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Abstract

The mammalian/mechanistic target of rapamycin (mTOR) protein is an important growth

regulator and has been linked with multiple diseases including cancer and diabetes. Non-

synonymous mutations of this gene have already been found in patients with renal clear cell

carcinoma, melanoma, and acute lymphoid leukemia among many others. Such mutations

can potentially affect a protein’s structure and hence its functions. In this study, therefore,

the most deleterious SNPs of mTOR protein have been determined to identify potential bio-

markers for various disease treatments. The aim is to generate a structured dataset of the

mTOR gene’s SNPs that may prove to be an asset for the identification and treatment of

multiple diseases associated with the target gene. Both sequence and structure-based

approaches were adopted and a wide variety of bioinformatics tools were applied to analyze

the SNPs of mTOR protein. In total 11 nsSNPs have been filtered out of 2178 nsSNPs along

with two non-coding variations. All of the nsSNPs were found to destabilize the protein struc-

ture and disrupt its function. While R619C, A1513D, and T1977R mutations were shown to

alter C alpha distances and bond angles of the mTOR protein, L509Q, R619C and N2043S

were predicted to disrupt the mTOR protein’s interaction with NBS1 protein and FKBP1A/

rapamycin complex. In addition, one of the non-coding SNPs was shown to alter miRNA

binding sites. Characterizing nsSNPs and non-coding SNPs and their harmful effects on a

protein’s structure and functions will enable researchers to understand the critical impact of

mutations on the molecular mechanisms of various diseases. This will ultimately lead to the

identification of potential targets for disease diagnosis and therapeutic interventions.

1. Introduction

The mechanistic (or mammalian) target of rapamycin (mTOR) is a serine-threonine protein

kinase, located on chromosome 1p36.2. Extensive research has found that this 289-kDa protein

regulates several fundamental cellular processes. These processes can be as varied as protein

synthesis and autophagy [1]. mTOR is ubiquitously expressed throughout the body. In

response to intracellular and extracellular signals mTOR coordinates and regulates cell growth

and proliferation, cell survival, and homeostasis. On the other hand, dysregulated mTOR sig-

naling plays a role in cancer, Alzheimer’s disease, and type 2 diabetes [2].
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The kinase belongs to the PI3K-related kinase (PIKK) family and is the catalytic component

of two major multi-protein complexes mTORC1 and mTORC2 which activate two down-

stream signaling pathways. Both complexes share mLST8 and Deptor in addition to the cata-

lytic subunit. mTORC1 also comprises Raptor, and PRAS40 [3] and mTORC2 comprises

Rictor, Sin1, and Protor proteins [4, 5]. The C-terminus of the protein contains the PI3-K

kinase domain whereas its N-terminal contains at least 20 HEAT (huntingtin elongation fac-

tor-3-protein phosphatase-2A TOR1) repeats, which mediate their interaction with associated

proteins [6].

mTOR has been found to be abnormally over-activated in more than 70% of cancers [7]

such as breast, prostate, lung, liver, and renal carcinomas. Hyperactivated or overexpressed

mTOR contributes to tumor initiation, progression, and metastasis. For instance, it has been

suggested that the activation of the oncoprotein AKT relies on downstream activation of

mTORC1 to drive tumorigenesis. This observation has greatly instigated the clinical develop-

ment of mTOR inhibitors like rapamycin for targeted therapy of tumors [8]. The aberrant

activity of the protein may result from genetic alterations as well as single nucleotide polymor-

phisms (SNPs).

SNPs are the most common genetic variants that are present in the human genome. They

refer to a variation of a single nucleotide at a specific genomic position among individuals and

occur approximately every 100–300 base pairs [9]. This type of genetic polymorphism has

often been reported to be associated with a particular phenotype or disease including cancer

susceptibility. For instance, one study has shown that functional SNPs of the mTOR gene were

linked with an increased risk of esophageal squamous cell carcinoma [10]. Other studies have

shown their association with gastric cancer and sporadic prostate cancer in a certain popula-

tion [11, 12]. Such associations have paved the way for an increasing focus on the role of SNPs

in diagnostics and risk prediction for cancer. They are now established as interesting and cru-

cial biomarkers for cancer. In line with that, in 2016 a meta-analysis was performed covering

20 mTOR SNPs and it was found that several of the SNPs were associated with increased can-

cer risk like acute leukemia [13].

