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The present study aimed to explore the population pharmacokinetics and initial

dose optimization of tacrolimus in children with severe combined

immunodeficiency (SCID) undergoing hematopoietic stem cell

transplantation (HSCT). Children with SCID undergoing HSCT treated with

tacrolimus were enrolled for analysis. Population pharmacokinetics of

tacrolimus was built up by a nonlinear mixed-effects model (NONMEM), and

initial dose optimization of tacrolimus was simulated with the Monte Carlo

method in children weighing <20 kg at different doses. A total of 18 children

with SCID undergoing HSCT were included for analysis, with 130 tacrolimus

concentrations. Body weight was included as a covariable in the final model.

Tacrolimus CL/F was 0.36–0.26 L/h/kg from body weights of 5–20 kg.

Meanwhile, we simulated the tacrolimus concentrations using different body

weights (5–20 kg) and different dose regimens (0.1–0.8 mg/kg/day). Finally, the

initial dose regimen of 0.6 mg/kg/day tacrolimus was recommended for

children with SCID undergoing HSCT whose body weights were 5–20 kg. It

was the first time to establish tacrolimus population pharmacokinetics in

children with SCID undergoing HSCT; in addition, the initial dose

optimization of tacrolimus was recommended.
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Introduction

Severe combined immunodeficiency (SCID), whose

estimated incidence of the disease was 1/58,000 (Kwan et al.,

2014; Bayram et al., 2021), was an inborn error of immunity

characterized by the severe dysfunction of cellular and humoral

immunity owing to impaired T cell and B cell development or

function (Picard et al., 2018; Miyamoto et al., 2021). This

situation caused serious consequences, and affected children,

who were born with marked susceptibility to pathogens, could

not be managed or controlled at last (Chinn and Shearer, 2015).

In addition, without treatment for SCID, infection-related death

generally appeared by 1–2 years of age, where these disorders

represented true pediatric emergencies (Chinn and Shearer,

2015).

Since 1968, hematopoietic stem cell transplantation

(HSCT) had been used to treat patients with SCID (Gatti

et al., 1968; Miyamoto et al., 2021). For most forms of SCID,

HSCT was the only curative therapy (Bayram et al., 2021).

After HSCT, the immune reconstitution and growth were

normal in the majority of SCID patients (Demirtas et al.,

2021), whose survival was between 85 and 90% in more recent

prospective cohorts (Dvorak et al., 2013; Heimall et al., 2017;

Haddad and Hoenig, 2019).

For HSCT patients, tacrolimus, an immunosuppressant,

needs to be taken for a long time to prevent rejection (Gao

and Ma, 2019; Ishiwata et al., 2020; Soskind et al., 2020).

However, tacrolimus had high pharmacokinetic variability,

making it difficult to formulate an individual administration

schedule, especially in children with SCID undergoing HSCT.

Thus, the present study aimed to explore the population

pharmacokinetics and initial dose optimization of tacrolimus

in children with SCID undergoing HSCT.

Methods

Patient data collection

Pediatric patients were enrolled from February 2016 to April

2021 at the Children’s Hospital of Fudan University (Shanghai,

China), retrospectively. Inclusion criteria were as follows: 1)

pediatric patients diagnosed with SCID, 2) pediatric SCID

patients underwent HSCT therapy, and 3) HSCT patients

treated with tacrolimus. The present study was approved by

the Ethics Committee of the Children’s Hospital of Fudan

University [Ethical code (2019) 020]. The study was a

retrospective analysis, and it was approved by the ethics

committee of our hospital without the need for written

informed consent. Tacrolimus treatment was performed by

clinicians based on the treatment need and clinical experience,

and tacrolimus dosage was adjusted based on the clinical efficacy

and adverse events experienced by the patients, as well as its

trough concentration in therapeutic drug monitoring (TDM).

