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Simple Summary: Artificial reproduction technologies such as artificial insemination and semen cryop-
reservation are important tools for species conservation and long-term genetic management. As with
many bird species, Arabian bustard (Ardeotis arabs) populations are declining and are already extinct
in some regions. The International Fund for Houbara Conservation (IFHC) has started a conservation
breeding program for the Arabian bustard in the United Arab Emirates (UAE). Birds were housed
by pairs to allow natural reproduction. Out of 1253 eggs laid, 1090 were incubated, of which 379
were fertile (i.e., 34.8%). In total, this led to the production of 251 chicks. Due to lower than desired
fertility, we introduced assisted reproduction techniques to increase fertility and develop zootechnical
knowledge for the species. This paper presents the results of semen collection, artificial insemination,
and semen cryobanking in Arabian bustards. Inseminations with both fresh and preserved semen led
to a significant increase in fertility to 84.3% of incubated eggs (i.e., 43 out of 51 incubated eggs laid by
previously artificially inseminated females). Furthermore, we confirmed the viability of cryopreserved
semen and its fertilizing capacity. Our results demonstrate the usefulness of artificial reproduction
techniques for the conservation of Arabian bustards and suggest that these techniques can be applied to
closely related critically endangered species with a minimum of adaptation.

Abstract: Artificial reproductive technologies are highly valuable for ex situ conservation. While
Arabian bustard populations are declining and extinct in some parts of the range, the International
Fund for Houbara Conservation in the United Arab Emirates implemented a conservation breeding
program. Since 2012, a total of 1253 eggs were laid through natural reproduction, 1090 were incubated
and 379 of these were fertile (fertility rate of 34.8%), leading to the production of 251 chicks. To im-
prove fertility and acquire crucial knowledge for other endangered large birds, artificial reproduction
was implemented in 2018 using fresh, refrigerated, and frozen sperm. A total of 720 ejaculates were
collected from 12 birds. We analysed these samples for concentration, volume, motility score (0 to 5),
viability (eosin/nigrosine), length, and morphology. The first age at collection was 35.7± 18.8 months,
mean volume was 89.2 ± 65.3 µL, mean concentration was 928 ± 731 sptz/mL and mean motility
score was 2.61 ± 0.95. Morphology analyses revealed a bimodal distribution of sperm length. Five
hundred and thirty-five ejaculates were cryopreserved and the initial motility score was 3.4 ± 0.7 and
2.0 ± 0.6 after thawing, while the percentage of normal and intact membrane sperm cells decreased
from 88.8 ± 7.5% to 52.9 ± 1%. Sixty-five artificial inseminations were performed, leading to a global
fertility rate of 84.3%—more precisely, 85.2% and 83.3%, respectively, for fresh and cryopreserved
semen. All methods successfully produced fertile eggs, indicating that artificial insemination is an
efficient tool for the conservation and genetic management of the species.

Keywords: bustards; wild bird reproduction; artificial insemination; semen cryopreservation; conser-
vation breeding; ex-situ conservation; sperm bank
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1. Introduction

Artificial reproductive technologies provide important opportunities for assisting
conservation efforts to counter the current biodiversity crisis [1,2]. Artificial insemination
has become an important component of many recovery and conservation programs for
non-domestic birds [3,4]. Furthermore, genomic resource banking, specifically cryobanking
of gametes, is a strong component of the long-term maintenance and management of
genetic diversity. It also allows individuals to contribute to the gene pool long after their
death [5–8]. Hence, semen cryopreservation combined with artificial insemination provides
a valuable tool for the storage and later use of sperm, increasing the capacity for robust
management of genetic diversity in avian conservation breeding programs [9–11].

The bustard family (Otididae) is composed of 26 species, eight of which are classified
as Threatened within the IUNC Red List of Threatened Species [12]. Within the family,
the genus Ardeotis is composed of four species: the Australian bustard (Ardeotis australis,
Gray, 1829; the only bustard in Oceania); the Kori bustard (Ardeotis kori, Burchell, 1822
(the second-heaviest flying bird); the great Indian bustard (Ardeotis nigriceps, Vigors, 1831
(one of the most endangered bird species with only 100–150 individuals remaining in
the wild and listed as Critically Endangered [13,14]), and the Arabian bustard (Ardeotis
arabs, Linnaeus, 1758). This final species is listed as Near Threatened by IUCN with a
global trend of decreasing population owing primarily to hunting pressure and habitat
degradation [15,16]. Four subspecies of Arabian bustards are recognized [17] (Figure 1):
A. a. lynesi (Bannerman, 1930), which is probably extinct, A. a. stieberi (Neumann, 1907),
A. a. butleri (Bannerman, 1930) and A. a. arabs (Linnaeus, 1758). The latter is considered
extinct in Saudi Arabia, where it was included in a high-priority conservation list, ranking
ninth among 102 species [18].
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Figure 1. Distribution of Arabian bustards (Ardeotis arabs) subspecies. Red dots are observation
events as recorded in eBird [19].