Missense non-synonymous SNPs (nsSNPs) have always been regarded with much concern.

They lead to an amino acid change within the coding sequence and therefore can affect the

protein’s activity. Determining the effect of multiple nsSNPs experimentally can be expensive

and laborious. However, by using in silico analysis via available web-based bioinformatics

tools, it is feasible and also cost-effective to study a large number of SNPs present within a par-

ticular gene. Computational genomics has made remarkable contributions to the field of dis-

ease-associated nsSNP analysis. Several algorithms have been developed for the accurate

prediction of the phenotypic effects of the nsSNPs [14]. The structural behavior of the muta-

tions is now being investigated using newer and newer approaches including molecular

dynamics simulations [15–17]. Significant observations have been made from such analyses

on a myriad of proteins including albinism-associated OCA2 protein [18], kinesin family pro-

tein MCAK [19], cardiomyopathy-associated MyH7 [20], etc.

The results from this study are intended to have worldwide reproducibility, require less

computational time and processing memory and ensure ubiquitous dissemination. Although

there are many standalone software available, they require expertise in programming lan-

guages. They are also machine-dependent. Therefore, to ensure reproducibility and repeatabil-

ity, web servers were preferred to standalone computational software in this study. Here all the

nsSNPs within the mTOR gene have been collected, screened, and analyzed to find out the

most potentially harmful nsSNPs. The primary focus was given on how these genetic variations

affected the protein’s structure, stability, and function as well as the physicochemical proper-

ties of the respective amino acid residues. Besides, this study also included an analysis of the
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non-coding SNPs that are located at the mTOR gene to identify any potential harmful effect of

such SNPs in this locus.

Altogether 11 nsSNPs were selected as most deleterious in this study. Three of the polymor-

phisms (L509Q, R619C, and N2043S) were located within interacting regions of the protein,

and four of the polymorphisms (K1452N, A1513D, E1610K, and R1616C) were located within

a core domain indicating they might affect the protein’s native structure. All of the nsSNPs

were found to decrease the protein’s stability. Three of them (R619C, A1513D, and T1977R)

were found to be associated with several different carcinomas and detailed structural analyses

revealed that these polymorphisms might alter C alpha distances, bond lengths, and bond

angles and thus might disrupt the protein’s structure and function. In addition, one non-cod-

ing SNP (rs12139042) was found to affect miRNA binding sites which suggests that it could

interfere with miRNA regulation of the mTOR protein. Overall, this analysis will provide the

groundwork for further investigation into the structural and functional impact of the SNPs in

the mTOR gene.

2. Materials and methods

2.1 Data collection

The human mTOR protein sequence was obtained from the UniProt database [21] (UniProt

ID: P42345). The nsSNPs were retrieved from three different databases that included NCBI

Short Genetic Variation database (dbSNP) (https://www.ncbi.nlm.nih.gov/snp/) [22], ClinVar

(https://www.ncbi.nlm.nih.gov/clinvar/) [23] and DisGeNET (https://www.disgenet.org/)

[24]. dbSNP can be considered as a catalog of any short variations in human nucleotide

sequences. ClinVar only archives those human variations which have associations with differ-

ent health phenotypes, with supporting data available. Similarly, the DisGeNET database accu-

mulates information on human gene-disease associations (GDAs) and variant-disease

associations (VDAs) from various disease repositories. From all three databases, only nsSNPs

(missense SNPs) were filtered out. For analyzing the non-coding SNPs, the dataset was col-

lected from the ENSEMBL database (https://asia.ensembl.org/index.html) for the respective

protein ID [25].