The Emit® 2000 Tacrolimus Assay (Siemens Healthcare

Diagnostics Inc., Newark, NJ, United States) with a range of

2.0–30 ng/ml was used to test tacrolimus concentrations. The

demographic data of patients and drug combination included

gender, age, weight, albumin, alanine transaminase, aspartate

transaminase, creatinine, urea, total protein, total bile acid, direct

bilirubin, total bilirubin, hematocrit, hemoglobin, mean

corpuscular hemoglobin, mean corpuscular hemoglobin

concentration, caspofungin, ethambutol, glucocorticoids,

isoniazide, micafungin, mycophenolic acid, omeprazole, and

vancomycin.

Population pharmacokinetic model

The population pharmacokinetic model of tacrolimus in

pediatric patients with SCID undergoing HSCT was

established using the nonlinear, mixed-effects modeling

software NONMEM v7 (Icon Development Solutions, Ellicott

City, MD, United States) and a first-order conditional estimation

method with interaction (FOCE-I) approach. The apparent

clearance (CL/F), volume of distribution (V/F), and

absorption rate constant (Ka) were the pharmacokinetic

parameters, among which Ka was fixed at 4.48/h (Yang et al.,

2015; Wang et al., 2019).

Random-effect model

Eq. (1) was used to estimate the interindividual variabilities,

Wi � T(U) × exp(ηi), (1)

where Wi is the individual parameter value. T(U) is a

typical individual parameter value. ηi is the symmetrical

distribution, which was a random term with a zero mean

and variance of ω2.

Equation (2) was used to estimate the random residual

variabilities,

Mi � Ni × (1 + ε1) + ε2, (2)

where Mi is the observed concentration. Ni is the individual

predicted concentration. ε1 and ε2 are the symmetrical

distributions, which were random terms with a zero mean

and variance of σ2.

Covariate model

Equation (3) was used to estimate the pharmacokinetic

parameters and body weight,

Xi � Xstd × (Yi/Ystd)R , (3)
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where Xi is the i-th individual parameter. Xstd is a typical

parameter. Yi is the i-th individual body weight. Ystd is the

standard body weight of 70 kg. R is the allometric coefficient:

0.75 for CL/F and 1 for V/F (Anderson and Holford, 2008).

Eqs. (4 and 5) were used to estimate the pharmacokinetic

parameters and continuous covariates or categorical covariates,

Zi � T(Z) × (Covi/Covmedian)θ, (4)
Zi � T(Z) × (1 + θ × Covi), (5)

where Zi is the individual parameter value. T(Z) is a typical

individual parameter value. θ is the parameter to be estimated. Covi is

the covariate of the i-th individual. Covmedian is the population

median for the covariate. The changes in objective function value

(OFV) were used as the inclusion criteria for covariates, where the

decrease in theOFV> 3.84 (p< 0.05) was the inclusion standard, and

the increase in the OFV > 6.63 (p < 0.01) was the exclusion standard.

Model evaluation

The goodness-of-fit plots of the model including

observations vs. population predictions, observations vs.

individual predictions, absolute value of weighted residuals of

the individual (│iWRES│) vs. individual predictions, conditional
weighted residuals vs. time, the distribution of weighted residuals

for the model including density vs. conditional weighted

residuals, quantilies of conditional weighted residuals vs.

quantilies of normal, the observation/individual predictions/

population predictions vs. time, and individual plots were

used to estimate the final model. In addition, model stability

was evaluated with 1,000 bootstraps with different random

sampling.

Simulation

First, 1,000 virtual pediatric patients with SCID

undergoing HSCT were simulated in four body weight

groups (5, 10, 15, and 20 kg) with eight dosages (0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 mg/kg/day), which were divided

evenly into two dosages. In addition, Monte Carlo simulations

based on the final model were used to study the effects of the

initial dosages on the probability of achieving the target

concentration (5–20 ng/ml).

TABLE 1 Demographic data of patients and drug combination.