The Arabian bustard Conservation Breeding Program implemented by the Interna-
tional Fund for Houbara Conservation (IFHC) at the National Avian Research Center
(NARC, Sweihan, UAE) was initiated in July 2007 with the arrival of three confiscated
birds of Yemeni origin. In 2009–2010, egg collections were conducted in the Tihama region
of Yemen, resulting in 11 chicks from nine harvested nests. The founding flock was thus
composed of nine males and five females that were housed in groups. The first egg was laid
in captivity in 2012 and the first chick produced through natural reproduction hatched in
2013 (Figures A1 and A2). Between 2012 and 2021, a total of 1310 eggs were laid, with 1253
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from females included in the natural reproduction program, of which 1090 were incubated.
Three hundred and seventy-nine of these were identified as fertile (i.e., 34.8% fertility
through natural breeding) leading to the production of 251 chicks (Figures A1 and A2).
In 2018, artificial reproduction techniques were implemented to improve reproductive
success (number of fertile eggs and live chicks) and to investigate how best to apply these
techniques in the genus. This was done while building on the experience acquired in
semen collection, artificial insemination, and semen cryobanking within IFHC houbara
(Chlamydotis spp.) conservation breeding programs [4,20–22], where artificial insemination
yields fertility levels of 91.7% for incubated eggs.

These techniques are efficient for analyzing and sorting many semen samples and
adapted to situations where both cost-efficiency and skill transfer and capacity building
are a concern. The objectives of the present work on the Arabian bustard were multiple,
with the first to increase the proportion of fertile eggs within the conservation breeding
program. Indeed, natural reproduction would not be sufficient to ensure both reproduction
in captivity and an efficient long-term genetic management of the species in captivity
through pair selection. In addition, this non-model species can be a surrogate to develop,
test, and provide techniques that can be applied to other large, endangered birds such as
the Great Indian bustard, therefore efficiently contributing to their conservation.

Thus, the present paper aims to present the first data on routine analyses of semen
characteristics within the Ardeotis genus as well as fertility outcomes resulting from the
use of assisted reproduction techniques, including a cryobank of cryopreserved semen.
More specifically, we provide information on female laying patterns, semen collection,
qualitative and quantitative evaluation of semen, sperm morphology, artificial insemination
and subsequent fertilization success and hatching rates.

2. Materials and Methods
2.1. Experimental Birds and Breeding Program Management

Adult housing facilities consisted of elliptical tunnels measuring 9 × 15 m (Figure A3)
where food and water were provided ad libitum. Pairings were constituted while consid-
ering optimal maintenance of genetic diversity within the captive flock using pedigree
analyses [23–25]. The natural pairing was not considered, as it would have required pro-
hibitively large pens and would not allow strict pairing management to ensure long-term
maintenance of genetic diversity. Males and females were kept together throughout the
year and eggs were checked and recorded daily. The breeding flock in January 2022 is com-
posed of 147 individuals (72 males and 75 females). While eggs were recorded throughout
the year, most were laid between March and August. Thirty-eight females laid an average
of 13.8 eggs per year (range 1 to 44 eggs per layer and per year) for a total amount of 1310
eggs. The average clutch size was 1.55 ± 0.67. Eggs from a single clutch were laid at 2 days
intervals (median = 2 days, average = 2.3 ± 0.7 days), while the inter-clutch interval was 12
days (median = 12 days, average = 16.5 ± 16.7 days).

