Bona-fide tissue-resident B cell compartments in non-lymphoid organs confirmed by parabiosis. (a) Representative flow cytometry plots showing chimerism of extravascular CD19⁺ cells in IgM⁺IgD⁻, double negative (DN), naïve and B-1a subsets found in kidney, liver, lung, female reproductive tract (FRT), spleen and blood from parabiosis experiment described in Fig. 2a.

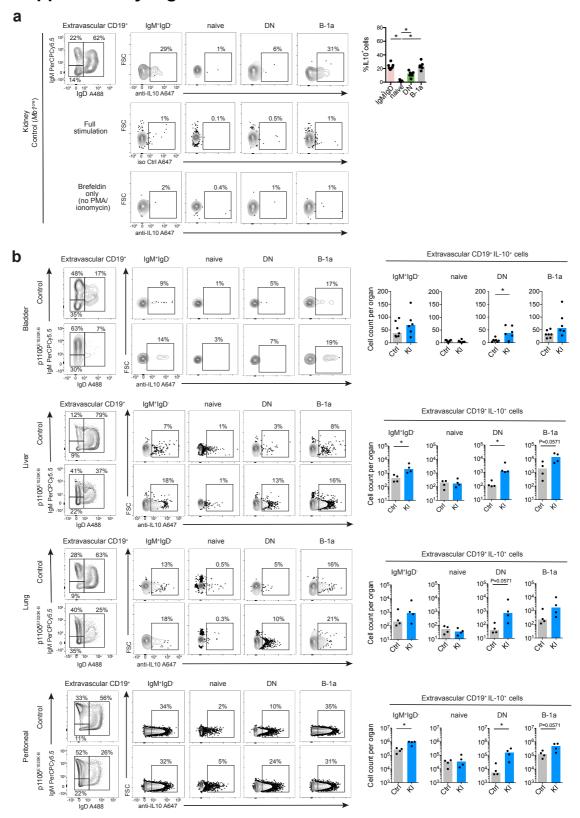
Host-derived cells in mouse animal were marked as CD45.1 positive. Data representative of two experiments. (b) Representative flow cytometry plots showing IgM/IgD independent immunophenotyping of extravascular live single CD19⁺ cells in kidney, urinary bladder, liver, lung, peritoneal lavage and spleen from B-cell depleted or control mice as described in Fig. 2c. Data representative of two independent experiments. (c) Percentages of host-derived extravascular IgM⁺IgD⁻ , double negative (DN), naïve cells within B cell population found in mouse organs above (b). Means with SEM shown. Two-tailed Mann-Whitney U test used to for testing difference in percentage of naïve B cells between depleted and control group. Kidney (control n=10, depleted n=8): *P=0.0343; bladder (control n=4, depleted n=5): ns P=0.7302; liver (control n=4, depleted n=5): *P=0.0317; lung (control n=4, depleted n=4): P=0.0571; peritoneal (control n=4, depleted n=5): P=0.0635; spleen (control n=4, depleted n=5): *P=0.0317. (d) Representative flow cytometry histograms showing Click-iT® Plus EdU Alexa Fluor[®] 647 mean fluorescence intensity (MFI) in extravascular naïve (blue), IgM⁺IgD⁻ (red), Bla (black) and double negative (DN, green) B cells found in kidney, urinary bladder, liver, lung, peritoneal wash and spleen from B-cell depleted mouse group as described in Fig. 2c. Grey histograms represent a mouse control without EdU in drinking water (negative control). Bone marrow sample included as a positive control for EdU staining of proliferating cells. Percentage of EdU positive cells shown in each plot. Bar charts quantifying percentage of EdU positive cells within each extravascular B cells subset are shown in Fig. 2e. Source data are provided with this paper.


Supplementary Figure 3. Tissue-resident B cell repertoire is less diverse and is expanded following bacterial challenge. (a) Schematic of short UTI experimental setup: wild-type female C57BL/6 mice had urinary bladders inoculated twice with UPEC (n=5), or PBS (n=5). Their organs were harvested after 12 hrs. (b) UPEC CFU counts from urinary bladder, kidney and spleen single cell