Characteristic Mean ± SD Median (range)

Gender (boys/girls) 14/4

Age (years) 0.82 ± 0.56 0.70 (0.33–3.01)

Weight (kg) 7.28 ± 1.62 7.50 (4.20–12.60)

Albumin (g/L) 32.76 ± 3.66 33.20 (25.10–40.80)

Alanine transaminase (IU/L) 38.12 ± 38.05 25.25 (11.00–140.10)

Aspartate transaminase (IU/L) 61.96 ± 31.48 55.60 (29.30–152.00)

Creatinine (μmol/L) 17.72 ± 3.79 18.00 (9.00–27.00)

Urea (mmol/L) 2.77 ± 1.64 2.45 (0.60–7.00)

Total protein (g/L) 57.30 ± 7.35 56.85 (46.80–75.40)

Total bile acid (μmol/L) 7.08 ± 5.33 5.90 (0.10–21.30)

Direct bilirubin (μmol/L) 4.28 ± 5.53 2.40 (0.80–24.40)

Total bilirubin (μmol/L) 8.79 ± 8.53 6.15 (2.20–39.70)

Hematocrit (%) 29.13 ± 7.50 26.61 (22.80–53.31)

Hemoglobin (g/L) 93.58 ± 24.48 87.10 (69.00–167.00)

Mean corpuscular hemoglobin (pg) 25.28 ± 4.16 24.20 (19.00–33.30)

Mean corpuscular hemoglobin concentration (g/L) 321.00 ± 19.56 315.50 (289.00–366.00)

Number of co-medications -

Caspofungin 9

Ethambutol 10

Glucocorticoids 17

Isoniazide 14

Micafungin 9

Mycophenolic acid 6

Omeprazole 13

Vancomycin 10
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Results

Patient information

Totally, 18 children (age range: 0.33–3.01 years) with SCID

undergoing HSCT were included in the present study. Table 1

showed the demographic data of patients and drug

combinations. A total of 130 tacrolimus concentrations were

included for analysis, and the mean number of concentrations

per patient was 7.2.

Modeling and evaluation

In the result of the covariate analyze, body weight was

included in the final model:

CL/F � 13.1 × (WT/70)0.75, (6)
V/F � 10900 × (WT/70), (7)

where CL/F is apparent clearance. V/F is volume of

distribution. WT is body weight.

FIGURE 1
Model evaluation. (A) Goodness-of-fit plots of the model, (B) distribution of weighted residuals for the model, and (C) observation/individual
predictions/population predictions vs. time. │iWRES│, the absolute value of weighted residuals of the individual.
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Figure 1 showed the model evaluation. Figures 1A–C were

the goodness-of-fit plots of the model, the distribution of

weighted residuals for the model, and the observation/

individual predictions/population predictions vs. time,

respectively. The final model had good performance according

to Figures 1A–C. Figure 2 showed the individual plots,

demonstrating that the final model had acceptable

predictability from a clinical point of view. Table 2 showed

the parameter estimates of the final model and bootstrap

validation, whose median values of the 1,000 bootstraps were

close to the respective parameter values of the final model with a

bias <8%, showing that the model was accurate and reliable.

Simulation

As shown in Figure 3A, tacrolimus CL/F was 0.36–0.26 L/

h/kg from body weights of 5–20 kg. We simulated the tacrolimus

concentrations using different body weights (5–20 kg) and

different dose regimens (0.1–0.8 mg/kg/day). Figures 3B–E

showed the results of tacrolimus concentrations for children

with SCID undergoing HSCT whose weights were 5, 10, 15,

and 20 kg, respectively, where small circles represented drug

concentrations, and red dotted lines represented the

therapeutic window ranges. Figure 4 showed the probability of

achieving the target concentrations under different initial doses

FIGURE 2
Individual plots. ID, patient ID number; DV,measured concentration value; IPRED, individual predictive value; PRED, population predictive value.
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of tacrolimus in children with SCID undergoing HSCT, among

which the probability of achieving the target concentrations from

0.6 mg/kg/day tacrolimus was the highest. Finally, the initial dose

regimen of 0.6 mg/kg/day tacrolimus was recommended for

children with SCID undergoing HSCT whose body weights

were 5–20 kg.

Discussion

The clinical manifestation and the treatment outcome of

SCID were affected by many factors, such as infectious

complications, genetic defects, non-immunological signs,

symptoms of the disease, the presence of maternal T cells, and

the development of Omenn syndrome (Honig et al., 2011). In

terms of treatment, HSCT was the only recognized and reliable

therapeutic approach, which allowed long-term cure of the

disease (Honig et al., 2011). However, for HSCT patients,

tacrolimus, an immunosuppressant, needs to be taken for a

long time to prevent rejection (Gao and Ma, 2019; Ishiwata

et al., 2020; Soskind et al., 2020).