Upon transfer to incubation, all eggs were disinfected and controlled for defects before
being placed in incubators. Water loss was calculated by measuring the change in egg
weight throughout incubation. Fertility and viability were measured via egg candling on
days 3, 9, 12 and 20 of incubation. Systematic necropsy of non-hatched eggs allowed the
team to analyze if the eggs were fertilized or not. Only incubated eggs were considered
when evaluating egg fertility results. The hatching rate was evaluated as the proportion of
viable live chicks hatched over the total number of incubated eggs. The average incubation
duration was 21.8 ± 0.7 days. The rearing of future breeders was developed to minimize
stress and promote familiarity with humans; this ensures a limited amount of stress dur-
ing captures such as artificial insemination or vaccinations. Upon hatching, chicks were
transferred to rearing facilities where they were imprinted before being transferred to adult
enclosures at about one year old. Imprinting consisted of frequent interactions between
chicks and keepers through visual or acoustic contact, hand-feeding, or physical interac-
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tions, such as being held. Imprinting reinforcement occurs throughout an individual’s life
to reduce stress and allow the implementation Of artificial reproduction techniques.

The Abu Dhabi authorities approved the breeding program and captivity conditions
under reference 116620140. Founders were transferred to the facilities from Yemen under
CITES certificate number 10MEW3077. Operations are conducted in a humane manner, and
each breeding protocol is developed while ensuring the appropriate and ethical treatment of
birds. To minimize stress during capture, birds are fitted with hoods during manipulation.
Furthermore, all operations requiring handling of the birds were performed only by the
most experienced keepers under the supervision of veterinarians. The facilities are designed
to ensure the well-being of the birds and prevent injuries. On-site veterinary facilities
provide the best possible care for sick or injured birds by a team of expert veterinarians,
and the standards from sanitary authorities are regularly controlled.

2.2. Artificial Reproduction
2.2.1. Semen Collection

Semen collections were performed yearly from 2018 to 2021, between January to
September (Figure A7). Semen was collected every alternate day from displaying im-
printed males using the technique described in Saint Jalme et al. [4]. Briefly, a dummy
female was presented to the male. Once the male mounted the dummy and started cop-
ulating, a glass dish was used to collect the ejaculate by pressing gently on the male’s
cloaca during ejaculation (Figure A5). This technique recapitulates semen collection and
characteristics more closely to in vivo conditions while addressing the welfare concerns of
the birds [26]. The semen was immediately transferred to a 2 mL cryotube, maintained at
room temperature (RT~24 ◦C), and transferred to a nearby laboratory to be analyzed and
prepared for artificial insemination or preservation.

2.2.2. Semen Analyses

Semen analyses methods were based on routine procedures developed for houbara
bustard conservation programs where the average number of ejaculates analyzed per day
reached 593 with a maximum of 1303 samples in 2021. In such cases, simple but reliable
and robust methods were implemented to ensure all ejaculates were analyzed but also to
permit an easy transfer of skills and allow for capacity-building.

Arabian bustard samples were processed in this same laboratory by experienced
technicians. Upon arrival, fresh ejaculates were immediately analyzed, all procedures
were done at room temperature, and all used materials were kept in the same conditions
(RT~24 ◦C). The mass motility index was assessed by placing a 5 µL droplet on a glass
slide (10× phase contrast objective—Nikon E200 phase-contrast equipped microscope) and
evaluated using a mass motility index [4]. This visually evaluated index has been shown
to be well-correlated with fertility [27–29]. Sperm motility was scored from 0 to 5 in the
periphery of the droplet, using the following scale: (0) total lack of movement, (1) mostly
non-motile sperm with the few motile sperm lacking forward movement, (2) less than
50% of sperm showing moderate activity, (3) above 50% motile sperm showing forward
movement, (4) almost all sperm showing fast forward movement, and (5) almost all sperm
showing fast forward movement with waves and whirlwinds [4]. Regular controls were
performed to ensure the motility scoring was standard throughout the project.

The same slide preparation was used to evaluate the occurrence of contamination
within ejaculates (e.g., feces, urates, blood cells, etc.); contaminated ejaculates were dis-
carded and were neither analyzed nor considered to be used for artificial inseminations.
Among the remaining non-contaminated samples, the volume of undiluted ejaculates was
measured (±1 µL) using an electronic pipette. After dilution with Lake 7.1 diluent (dilution
1:1) [30], the concentration of each ejaculate was assessed by light absorption of semen with
a photometer (Jeanway 6051 colorimeter, Jeanway Ltd., Dunmon, UK) at a wavelength of
600 nm, and results were given in millions of spermatozoa per milliliter (106/mL) [31]. The
number of sperm per ejaculate was calculated based on volume and concentration.
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The proportion of morphologically normal sperm (intact acrosome, normal head shape,
non-swollen heads, normal midpiece and tail, non-teratologic cells) and intact membranes
was simultaneously accessed by the eosin-nigrosin (EN) method where intact cells appear
white while membrane-damaged cells will incorporate the eosin and show pink under
staining [32].