2.2 Selection of the tools to determine potentially deleterious nsSNPs

To determine whether the nsSNPs will confer any deleterious effect upon mTOR protein’s 3D

structure and function, in total, 10 in silico prediction tools were utilized. A large number of

computational tools are available at present. Since no single bioinformatics tool has been dem-

onstrated to be most effective in analyzing the harmful effects of nsSNPs, multiple tools were

opted for, based on the assumption that combining scores from several tools will greatly

strengthen the accuracy and reliability of the predictions. In this study two different

approaches were taken into consideration while choosing the tools.

Firstly, the prediction tools were selected in a way so that they covered four different meth-

ods including sequence homology-based method, supervised learning method, protein

sequence and structure-based method, and consensus-based method. The following tools were

included in the study: SIFT (Sorting Intolerant from Tolerant) [26, 27], PROVEAN (Protein

Variation Effect Analyzer) [28], and Mutation Assessor [29]—these three tools determined the

effect of the query amino acid substitutions on the protein function on basis of sequence

homology. SIFT has been widely used in computational assays carried out to determine the

deleterious nsSNPs. SNAP2 and SuSPect depended on supervised learning methods. SNAP2 is

based on a neural network [30], and SuSPect is based on a support vector machine [31]. Poly-

Phen-2 (Polymorphism Phenotyping v2) predicts the functional impact of the amino acid

PLOS ONE In silico SNP analysis of human mTOR protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0270919 July 5, 2022 3 / 23

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.disgenet.org/
https://asia.ensembl.org/index.html
https://doi.org/10.1371/journal.pone.0270919


substitutions considering structural along with the sequence and phylogenetic information

regarding the substitutions [32]. It is recommended because the quality measures are more

balanced. Lastly, Meta-SNP [33] utilized a consensus score based on four different SNP impact

prediction strategies including PANTHER, PhD-SNP [34], SIFT, and SNAP [33].

In another approach, two different groups of tools were included in this study. The first

group of tools was used to predict the impact of the nsSNPs on the protein function and they

included SIFT, PROVEAN, Mutation Assessor, CADD [35], PolyPhen2, and SNAP2. The sec-

ond kind of tools was applied to assess the pathogenicity of the polymorphisms and this group

included PhD-SNP, SuSPect, and PMut [36] tools.

Tools from the two different approaches have been overlapping in some cases. Since com-

bining all these tools cover a wide range of prediction approaches, they may provide a high

accuracy level in prediction. A short description along with the input parameters and accuracy

rate of all the tools are presented in Table 1.

2.3 Evolutionary conservation, surface accessibility, and post-translational

modification (PTM) analysis

The degree to which an amino acid position is evolutionarily conserved, reflects its structural

and functional importance. Therefore, the conservancy of each position in the amino acid

sequence of the mTOR protein was analyzed by the ConSurf server (https://consurf.tau.ac.il/)

[37]. This tool estimates the evolutionary rate of each amino acid position based on the phylo-

genetic relations between homologous sequences. The software can correctly distinguish genu-

ine sequence conservation from other conservation that can result from a short evolutionary

time. In this study, the mTOR protein sequence was analyzed against the UNIREF-90 protein

database using the HMMER homolog search algorithm with a 0.0001 E-value cut-off and 3

HMMER iterations.

Table 1. List of web-based bioinformatics tools used in the study for the identification of most deleterious nsSNPs along with their description, input parameters,

and accuracy rate.

Prediction

tool

Description Input parameters Accuracy

rate

SIFT Predicts nsSNP impact on protein function based on sequence homology and the

physical properties of amino acids

chromosome positions (coordinates and

orientations) and alleles/ dbSNP rsIDs

76.99%

PolyPhen2 Predicts nsSNP impact on protein structure and function based on sequence,

phylogenetic, and structural features

Protein identifier and amino acid substitutions 75.56%

PROVEAN Predicts nsSNP impact on protein function based on an alignment-based scoring

method

Protein query sequence and amino acid

variations

79.19%

Mutation

Assessor

Predicts nsSNP impact on protein function based on evolutionary conservation of the

affected amino acid in protein homologs

Query protein ID and variant 78.15%

SNAP2 Predicts functional effects of nsSNPs based on a neural network involving

evolutionary information, predicted secondary structure, and solvent accessibility