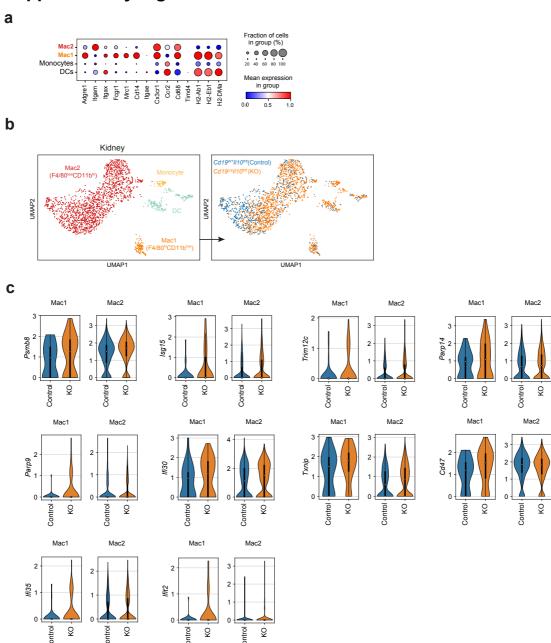
suspensions generated in the experiment described in (a). (c, d) Flow cytometry quantification of absolute extravascular neutrophils (Ly6CintCD11bhi), monocytes (Ly6ChiCD11bint) (c) and extravascular B cell subsets (naïve, IgM⁺IgD⁻, double negative (DN) and B-1a) (d) counts in urinary bladders and kidneys from control and infected mice (UPEC) as described in (a), n=5 per organ/group, **P=0.0079. Only UPEC kidneys included in the UPEC group. (e) Representative flow cytometry plots showing Ki-67 expression in four extravascular B cells subsets found in urinary bladders of control and infected (UPEC) mice as described in (a). Bar charts show percentage of Ki-67⁺ cells within each B cell subset and mouse cohort. (f) Representative flow cytometry histograms showing MHCII MFI of four extravascular B cells subsets found in urinary bladders in control and infected (UPEC) mice as described in (a). Bar charts (bottom) show median MHCII MFI within each B cell subset and mouse cohort, *P=0.0159. (g) Representative flow cytometry plots showing gating strategy for sorting extraand intravascular kidney B cells for BCR-sequencing experiments as described in Fig. 4a. (h) Frequency (%) of seven Igh isotypes found in B cell repertoire from extra- and intravascular compartments of control (PBS) and infected (UPEC) mice as described in Fig. 4a. Means with SEM shown, PBS n=6, UPEC n=5. Statistical tests compare differences in *Ighd* frequencies, *P=0.0312. (i) Tukey box plots comparing total mutation frequency (including silent and replacement mutations) of V_H-segments in extravascular kidney BCRs (downsampled to n=1000 unique BCR sequences per group/isotype) between PBS and UPEC mice (from experiment described in Fig. 4a). Ighm* represents only sequences with no Ighd counterpart (sharing CDR3 nucleotide sequence). **P<0.01, ***P<0.001, ****P<0.0001 and ns P>0.05. Medians are shown unless stated otherwise. P values were calculated with two-tailed Mann-Whitney U test (c-f, h - extravascular PBS vs. UPEC) and two-tailed Wilcoxon matched-pairs signed ranked test (h - extra- vs. intravascular PBS compartment, i). Source data are provided with this paper.


Supplementary Figure 4. Tissue-resident B-1a cells contribute to bacterial defence in the renal tract. (a) Flow cytometry quantification of absolute cell counts for naïve, IgM^+IgD^- and double negative (DN) B cells found in extravascular organ compartments and blood from wild-type C57BL/6, $p110\delta^{E1020K-B}$ and μMT^- mouse. Data pooled from two independent experiments. Bladder (WT n=5,