Sperm length was accessed placing a 5 µL droplet of diluted and fixed semen sam-
ple (Hancock solution [33]) between the slide and a 22 × 22 mm coverslip (wet mount).
Sperm cells were photographed and the length of the acrosome, head, midpiece and tail
measured only on morphologically normal sperm using cellSens image software (version
1.12, Olympus\CellSens Software, Tokyo, Japan).

2.2.3. Semen Refrigeration for 24 h

While most unused ejaculates were cryopreserved (cf. below), a few ejaculates were
refrigerated for 24 h to be used for artificial insemination the next day to follow the female
laying pattern closely and ensure optimal fertility potential (n = 6). After qualitative and
quantitative analyses, including dilution with Lake 7.1 diluent (dilution 1:1), these ejaculates
were preserved 24 h at 4 ◦C in 2 mL Eppendorf Safe-Lock Tubes when the preserved volume
was below 250 µL, while 6 mL Sterlin scintillation vials were used otherwise. Motility
scores were recorded before and after refrigeration and ejaculates were placed on an orbital
shaker plate with gentle shaking to allow the ejaculate to reach room temperature prior
to analysis or artificial insemination [22]. Motility results were compared by a Wilcoxon
paired rank-test (p ≤ 0.05).

2.2.4. Semen Cryopreservation and Thawing

Most of the collected and non-contaminated ejaculates were submitted to the freezing
protocol. Ejaculates were frozen based on Tselutin’s procedure [34]. This procedure was
selected for its simplicity and known efficiency with bustard semen. Additionally, that
procedure does not require the cryoprotectant to be removed by centrifugation before
artificial insemination [34]. Ejaculates were cooled at 4 ◦C for 30 min, supplemented with
dimethyl-acetamide (DMA) to a final concentration of 6%, gently mixed and kept for 1 min
in an iced water bath. Then, the ejaculate was quickly dropped into liquid nitrogen to form
frozen pellets. These pellets were transferred into cryovials and cryopreserved in liquid
nitrogen.

During the thawing procedure, pellets were quickly placed on a thermo-regulated
stainless conical hotplate (Figure A4) set at 60 ◦C [34]. The equipment allowed for the
immediate evacuation of the thawed pellets into a 5 mL glass beaker. Motility viabil-
ity/morphology analyses were repeated after thawing. Motility results were compared by
a Wilcoxon paired rank-test and viability/morphology with a paired t-test (p ≤ 0.05).

2.2.5. Artificial Insemination

Based on the experience acquired with houbara bustards, female laying history was
taken into consideration to decide the most appropriate time to catch and inseminate
the females to optimize fertility while minimizing the number of artificial inseminations
performed to reduce stress. Laying histories were carefully recorded, so the artificial
inseminations were generally performed within 3 to 6 days before the next clutch [4].
Specifically, designed specula were used to open the cloaca while sperm was slowly
delivered at the beginning of the oviduct using a 250 µL positive displacement insemination
micropipette [4] (Figure A6). Artificial inseminations were performed with a minimum of
10 million spermatozoa for a maximum volume of 250 µL.

3. Results
3.1. Semen Collection and Analyses

Between 2019 and 2021, semen collection was attempted for 34 males, of which 13 were
collected for a total of 720 ejaculates. All collected males were captive-bred individuals that
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were imprinted. The number of ejaculates collected per bird, age in months at first collection,
the ejaculate volume, concentration, sperm number and motility score are summarized in
Table 1. Details regarding individuals and yearly semen collection results and monthly
variations of semen characteristics are presented in Appendix A (Figure A8 and Table A1).

Table 1. Overall information on semen collection from 2019 to 2021. Only ejaculates that were not
contaminated with urates, feces, or red blood cells were considered for overall semen characteristics.
Means are presented along with standard deviations.

Mean Range

Number of males with collection
attempts 34

Number of donors 13
Age at first collection (in months) 36.3 ± 18.4 10–61

Number of ejaculates 720
Number of ejaculates per donor 55.4 ± 40.6 1–129
Number of ejaculates per donor and
per year 25.7 ± 26.7 1–84

Non-contaminated ejaculates 343
Volume (µL) 87.5 ± 54.1 4–290
Motility 2.9 ± 0.9 0–4.5
Concentration (106/mL) 1091.9 ± 803.6 23.9–4315.3
Sperm number (×106) 83.18 ± 78.7 1.6–672.8