Query protein sequence 82%

SuSPect Predicts phenotypic effects of nsSNPs using a support vector machine (SVM) method

integrating sequence-, structure- and systems biology-based features

UniProt IDs and amino acid variations 82%

PhD-SNP Predicts pathogenicity of nsSNPs by an SVM-based method using sequence and

profile information

Query protein sequence and amino acid

variations

78%

PMut Predicts pathology of mutations based on a neural network and sequence

conservation information

Protein UniProt ID and amino acid variations 80%

CADD Predicts deleteriousness of nsSNPs using a machine learning model based on

sequence context, gene model annotations, evolutionary constraint, epigenetic

measurements, and functional predictions.

Chromosomal coordinates and allele

information

-

Meta-SNP Detects disease-associated nsSNPs by integrating four methods: PANTHER,

PhD-SNP, SIFT and SNAP

Query protein sequence and amino acid

variations

79%

https://doi.org/10.1371/journal.pone.0270919.t001
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To determine the surface accessibility of each amino acid residue of mTOR protein, Net-

SurfP-2.0 (https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0) was used [38]. This

web tool is sequence-based and uses neural networks to predict several local structural features

including solvent accessibility, secondary structure, and structural disorder for each residue of

the query sequences.

Post-translational modifications within a protein molecule are also crucial. They introduce

new functionalities and exert control over protein structure and function by modulating intra-

and intermolecular interactions. In this study, the web-based tool MusiteDeep (https://www.

musite.net/) was applied to predict potential PTM sites and corresponding probable modifica-

tions in the mTOR protein sequence [39]. Rather than predicting only a single type of PTM,

this web server provides a deep-learning framework for general protein PTM site prediction

and visualization using raw protein sequences as input.

2.4 Determining impact on protein stability

Whether the amino acid substitutions affected mTOR protein’s stability, two different web

tools were applied: I-mutant 3.0 (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/

I-Mutant3.0.cgi) and MUpro (http://mupro.proteomics.ics.uci.edu/). I-mutant 3.0 predicts the

effects based on a support vector machine [40]. MUpro incorporates a set of machine learning

programs to determine the effect of SNPs [41]. In I-Mutant, the query protein sequence and

the amino acid variation were given as input. Using the sequence information, the change in

Gibbs free energy change (ΔΔG) and its sign were predicted for the single point mutations. In

MUpro, the same predictions regarding protein stability including the value of energy change

(delta delta G) and the sign of energy change were made. In neither of the tools, the tertiary

structure of the protein was provided however for MUpro, it has been shown that the predic-

tion accuracy using sequence information alone (84.2%) is comparable to that of using tertiary

structures (84.5%) [42].

2.5 Predicting phenotypic effects of the nsSNPs

To analyze the structural and functional effects of the point mutations, the HOPE (Have (y)

Our Protein Explained) (https://www3.cmbi.umcn.nl/hope/) [43] server was utilized. Being a

next-generation web application, this automated mutant analyzer creates a report on each

mutation illustrating the effects of the mutation on the protein’s size, charge, bonding pattern,

and interaction with other molecules. For this, the protein sequence, the positions of the

amino acid alterations, and the altered residues were submitted as input. Another web tool

MutPred2 (http://mutpred.mutdb.org/) was also utilized for this purpose. MutPred2 predicts

the phenotypic impact of the amino acid alterations based on a neural-network method [44].

The impacts may include a protein’s stability and structure disruption, macromolecular bind-

ing disruption, PTM site excision, etc. which can lead to major altered phenotypic properties

of a protein. In this server, the fasta sequence of mTOR protein and the amino acid variations

of interest were given as input, and the P-value threshold was set at default (0.05).