In clinical practice, tacrolimus required routine TDM to

observe the drug concentration of tacrolimus because too low

tacrolimus concentration would lead to transplant rejection,

while too high tacrolimus concentration would lead to a toxic

reaction. This move was necessary because tacrolimus had high

pharmacokinetic variability, making it difficult to formulate an

individual administration schedule, and the next dose of

tacrolimus could only be adjusted through feedback on

tacrolimus concentration based on TDM. Although traditional

TDM could provide a reference for tacrolimus dose adjustment,

it failed when tacrolimus concentration was not available when

the first dose needed to be recommended.

Fortunately, the combination of population pharmacokinetics

andMonte Carlo simulation could provide a solution to this difficult

clinical problem. Importantly, many clinical practices have been

carried out and proven to be practical and effective. For example,

Cojutti et al. reported population pharmacokinetics of continuous

infusion of piperacillin/tazobactam in very elderly hospitalized

patients and considerations for target attainment against

enterobacterales and pseudomonas aeruginosa (Cojutti et al.,

2021). He et al. reported population pharmacokinetics and

dosing optimization of vancomycin in infants, children, and

adolescents with augmented renal clearance (He et al., 2021). Li

et al. reported population pharmacokinetics of polymyxin B and

dosage optimization in renal transplant patients (Li et al., 2021).

Ghoneim et al. (2021) reported optimizing gentamicin dosing in

different pediatric age groups using population pharmacokinetics

and Monte Carlo simulation. Wang et al. (2021) reported

population pharmacokinetics of the anti-PD-1 antibody

camrelizumab in patients with multiple tumor types and a

model-informed dosing strategy. Yang et al. (2021) reported

population pharmacokinetics and safety of dasatinib in Chinese

children with core-binding factor acute myeloid leukemia. Chen

et al. reported population pharmacokinetics and initial dose

optimization of sirolimus improving drug blood level for seizure

control in pediatric patients with tuberous sclerosis complex (Xiao

Chen et al., 2021). Zhang et al. (2020) reported population

pharmacokinetics and model-based dosing optimization of

teicoplanin in pediatric patients. Based on these precedents,

population pharmacokinetics and Monte Carlo simulations were

used to recommend optimal initial dosing of tacrolimus in children

with SCID undergoing HSCT in our study.

In the previous literature (Wang et al., 2020), pediatric HSCT

patients were analyzed as a whole, whereas children with which

specific kind of disease undergoing HSCT were not analyzed.

However, it was essential to build a specific population

pharmacokinetic model of tacrolimus for the specific kind of

disease undergoing HSCT (Zhou et al., 2021). Therefore, the

present study established tacrolimus population pharmacokinetics

in children with SCID undergoing HSCT; in addition, the initial

dose optimization of tacrolimus was recommended. In addition, the

typical CL/F of tacrolimus in children with SCID undergoing HSCT

was 13.1 L/h, and in children with a non-specific kind of disease

TABLE 2 Parameter estimates of final model and bootstrap validation.

Parameter Estimate SE (%) Bootstrap Bias (%)

Median 95% confidence interval

CL/F (L/h) 13.1 27.0 12.8 (8.5, 21.4) −2.290

V/F (102L) 109 19.5 107 (66, 152) −1.835

Ka (h−1) 4.48 (fixed) -- -- -- --

ωCL/F 0.451 44.8 0.444 (0.003, 0.748) −1.552

ωV/F 0.592 26.4 0.546 (0.003, 0.848) −7.770

σ1 0.257 9.0 0.258 (0.205, 0.336) 0.389

σ2 1.265 17.5 1.233 (0.010, 1.587) −2.530

95% confidential interval was displayed as the 2.5th and 97.5th percentile of bootstrap estimates. CL/F, apparent clearance (L/h); V/F, apparent volume of distribution (L); Ka, absorption rate