The mean of the total sperm length was 59.74± 3.02µm (52.61 to 68.38µm (Figure 2)). Each
section measurements were acrosome 2.22± 0.22 µm (1.54 to 3.97 µm), head 8.79± 1.38 µm
(6.76 to 15.04 µm), midpiece 3.35± 1.12 µm (2.17 to 8.33 µm) and tail 45.37± 2.05 µm (40.37
to 49.93 µm). Proportionally, most variation occurs in head sizes where a bimodal pattern
of sperm sizes is the result. Some ejaculates consist of sperm with heads that were twice as
long as others (Figure 2). A boxplot and violin histogram of sperm-length measurements
can be found in Appendix A (Figure A9).
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cellSens image software, numbers between parentheses are generated by the software to count
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(b) Arabian bustard sperm showing a teratogenic defect (double-tail, highlighted by the arrow)
and differences in sizes (Hancock solution fixation, wet chamber method, phase contrast 1000× oil,
Olympus BX41).
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3.2. Semen Refrigeration for 24 h

Six ejaculates were refrigerated for 24 h for further use for artificial insemination. The
mean preserved volume was 231.3 µL ± 75.5 and the mean motility significantly decreased
from 4.08 ± 0.49 to 3.33 ± 0.52 after refrigeration (p ≤ 0.05). No morphology records were
taken after refrigeration.

3.3. Semen Cryopreservation

A total of 535 ejaculates were cryopreserved; these represented twelve males. Twenty-
four ejaculates were thawed for artificial insemination and to evaluate the impact of the
cryopreservation method on cell viability and morphology. Thirteen samples representing
seven males were reanalyzed for viability/morphology after thawing. The average motility
decreased significantly from 3.4 ± 0.7 to 2.1 ± 0.6 (p ≤ 0.001) after cryopreservation, and
the proportion of live/normal sperm decreased significantly from 90.3 to 52.9% (p < 0.05,
Table 2, Figure 3).

Table 2. Results of sperm viability and morphology analyzes for 13 ejaculates before and after
cryopreservation. Means are presented along with standard deviations, and values are presented in
percentage.

Fresh Frozen/Thawed p-Value

Normal live Mean 90.3 ± 8.2 52.9 ± 11
Range (min/max) 76.5–99.9 31–71 p ≤ 0.001

Normal dead Mean 3.4 ± 2.4 38.6 ± 10.2
Range (min/max) 0–8 23–57 p ≤ 0.001

Abnormal live Mean 8.3 ± 5 4.2 ± 3.5
Range (min/max) 3–17 0–11 p ≤ 0.05

Abnormal dead Mean 1.2 ± 1.5 4.2 ± 3.7
Range (min/max) 0–4.2 0–10 p ≤ 0.01
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membrane of uncoloured sperm is considered as intact, and (b) damaged sperm membrane is positive
for eosin coloration, therefore coloured in pink (Olympus BX61, 400× brightfield).
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3.4. Artificial Insemination

Fifteen females were inseminated for a total of 65 artificial inseminations with an
average of 3.6 ± 3.3 artificial inseminations per female and per year (range 1–10). Forty-one
inseminations were performed with fresh semen, five with semen preserved for 24 h and
19 with frozen/thawed semen. These artificial inseminations produced 33 eggs; six were
preceded by artificial insemination with cryopreserved semen and only five were deemed
to be fertile (i.e., 83.3%). Twenty-seven eggs were preceded by artificial inseminations with
fresh semen, only of which 23 were fertile (i.e., 85.2%) (Table 3).

Table 3. Mean parameters of artificial inseminations performed with fresh, 24 h refrigerated and
cryopreserved semen. Means are presented along with standard deviations.

Fresh 24 h Refrigerated Cryopreserved

Artificial Inseminations 41 5 19
Volume (µL) 209.4± 62.0 µL 211.0 ± 72.5 183.6 ± 72.5
Number of sperm (×106) 73.6 ± 34.9 78.3 ± 21.8 66.6 ± 33.5
Motility 3.3 ± 0.7 3.4 ± 0.5 1.9 ± 0.4
Eggs 27 0 6
Fertile Eggs (9th day of incubation) 23 0 5
Fertility rate 85.2% 83.3%

The remaining eighteen eggs were preceded by a combination of artificial insemi-
nations with a different type of semen; fifteen of them were fertile (i.e., 83.3%). Thus,
51 incubated eggs were preceded with different semen-type artificial inseminations of
which 43 were fertile (i.e., 84.3%) at the ninth day of incubation.