2.6 Predicting mutation clusters

Mutation3D (http://www.mutation3d.org/about.shtml) was applied to find out whether the

amino acid substitutions belonged to any cluster that could reveal any functional hotspots of

mutations [45]. Based on a complete-linkage clustering algorithm, this tool can effectively

identify clusters of amino acids on protein models and structures.
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2.7 Predicting protein-protein interaction

The knowledge of the interaction partners for a protein is crucial to understanding its func-

tion, structure, molecular action, and regulation. the STRING (https://string-db.org/) database

was utilized to find out with which proteins mTOR interacts [46]. The protein was searched by

its name and the search was run with the highest confidence score.

2.8 Predicting association of the nsSNPs with cancer susceptibility

Several different tools were applied to determine the oncogenic potential of the selected

somatic point mutations including CScape (http://cscape.biocompute.org.uk/), CBioportal

(https://www.cbioportal.org/), and canSAR Black (https://cansarblack.icr.ac.uk/). CScape

depends on a statistical approach to identify cancer-driving mutations with a 91% balanced

accuracy in coding regions of the genome [47]. In the web server, the list of mutations was

entered using the format chromosome, position, reference, and mutant, and predictions were

given as p-values in the range between 0 and 1. Values above 0.5 are predicted to be deleteri-

ous, while those below 0.5 are predicted to be neutral or benign. The next server was cBioPor-

tal which is a repository with extensive data on the molecular landscape of different types of

cancer [48]. In this platform, the mTOR gene was queried against the curated set of non-

redundant studies including 190 studies and 59519 samples. The resulting missense mutations

that were found in patient samples with different types of cancer were retrieved from the anal-

ysis. Another resource that was used for retrieving known associations between the SNPs with

cancer studies was canSAR Black. It is a multidisciplinary knowledge base for translational

research on cancer [49]. In this server, mTOR protein was searched by its name and from the

results, its association with different cancer types was collected. Each cancer data showed

mTOR mutations found for that particular cancer type and from there the filtered SNPs were

checked whether they were present in the selected cancer sample.

2.9 Protein 3D modelling and structural analysis

The 3D structures of the wild-type protein and proteins with the mutated amino acids were

modelled in the homology modelling server- SWISS-MODEL (https://swissmodel.expasy.org/

) [50]. In this server’s workspace, the amino acid sequence of mTOR protein was given as

input and the protein’s structure was computed in an automated mode through four steps.

The steps included identification of structural templates, followed by alignment of the target

sequence and template structure, and finally model-building and model quality evaluation.

The automatic mode identifies suitable templates based on BLAST [51], and HHblits [52]. The

quality of the predicted 3D structures was assessed by the SWISS-MODEL structure assess-

ment tool and SAVES v6.0 server (https://saves.mbi.ucla.edu/) [53].

After all the mutated models as well as the wild-type protein model were predicted and veri-

fied, they were analyzed in TM-align [54] and PyMOL for their template modeling score (TM-

score) and root mean square deviation (RMSD) value. TM-score provides a means to assess

the topological similarity of protein structures allowing one to determine whether two protein

structures share the same fold or not. And PyMOL is an open-source tool through which the

3D structure of molecules can be visualized. Afterwards, UCSF Chimera was used [55] to visu-

alize the H bonds. UCSF Chimera allows for interactive visualization and analysis of molecular

structures and related data. Finally, the homology predicted structures were also analyzed by

the Missense 3D tool which can determine any structural damage caused by an amino acid

substitution [56].
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2.10 Analysis of 5´ and 3´ UTR non-coding SNPs

The non-coding SNPs located at the 5´ and 3´ UTRs were filtered out from the Ensemble data-

base with a global minor allelic frequency (MAF) value between 0.05 and 0.5 [25]. Later the

SNPs were run in RegulomeDB [57] to assess their functional consequences. RegulomeDB uti-

lizes multiple high-throughput, experimental data sets from GEO, ENCODE, and other

sources to identify non-coding SNPs with potential regulatory roles. Finally, PolymiRTS (Poly-

morphism in microRNAs and their Target Sites) database was searched to find out whether

any of the non-coding SNPs was located in microRNA (miRNA) seed regions and miRNA tar-

get sites [58].