 $p110\delta^{E1020K-B}$ n=4, μ MT⁻ n=5): *P=0.0317 (IgM⁺IgD⁻), *P=0.0159 (DN), **P=0.0079, ns P=0.1905; kidney (WT n=8, p110 $\delta^{E1020\text{K-B}}$ n=8, μ MT n=9): *****P<0.0001, ****P=0.0002, ns P=0.8785; liver (WT $n=8,\,p110\delta^{E1020K-B}\,n=8,\,\mu MT^{-}\,n=5):\,^{***}P=0.0002,\,^{**}P=0.0016,\,^{*}P=0.0148,\,ns\,P=0.3282;\,lung\,(WT\,n=8,\,p110\delta^{E1020K-B}\,n=8,\,\mu MT^{-}\,n=5):\,^{***}P=0.0002,\,^{**}P=0.0016,\,^{*}P=0.0148,\,ns\,P=0.3282;\,lung\,(WT\,n=8,\,\mu MT^{-}\,n=5):\,^{***}P=0.0002,\,^{**}P=0.0016,\,^{*}P=0.0148,\,ns\,P=0.3282;\,lung\,(WT\,n=8,\,\mu MT^{-}\,n=5):\,^{***}P=0.0002,\,^{**}P=0.0016,\,^{*}P=0.0018,\,^{*}P=0.$ $p110\delta^{E1020K-B}$ n=8, μ MT n=5): **P=0.0016, **P=0.0047 (IgM+IgD-, $p110\delta^{E1020K-B}$ vs. WT), **P=0.0011 (DN, p110 $\delta^{E1020K-B}$ vs. WT), ns P=0.3282; peritoneal (WT n=9, p110 $\delta^{E1020K-B}$ n=8, μ MT n=5): ***P<0.0001, ***P=0.0010, ***P=0.0006 (IgM⁺IgD⁻, p110 δ ^{E1020K-B} vs. WT), ns P=0.7430; spleen (WT n=10, p110 $\delta^{E1020K-B}$ n=8, μ MT n=5): ****P=0.0007, ****P=0.0062, ns P>0.9999, blood (WT n=7, $p110\delta^{E1020K-B}$ n=6, μ MT⁻ n=5): **P=0.0025, *P=0.0221, ns (naïve) P=0.3660, ns (IgM⁺IgD⁻) P=0.4452. Data pooled from two independent experiments. (b) Schematic experimental setup (left) for short UTI experiment: Wild-type C57BL/6 or µMT female mice had urinary bladders inoculated twice (within 45 mins) with UPEC. Their organs were harvested after 12 hours. Representative LB agar plates photographs (middle) and UPEC CFUs counts (bottom) recovered from urinary bladder, kidney and spleen single cell suspensions are shown. A pseudo-count of 1 was added to all CFUs counts. Bladder (WT n=5, μ MT⁻ n=4): *P=0.0159; kidney (WT n=8, μ MT⁻ n=7): ****P=0.0006; spleen (WT n=5, μ MT⁻ n=4). Data representative of two independent experiments. (c) Heatmap with hierarchical clustering showing all significant (Padj < 0.05) differentially expressed cytokines and chemokines genes in kidneys µMT mice and their co-housed WT controls as described in Fig. 5b. Data generated from RNA sequencing of whole kidneys positive for UPEC CFUs. (d) Heatmap with hierarchical clustering showing all significant (Padj < 0.05) differentially expressed genes in kidneys from p110 δ ^{E1020K-B} mice and their co-housed Mb1^{cre} controls as described in Fig. 5e. Data generated from RNA sequencing of whole kidneys positive for UPEC CFUs. Bar plots show medians. P values were calculated with twotailed Mann-Whitney U test (a-b). Source data are provided with this paper.


Supplementary Figure 5. Immunophenotyping of macrophage subsets in mouse kidney. (a, b) UMAP embedding of 1,317 immune cells (a) and 577 MNPs (b) found in single-cell RNA seq dataset of WT C57BL/6 mouse kidney generated by Mulderrig et al.⁵³, coloured according to major cell type annotations. (c) Heatmap of gene expression of the top 5 unique marker genes for each immune cell

cluster identified in (a,b). Expression values calculated as row z-scores. Rows and columns are hierarchically clustered. (d) Mean expression dot plot of canonical MNP marker genes for four MNP subsets identified in (c). Circle size corresponds to fraction of cells expressing the gene and colour gradient corresponds to relative mean expression scaled from 0 to 1. Expression profile of *Ly6c2*, *Adgre1 and Itgam* guided the flow-cytometry gating strategy for kidney Mac1 and Mac2 subsets in experiments described in Figures 6-7. (e) Representative histograms showing CD206 MFI of Mac1 subsets analyzed in Fig. 6a and 6c. Bar charts quantify percentage of CD206⁺ cells (within Mac1 subset) in each organ and mouse strain. μMT⁻ (n=5)/WT (n=7); p110δ^{E1020K-B}/control mice: bladders (n=5 per group), kidneys (n=6 per group). (f) Representative pseudocoloured histo-cytometric 2D cell distribution plot (left) from CD11c⁺ EYFP reporter mouse kidney cortex stained for extravascular CD19⁺ cells (red spots) and CD11c⁺ MNPs (grey surfaces). Paired comparison (right) of the nearest neighbor distance (NND) index for B cells and CD11c⁺ MNPs analyzed in different kidney cortex specimens (n=6). NND index was calculated as measured NND / theoretical random NND. *P=0.0312 was calculated using two-tailed Wilcoxon matched-pairs signed ranked test. Source data are provided with this paper.