constant (h−1); ωCL/F, interindividual variability of CL/F; ωV/F, interindividual variability of V/F; σ1, residual variability, proportional error; σ2, residual variability, additive error; bias,
prediction error, bias = (median-estimate)/ estimate×100%.
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undergoing HSCT was 15.4 L/h (Wang et al., 2020), hinting that

there was a difference from tacrolimus population pharmacokinetics

in different kinds of disease undergoing HSCT. In other words,

when establishing a population pharmacokinetic model of

tacrolimus, the model may be more accurate if the specific kind

of disease undergoing HSCT was taken as the population. This was

also the necessity for the present study to build the population

pharmacokinetics of tacrolimus in children with SCID

undergoing HSCT.

In the present study, children with SCID undergoing HSCT

treated with tacrolimus were enrolled to analyze, and a total of

18 children with SCID undergoing HSCT were included in the

model, with 130 tacrolimus concentrations. Population

pharmacokinetics of tacrolimus was built up by a nonlinear mixed-

effectsmodel (NONMEM), and initial dose optimization of tacrolimus

was simulated using the Monte Carlo method in children

weighing <20 kg at different doses. In the final model, body weight

was included as a covariable, and tacrolimus CL/F was 0.36–0.26 L/

FIGURE 3
Tacrolimus CL/F and concentration simulation. (A) CL/F of tacrolimus in SCID undergoing HSCT. (B) Pediatric patients weighing 5 kg. (C)
Pediatric patients weighing 10 kg. (D) Pediatric patients weighing 15 kg. (E) Pediatric patients weighing 20 kg.
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h/kg from body weights of 5–20 kg. Furthermore, we simulated the

tacrolimus concentrations using different body weights (5–20 kg) and

different dose regimens (0.1–0.8 mg/kg/day). Ultimately, the initial

dose regimen of 0.6 mg/kg/day tacrolimus was recommended for

children with SCID undergoing HSCT whose body weights were

5–20 kg.

In terms of drug interactions, the present study analyzed

caspofungin, ethambutol, glucocorticoids, isoniazide, micafungin,

mycophenolic acid, omeprazole, and vancomycin. None of these

drugs were found to significantly affect tacrolimus clearance rate as a

covariate. Of course, azoles were known to affect the levels of

tacrolimus. However, Campagne et al. (2019) reported the model

structures of tacrolimus and final covariatesmainly depended on the

sampling strategy of the study, in other words, the characteristics of

the data collected. Numerous covariates were identified as sources of

interindividual variability on tacrolimus pharmacokinetics with

limited consistency across these studies, which may be the result

of the study designs (Campagne et al., 2019). For example, Zhou

et al. (2021) reported initial dosage optimization of tacrolimus in

pediatric patients with thalassemia major undergoing hematopoietic

stem cell transplantation based on population pharmacokinetics,

without azoles included as final covariates. Teng et al. (2022)

reported population pharmacokinetics of tacrolimus in Chinese

adult liver transplant patients, without azoles included as final

covariates. Chen et al. reported that wuzhi capsule dosage affects

tacrolimus elimination in adult kidney transplant recipients, as

determined by a population pharmacokinetics analysis, without

azoles included as final covariates (Lizhi Chen et al., 2021). Hao

et al. (2018) reported population pharmacokinetics of tacrolimus in

children with nephrotic syndrome, without azoles included as final

covariates. Similarly, due to data limitations, azoles were not

analyzed in this study.

Of course, this study also had some limitations. There was a

low incidence of SCID in children, leading to our small number

of patients for an objective reason. In addition, CYP3A5

polymorphisms had an effect on tacrolimus metabolism.

However, pharmacogenomic consideration in Chinese SCID

patients has not been used clinically. The tacrolimus model

with polymorphisms might not be practical for simulating

drug concentration data from TDM in the real world.

Therefore, our model in the present study had better clinical

and practical value.

Conclusion

It was the first time to establish tacrolimus population

pharmacokinetics in children with SCID undergoing HSCT; in

addition, the initial dose optimization of tacrolimus was

recommended. However, due to the low incidence of SCID, it was

objectively difficult to collect patients, and the number of patients needs

to be further increased in future studies to verify our research results.
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