The entire study design including the various tools used is shown in Fig 1.

3. Results

3.1 Retrieval of SNPs from different databases

The NCBI dbSNP database [22] contained 60975 SNPs for the mTOR gene including 57529

variations in the intronic region and 3446 variations in the coding sequence. Out of the SNPs

in the coding sequence, 1903 SNPs were classified as non-synonymous SNPs and were

retrieved from the database. Another 408 variations were found documented in ClinVar [23]

and 26 in DisGenet [24]. The ones found in DisGenet were all found to be redundant, when

compared to dbSNP retrievals. Out of these 26 SNPs, 21 also overlapped with ClinVar IDs.

However, 275 SNPs from ClinVar were found to be novel SNPs (Fig 2A). Therefore, in total

2178 nsSNPs and their information were gathered for the in-silico analysis.

3.2 Selection of the most deleterious nsSNPs

Using SIFT algorithm [26, 27] the effects of the nsSNPs were determined and 227 SNPs with

rsIDs resulted from the analysis. Out of these227 SNPs, 34 SNPs were found to confer deleteri-

ous effects on protein function as they scored below or equal to 0.05 in a range between 0 and

1. The other 1676 nsSNPs could not be found from the results of the SIFT analysis. On the

other hand, from the 275 nsSNPs from the ClinVar database, 36 SNPs were predicted non-syn-

onymous. Out of those 36, nine SNPs were predicted to be damaging by SIFT. Therefore, from

SIFT analysis, in total 63 nsSNPs were found to be deleterious.

On the other hand, PolyPhen-2 [32] predicted 938 of the nsSNPs to have deleterious effects,

and 38 of these SNPs overlapped with SIFT findings. The probability score that is given by

PolyPhen-2 ranges between 0.0 (tolerated) and 1.0 (deleterious). Values close to 0 indicate that

the variant is benign and values closer to 1.0 indicate that the substitution is most probably

damaging.

Of these 38 nsSNPS, 36 were found to be deleterious by PROVEAN [28] score as well, since

their scores were below or equal to the cut-off value of -2.5. The score values ranged between

-7.829 and -2.528. Afterwards, these 36 nsSNPs were analyzed by the rest of the tools (shown

in S1 Table), and only those SNPs that were predicted to have harmful effects by every tool

were analyzed further.

When these nsSNPs were analyzed by Mutation Assessor [29], it was found that the result-

ing amino acid substitutions exhibited three different functional impacts- low, medium, and

high. Only those which made a medium and high impact on the protein’s function were

selected from this tool and 32 nsSNPs fell into the selected category. The effect of the amino

acid variations was also checked in SNAP2 [30] and the resulting scores ranged between -100

strong neutral prediction to +100 strong effect prediction. It showed that 29 of these mutations

were likely to alter the native protein function. These 29 mutations have been labeled as ‘effect’
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Fig 1. A flowchart depicting the entire study plan along with the tools that have been applied in the study.

https://doi.org/10.1371/journal.pone.0270919.g001
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while the other seven have been classified as neutral. When these amino acid substitutions

were analyzed by SuSPect [31], a different range of scores than SNAP2 was obtained. Scores

were predicted between 0 and 100 and were also color-coded according to deleteriousness.

One end of the spectrum was blue representing neutral and the other end was red representing

disease-causing. It was found that 30 of these polymorphisms were predicted to be disease-

causing variants as their score crossed the cut-off value of 50.

The deleteriousness of the single nucleotide variants was also cross-checked by PhD-SNP

[34] and PMut [36] webservers. Results from PhD-SNP showed that 21 of these mutations

were disease-related while the other 15 were neutral. Analyses from PMut showed that 25 of

these mutations were disease related as their scores crossed the cut-off value of 0.5. The

remaining 11 mutations were neutral.