Supplementary Figure 6. Tissue-resident B cells orchestrate macrophage polarisation in the renal tract. (a) Principal component analysis (PCA) of bulk RNA-seq data generated from sorted extravascular Mac1 (F4/80^{hi}CD11b^{low}) and Mac2 (F4/80^{low}CD11b^{hi}) subsets, respectively, from kidney single-cell suspensions stimulated with LPS for 2hrs and obtained from either μ MT (n=4), or p110δ^{E1020K-B} (n=4) mice, respectively, and their matched controls (WT n=3, $Mb1^{cre}$ controls n=3). Data related to experiments in Fig. 6f-g. First and second principal components with % variance are plotted. (b,c) Volcano plots showing differentially expressed genes in macs obtained from either μ MT (b), or p110δ^{E1020K-B} (c) kidneys, respectively, and their matched controls (WT n=3, $Mb1^{cre}$ controls n=3) as described in (a). Total number of significant up- and down-regulated genes displayed in bold on the top of the plot. Significant genes (Padj < 0.05) coloured in red and their total number displayed below

arrows for each direction. DESeq2 based Wald test with adjustment for multiple testing. (**d,e**) GSEA for macrophage activation gene sets (generated from publically available transcriptional profiles of a spectrum of human macrophage activation states by Xue et al.⁵⁷) on pre-ranked genes differentially expressed in macs obtained from either μ MT $^-$ (d), or $p110\delta^{E1020K-B}$ (e) kidneys, respectively, and their matched controls (WT n=3, $Mb1^{cre}$ controls n=3) as described in (a). Only gene sets with FDR <0.25 shown. Activation stimuli: GC – glucocorticoid, IC – immune complexes, IFNB – interferon β , IFNG – interferon γ , IL4 – interleukin 4, IL13 – interleukin 13, LA – lauric acid, OA – oleic acid, P3C – Pam3CysSerLys4, PA – palmitic acid, PGE2 – prostaglandin E2, SLPS – standard lipopolysaccharide, TNF – tumour necrosis factor, TPP – TNF+PGE2+P3C, UPLPS – ultrapure lipopolysaccharide. (**f,g**) Representative flow cytometry plots showing gating strategy for extravascular neutrophils, monocytes, Mac1 and Mac2 found in urinary bladders from p110 $\delta^{E1020K-B}$ (f), or μ MT $^-$ (g), respectively, and their matched controls. and their $Mb1^{cre}$ controls as described in Fig. 6h-i. Source data are provided with this paper.

Supplementary Figure 7. Tissue-resident B-1a cells in non-lymphoid organs are an important source of IL-10. (a) Flow cytometry phenotyping and quantification of IL10 expression in four extravascular B cell subsets (IgM^+IgD^- , naïve, double negative, B-1a) found in control ($Mb1^{cre}$) kidney (n=7) as shown in Fig. 7c together with two negative controls for intracellular IL10 staining (1. isotype

control antibody used in full stimulation protocol, 2. Anti-IL10 antibody after stimulation protocol with Brefeldin only). $^*P=0.0156$. (b) Flow cytometry quantification of IL10 expression in extravascular B cell subsets (IgM $^+$ IgD $^-$, naïve, DN, B-1a) found in organs from $Mb1^{cre}$ (control, Ctrl) and p1108 $^{E1020K-B}$ (KI) mice. Bladders (Ctrl n=7, KI n=6): $^*P=0.0221$; liver (n=4 per group): $^*P=0.0286$; lung (n=4 per group); peritoneal (n=4 per group): $^*P=0.0286$. Bar charts show absolute cell counts of IL10 $^+$ B cells within each subset. Data representative of two independent experiments. P values were calculated with two-tailed Wilcoxon matched-pairs signed ranked test (a) or two-tailed Mann-Whitney U (b) test. Bar charts show medians. Source data are provided with this paper.