4. Discussion

This study is the first to present data on the semen characteristics of the Arabian
bustard and for the genus Ardeotis, a genus where each species in the genus has been
the subject of a conservation breeding program [35–37]. Here, we present the results of a
routine assessment of mass motility index, concentration, volume and some complementary
evaluation of viability, morphology, and length.

Our results demonstrate the potential for artificial reproduction techniques to conserve
Arabian bustards and suggest these can be applied, with a minimum of adaptation, for
closely related endangered species, such as the Great Indian Bustard. Indeed, the use of
artificial insemination led to a significant increase in fertility compared to natural breeding
(an increase from 34.8% to 84.3%). Furthermore, implementing an affordable, easy to
execute, and robust pellet cryopreservation protocol allowed the development of a cryobank
where all donors from the captive population are represented, acting as a substantial tool
for the long-term genetic management of the species.

However, differences occur between species requiring continuous research, develop-
ment, and adaptation. For example, the initial semen collection attempts involved stroking
techniques performed in cranes, partly because of the similar size and morphology of
both species [3,38] (Figure A5). However, this collection method was not adequate due to
the pelvis configuration of bustard males. Then, from the knowledge acquired through
experience with both North African (C. undulata) and Asian (C. macqueenii) houbara within
IFHC conservation breeding programs, we then decided to proceed with semen collection
using a dummy female (Figure A5). This required that males had to be habituated to a
human presence to reduce stress and ensure they would mount a dummy with a keeper
close by. Because birds will respond to the imprint process differently, and some will fail to
approach the dummy or ejaculate under these conditions, this required an adjustment of
rearing protocol to ensure most males can access reproduction.

Our findings demonstrate that improved zootechny is likely the reason for successful
sperm donation from younger males during the latest cohorts (i.e., 2017 and 2018; Table A2).
This also likely explains why no semen has been collected so far from wild founders.
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Importantly, our method is the closest to natural reproduction in that it allows males to
display and approach the dummy freely without forcing ejaculation. This is beneficial
in terms of animal welfare as it reduces the stress to the males [26] and because semen
characteristics are likely to be closer to what can be expected in natural populations, leading
to more reliable ejaculate analyses.

Little is known about the full extent of the breeding season of the species in the wild.
Reproduction has been recorded from April to June in the most Western part of the range,
extending possibly to October or November in Yemen [17], and between July–August in
Niger (IFHC personal records). At the NARC, breeding was recorded throughout the
year, with 86% of eggs being laid between March and August (Figure A7). Nevertheless,
precautions must be taken when defining the species’ breeding season on that basis, as the
NARC is located outside its natural range and birds are receiving optimal care (i.e., ad libitum
food and water, veterinary care). Still, the extent of the breeding season associated with
small variations in semen characteristics suggests that the species is highly opportunistic
and able to take advantage of favorable conditions. A similar pattern was reported for the
Great Indian bustard, with breeding recorded in all months of the year (highest between
March and September), with rains apparently triggering reproduction events [39].

Our results indicate that Arabian bustard sperm is longer than Asian houbara (Chlamy-
dotis macqueenii; mean length = 47.92 ± 4.69 µm, (unpublished data). It has been hypoth-
esized that inter-species differences in avian sperm length are the result of differences in
structural variations related to midpiece mitochondrial composition or in nuclear organiza-
tion and chromosome elongation [40], while other hypotheses suggest that differences in
head length are the result of polyploidy and extra DNA content [32]. Nevertheless, most hy-
potheses postulate that differences in sperm competition intensity drive variation in sperm
length, with longer sperm having greater swimming velocity [41,42]. Still, a metanalysis in
pheasants (Phasianidae) [43] indicated that sperm size was negatively correlated with the
duration of sperm storage in the female reproductive tract, estimated as a function of clutch
size. That study concluded that species with larger clutches might be expected to store
larger quantities of sperm since they have more eggs to fertilize [44,45], and sperm size
was not correlated with the intensity of sperm competition (as measured by testis size) [43].
Asian houbara clutch size ranges from two to four eggs depending on latitude [46,47],
while clutches for Arabian bustards are one to two eggs [17]. As Otididae is a family where
sexual competition is central to reproduction [48], further data could provide insight into
mechanisms driving differences in sperm morphology.