Supplementary Figure 8. B-cell derived IL-10 orchestrates macrophage polarization. (a) Mean expression dot plot of canonical MNP marker genes supporting annotation of four MNP subsets showed in Fig.7e. Circle size corresponds to fraction of cells expressing the gene and colour gradient corresponds to relative mean expression scaled from 0 to 1. (b) UMAP plots of MNPs-only (n=1894) obtained from scRNA-seq experiment described in Fig. 7d, coloured according to major cell type

annotations (left) or study group (right). (c) Violin plots of top 10 leading edge genes found in Hallmark 'interferon alpha' or 'interferon gamma response' gene signatures in GSEA described in Fig. 7f. The white circle indicates the median and the boxes extend to the interquartile range. Log1p expression value is shown on the y-axes.

Table 1. List of antibodies used in the study.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies for flow cytometry / depletion	2001LEL	
	DD Dhamaiaan	DDID: AD 206702
Anti-mouse B220 antibody (RA3-6B2), dilution 1:100	BD Pharmigen	RRID: AB_396793 Cat. No. 557683
Anti-mouse CD11b antibody (M1/70),	Biolegend	RRID: AB 11126744
dilution 1:100	Biolegena	Cat. No. 101237
Anti-mouse CD138 antibody (281-2),	Biolegend	RRID: AB 2650927
dilution 1:100	Breregena	Cat. No. 142518
Anti-mouse CD19 antibody (6D5),	Biolegend	RRID: AB 11218994
dilution 1:100		Cat. No. 115543
Anti-mouse CD20 depleting antibody (5D2),	A gift from Genetech,	N/A
dose: 10mg/kg	USA	
Anti-mouse CD206 antibody (C068C2),	Biolegend	RRID: AB_2561992
dilution 1:100		Cat. No. 141716
Anti-mouse CD21/CD35 antibody (eBio4E3),	ThermoFischer	RRID: AB_10870784
dilution 1:100	Scientific	Cat. No. 12-0212-82
Anti-mouse CD23 antibody (B3B4),	Biolegend	RRID: AB_2103036
dilution 1:100	D: 1	Cat. No. 101614
Anti-mouse CD3 antibody (17A2),	Biolegend	RRID: AB_2562039
dilution 1:100	D: 1	Cat. No. 100237
Anti-mouse CD31 antibody (MEC13.3), dilution 1:100	Biolegend	RRID: AB_2563319
	ThermoFisher	Cat. No. 102520
Anti-mouse CD4 antibody (GK1.5), dilution 1:100	Scientific	RRID: AB_10718983 Cat. No. 48-0041-82
Anti-mouse CD43 antibody (1B11),	Biolegend	RRID: AB 2194192
dilution 1:100	Biolegend	Cat. No. 121220
Anti-mouse CD45 antibody (30-F11),	Biolegend	RRID: AB 493531
dilution 1:100	Biolegend	Cat. No. 103122
Anti-mouse CD45.1 antibody (A20),	Biolegend	RRID: AB 313497 Cat.
dilution 1:100	Brotogona	No. 110708)
Anti-mouse CD45.2 antibody (104),	ThermoFischer	RRID: AB 469400
dilution 1:100	Scientific	Cat. No. 17-0454-82
Anti-mouse CD5 antibody (53-7.3),	Biolegend	RRID: AB 2563930
dilution 1:100		Cat. No. 100627
Anti-mouse CD69 antibody (H1.2F3),	Biolegend	RRID: AB_2565583
dilution 1:100		Cat. No. 104536
Anti-mouse CD8 antibody (53-6.7),	ThermoFisher	RRID: AB_1272198
dilution 1:100	Scientific	Cat. No. 48-0081-82
Anti-mouse CD9 antibody (eBioKMC8),	ThermoFischer	RRID: AB_2574008
dilution 1:100	Scientific	Cat. No. 48-0091-82
Anti-mouse F4/80 antibody (BM8),	Biolegend	RRID: AB_893481 Cat.
dilution 1:100	A1	No. 123116
Anti-mouse F4/80 antibody (CI:A3-1),	Abcam	RRID: AB_2810932
Anti-mouse Gr-1 antibody (RB6-8C5),	Riologand	Cat. No. ab6640
Anti-mouse Gr-1 antibody (RB6-8C5), dilution 1:100	Biolegend	RRID: AB_2137487 Cat. No. 108422
Anti-mouse IgD antibody (11-26c.2a),	Biolegend	RRID: AB 2571985
dilution 1:100	Diolegella	Cat. No. 405742
Anti-mouse IgM antibody (II/41),	ThermoFischer	RRID: AB 1834435
dilution 1:100	Scientific	Cat. No. 46-5790-82
Anti-mouse IL-10 antibody (JES5-16E3),	BD Pharmigen	RRID: AB 395412
dilution 1:100		Cat. No. 554467
Anti-mouse Ki-67 antibody (SolA15),	ThermoFisher	RRID: AB 2688057
dilution 1:100	Scientific	Cat. No. 53-5698-82
Anti-mouse Ly6C antibody (HK1.4),	Biolegend	RRID: AB 2562630
dilution 1:100	_	Cat. No. 128037
Anti-mouse MHCII antibody (M5/114.15.2),	Biolegend	RRID: AB_493527 Cat.
dilution 1:100		No. 107620