In addition, we observed a bimodal distribution of sperm size in Arabian bustards’
ejaculates, with some sperm being twice as long as others; this difference is primarily due
to longer sperm heads. Intra-individual variations in sperm size have been presented as
a potential consequence of reduced sperm competition, therefore, relaxing selection on
optimal sperm length [49,50]. Although it is typically believed that longer sperm swim
faster, a study on the Canary Islands’ chiffchaff (Phylloscopus canariensis) found that longer
sperm were slower, therefore not supporting the sperm morphology–swimming speed
hypotheses presented by other groups where longer sperm were faster swimmers [51]. Thus,
the relationship between sperm morphology and sperm motility should be investigated
further with the Arabian bustard.

While the presented results are the only semen characteristics data reported for the
genus, data are available from two related species, the North African and Asian houbara,
both bred as part of conservation breeding programs managed by the IFHC. Mean motility,
volume, and proportion of normal sperm were similar, but both concentration and number
of sperm are considerably higher in Arabian bustards (Table 4). In bustards, species body
size did not correlate with greater sperm concentration, and large intra-family concentration
variations have also been observed in Phasianidae [8,43]. Sperm competition and associated
testis size have been suggested as drivers of sperm concentration variation [52]. Unfortu-
nately, relevant anatomical records are lacking for bustards, hindering the investigation of
the correlation between testis size and sperm competition (for a review [42]).
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Table 4. Average semen characteristics for three bustard species bred within IFHC Conservation
breeding programs: Arabian bustard (NARC, this study), North African houbara (ECWP, Morocco,
unpublished data) and Asian houbara (NARC, unpublished data).

Arabian Bustard
(This Study)

North African
Houbara

Asian
Houbara

Ejaculates 719 852,714 397,877
Volume (µL) 89.2 82.1 63.1
Motility 2.6 2.9 2.8
Concentration 928.7 401.4 423.5
Number of sperm 72.5 31.1 26.3
Proportion of normal sperm 0.89 0.80 [53] n/a

A viable and competent sperm population is important for successful species reproduc-
tion, especially considering the necessity of physiological polyspermy for successful avian
embryo development [54,55]. Hence, further studies are necessary to objectively evaluate
sperm function and movements on fresh, refrigerated, and cryopreserved samples. Sperm
velocity can be measured through computer-assisted analyses, such as CASA [56], while
sperm function analyses with flow cytometry can be obtained by DNA compaction through
the sperm chromatin structure assay (SCSA) [57], sperm mitochondrial function [58], mem-
brane integrity through a fluorochrome combination of propidium iodide (PI) and SYBR
14 [59], or reactive oxygen species (ROS) [60]. These parameters will provide cues on
sperm quality required to ensure optimal conservation methods and the provision of the
maximum number of sperm available for fertilization [8,61].

While using accessible sperm analyses methods, our results demonstrate the efficiency
of assisted reproduction techniques in improving reproduction in captive Arabian bus-
tards. Indeed, egg fertility results increased from 34.8% of incubated eggs with natural
reproduction to 84.3% with artificial inseminations. These results were comparable to
those routinely obtained on a larger scale with houbara bustards where fertility reaches
91.7%. Our results also illustrate cryopreservation’s effectiveness in providing ejaculates
with sufficient fertilizing power. Tselutin’s pellet method, using DMA as a cryoprotectant,
proved to be a robust cryopreservation method. It has the advantage of being relatively
easy and economical to implement, both in terms of freezing and thawing protocols and in
terms of required equipment. It then facilitates the implementation of a semen cryobank
for the species as for other avian species [8].

5. Conclusions

Conservation breeding programs play a key role in supporting in-situ conservation,
and assisted reproduction techniques are a major enhancing factor in ensuring that de-
mographic and genetic goals can be achieved. Here, we demonstrate the potential of
these techniques for the conservation of Arabian bustards and closely related and highly
endangered species. Artificial insemination induced a significant increase in the percentage
of fertile eggs, including with cryopreserved ejaculates. Further studies will be required to
investigate and optimize sperm quality evaluation, eggs fertility, and hatching rate results
(i.e., optimal sperm collection intervals, the minimum amount of sperm used during the
artificial insemination, storage duration within the female sperm storage tubules, optimal
methods for sperm evaluation, egg incubation protocols, etc.).

On a broader scale, our results also indicate that valuable information for artificial
reproduction of endangered bird species can be obtained with a limited laboratory setup.
The use of the methods presented here could promote the wider use of assisted repro-
duction technologies in endangered avian species, from artificial insemination to genome
resource banking.
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Table A1. Arabian bustard overall yearly information on semen collection from 2018 to 2021. Only
ejaculates that were not contaminated with urates, feces, or red blood cells were considered for overall
semen characteristics.