Anti-human CD19 (HIB19),	Biolegend	RRID: AB_2563442		
dilution 1:25	_	Cat. No. 302240		
Anti-human CD27 (O323),	Biolegend	RRID: AB 2563809		
dilution 1:25	Biologena	Cat. No. 302834		
	D' 1 1			
Anti-human CD3 (UCHT1),	Biolegend	RRID: AB_493741 Cat.		
dilution 1:25		No. 300424		
Anti-human CD45 (HI30),	Biolegend	RRID: AB 2563812		
dilution 1:25		Cat. No. 304044		
Anti-human IgD (IA6-2),	Biolegend	RRID: AB_11150595		
dilution 1:25		Cat. No. 348216		
Rituximab (Truxima TM),	Healthcare CellTrion	N/A		
Dose: 10mg/kg				
Mouse IgG2a isotype control,	Biolegend	RRID: AB 2940941		
dilution 1:100		Cat. No. 400233		
Mouse IgG2b isotype control,	Biolegend	RRID: AB 2938610		
dilution 1:100		Cat. No. 400330		
Antibodies for confocal microscopy				
Anti-mouse CD19 antibody (6D5),	Biolegend	RRID: AB 11218994,		
dilution: 1:25,		Cat. No. 115543,		
Anti-mouse CD31 (MEC13.3),	Biolegend	RRID: AB 2563319,		
dilution: 1:50		Cat. No. 100237		
Anti-mouse CD5 (53-7.3),	Biolegend	AB 2563930, Cat. No.		
dilution: 1:25		100627		

Supplementary Table 2. List of oligonucleotides used in the study.

Oligonucleotides		
Murine BCR-seq primers (custom-made):	Sigma-Aldrich	N/A
(a) reverse primers:		
1. Ighga:		
ATACGGCGACCAATGTNNNNTNNNNTNNNNCAG		
GGACCAAGGGATAGAC		
2. <i>Ighgb</i> :		
GATACGGCGACCAATGTNNNNTNNNNTNNNNCA		
GGGGCCAGTGGATAG		
3. <i>Igha</i> :		
GATACGGCGACCAATGTNNNNTNNNNTNNNNTG		
TCAGTGGGTAGATGGTG		
4. Ighm:		
GATACGGCGACCAATGTNNNNTNNNNTNNNNCA		
TGGCCACCAGATTCT		
5. Ighe:		
GATACGGCGACCAATGTNNNNTNNNNNNNNAA		
GGGGTAGAGCTGAGGG		
6. Ighd:		
GATACGGCGACCAATGTNNNNTNNNNTNNNNGG CTTTGCACTCTGAGAG		
7. UNIB: GATACGGCGACCAATGT		
7. UNIB. GATACOGCOACCAATOT		
(b) forward primers:		
1. VH-15: GARGTGMAGCTGKTGGAGAC		
2. VH-1: GAGGTTCDSCTGCAACAGTY		
3. VH-2: CAGGTGCAAMTGMAGSAGTC		
4. VH-3: GAVGTGMWGCTGGTGGAGTC		
5. VH-5: GAKGTGCAGCTTCAGSAGTC		
6. VH-7: CAGRTCCAACTGCAGCAGYC		
7. VH-8: GAGGTGMAGCTASTTGAGWC		
8. VH-11: CAGATKCAGCTTMAGGAGTC		
9. VH-12: CAGGCTTATCTGCAGCAGTC		
10. VH-13: CAGGTTCACCTACAACAGTC		
11. VH-14: CAGGTGCAGCTTGTAGAGAC		
TaqMan Gene Expression (Il10)	Thermo Fisher	Mm01288386_m1
	Scientific	
TaqMan Gene Expression (Gapdh)	Thermo Fisher	Mm99999915_g1
	Scientific	
TaqMan Gene Expression (Tnfa)	Thermo Fisher	Mm00443258_m1
	Scientific	