2018 2019 2020 2021 All Samples

Number of males with collection attempts 13 31 26 12 34
Number of donors 2 7 13 6 13

Number of ejaculates 27 83 527 83 720
Number of ejaculates per donor 13.5 11.9 40.5 13.8 25.7

Non-contaminated
ejaculates 17 37 232 57 343

Volume (µL) 78.5 ± 73.1 55.4 ± 43.8 98.7 ± 53.8 65.5 ± 38.6 87.5 ± 54.1
Volume range (µL) 4–230 5–170 9–290 8–174 4–290
Motility 2.3 ± 0.8 2.7 ± 1.0 2.7 ± 0.8 3.7 ± 0.8 2.9 ± 0.9
Motility range 1.5–4 1–4 0–4 1.5–4.5 0–4.5
Concentration
(×106/mL) 1204.7± 1070.5 946.7 ± 532.6 907.7 ± 671.8 1902.2 ± 863.4 1091.9 ± 803.6

Concentration range
(×106/mL) 415.0–4103.8 76.6–3015.3 23.9–4315.3 194.5–3872.1 23.9–4315.3

Sperm number (×106) 44.3 ± 41.6 48.3 ± 79.3 78.7 ± 62.7 135.6 ± 124.2 83.2 ± 78.7
Sperm number range (×106) 8.0–150.2 2.8–271.4 5.1–335.7 1.6–672.8 1.6–672.8
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Table A2. Arabian bustard individual sperm collection results and semen characteristics. Only ejaculates that were not contaminated with urates, feces, or red blood
cells were considered for overall semen characteristics.

R14N00001 R14N00005 R14N00006 R14N00009 R15N00002 R15N00005 R16N00001 R17N00010 R18N00012 R18N00015 R18N00016 R18N00017 R18N00030

Number of collections
attempts 323 214 310 346 306 344 102 295 262 264 264 269 29

Age at first collection
(in months) 61 56 47 55 40 57 46 16 22 22 10 21 19

Number of ejaculates 83 67 129 116 68 62 1 84 17 13 21 31 28
Number of
non-contaminated
ejaculates

43 20 53 56 36 31 0 40 9 9 15 18 13

Volume (µL) 116.4 ± 41.3 73.2 ± 43.3 104.6 ± 60.6 90.9 ± 54.3 84.3 ± 51 119.7 ± 70.6 69.5 ± 38.1 50.2 ± 27.6 41.7 ± 20.3 75.6 ± 44.3 50.3 ± 25 39.1 ± 22
Range Volume
(min–max) 47–224 24–180 4–237 6–184 9–210 9–290 5–174 17–100 15–73 15–140 8–121 12–98

Motility score (0–5) 2.7 ± 0.8 2.6 ± 0.7 2.4 ± 0.8 2.9 ± 0.8 2.8 ± 0.7 2.7 ± 0.9 2.8 ± 1.1 3.6 ± 0.8 3.6 ± 0.7 3.7 ± 0.6 3.9 ± 0.7 2.6 ± 0.8
Range Motility score
(min–max) 1–3.5 1–3.5 1–4 1–4 1–4 0–4 1–4 2.5–4.5 2.5–4.5 3–4.5 2.5–4.5 1–3.5

Concentration
(×106 spz/mL) 835 ± 427.9 1113.9± 562.3 530.2± 559.6 795.6± 322.2 921.1 ± 824 918.1± 760.3 1633.7± 893.2 1163.7± 367.8 2257.7± 682.7 2338.5± 665.5 1319.8± 655.6 2083.4± 769.4
Range Concentration
(min–max) 76.6–2424.3 23.9–2157.4 67.3–3383.1 49.1–1674.3 180.9–4103.8 162.8–4315.3 307.6–3866.5 765–1743.5 1485.6–3067.7 1649.9–3872.1 194.5–3025.2 770.3–3618.6

Sperm number
(×106 spz)

94.9 ± 54.9 85.1 ± 73.9 40.6 ± 38.2 71.2 ± 51.4 63.8 ± 64.3 95.3 ± 69.3 125 ± 130.4 62.1 ± 48.1 89.1 ± 42.3 182.4 ± 123.2 74.2 ± 78.3 71.3 ± 31.8

Range Sperm number
(min–max) 10.6–233.7 18.8–248.4 5.1–179.5 2.8–184.2 7.1–271.4 9.5–249.4 6.8–672.8 16.5–155.1 40.1–156.5 28.9–443.2 1.6–366 41.1–162.1
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