When the chromosomal coordinates of these nsSNPs were analyzed by CADD (Combined

Annotation-Dependent Depletion) [35], the scaled C-score (PHRAD) of all the polymor-

phisms was greater than 20. It indicated these were among the 1% most deleterious substitu-

tions for the human genome. Lastly, Meta-SNP [33] was applied to again predicting any

associations of the SNPs with disease. This tool integrates four existing methods: PANTHER,

PhD-SNP, SIFT, and SNAP and this was particularly useful as the evolutionary analysis of the

nsSNPs could not be done individually by PANTHER. Since no PANTHER family for the

input sequence could be found, the variations were not scored. Meta-SNP analysis revealed

that 28 of these nsSNPs were disease-related Eleven mutations were found to be potentially

harmful by every tool (Table 2) while the rest were predicted to be neutral by at least one of the

tools shown in S1 Table. Hence for further analysis, these eleven polymorphisms were selected

which were L509Q, R619C, D944V, Y1151C, R1161G, K1452N, A1513D, E1610K, R1616C,

T1977R, and N2043S. Fig 2B shows how stepwise filtration through eight different bioinfor-

matics tools after SIFT and PolyPhen2 led to the selection of these eleven most deleterious

nsSNPS.

Fig 2. Retrieval and Identification of most deleterious nsSNPs. A) Retrieval of nsSNPs from three different databases: dbSNP, ClinVar,

and DisGenet. The numbers in brackets indicate how many nsSNPs were retrieved from each database and how many overlapped between

different databases. B) Identification of the most potentially harmful and pathogenic nsSNPs through bioinformatics analyses. The numbers

in the bracket after each tool represent how many deleterious nsSNPs resulted from the previous analysis overlapped with the results from

the current analysis. After 10 different tools were applied, eleven nsSNPs were selected as potentially most harmful.

https://doi.org/10.1371/journal.pone.0270919.g002
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3.3 Evolutionary conservancy and surface accessibility show highly

conserved and functional SNP sites

ConSurf estimates the degree of conservation of the amino-acid residues among their close

sequence homologs and thus identifies the functional regions of a protein. For this analysis a neigh-

bor-joining phylogenetic tree was constructed using multiple sequence alignment (MSA) data that

was built by the default program, MAFFT (Multiple Alignment using Fast Fourier Transform).

Also, a position-specific conservation score on a scale of 1–9, where 9 indicates the most conserved

region and 1 indicates the most variable region was provided for each residue (Fig 3). It was found

that three of these positions (R619C, R1161G, and N2043S) were highly conserved and scored 9

and another three positions (K1452N, A1513D, and T1977R) scored 8. The rest of the positions

showed an average level of the conservancy. Due to their high conservancy, R619C, R1161G,

K1452N, and N2043S- these four sites were also marked as functional sites of mTOR protein.

NetSurfP-2.0 analysis revealed the relative surface accessibility of each amino acid residue of

mTOR protein by assigning a percentage score to them. If the score was more than 25%, it implied

that the amino acid residue was exposed. In this work, D944V, R1161G, K1452N, E1610K,

R1616C, and N2043S positions were all predicted to be in an exposed position (Fig 3). Interest-

ingly, although R619C was predicted to be buried by NetSurfP-2.0 analysis, ConSurf predicted the

residue to be exposed. The rest of the positions were predicted to be buried by both analyses.

Through using MusiteDeep web tool, probable PTM sites were also predicted in the mTOR pro-

tein. However, none of the most deleterious nsSNP positions correlated with a potential PTM site.

3.4 SNPs bring potential changes in protein stability and structure

When the nsSNPs were analyzed by I-Mutant 3.0 and MUpro servers, it was found that all of

them decreased mTOR protein’s stability as represented by their score which was less than 0

for every mutation. The free energy change (ΔΔG) values along with their signs predicted by

the two servers are presented in Table 3. According to I-Mutant 3.0, when the ΔΔG value

comes below -0.5 Kcal/mol, it indicates the said mutation can largely destabilize the protein. In

this study, such destabilizing values were computed for L509Q, R619C, Y1151C, R1161G,

A1513D, R1616C, and N2043S positions.

Afterwards, the nsSNPs were run through project HOPE which aims at providing insight

into the structural effects of a mutation including amino acid size, charge, hydrophobicity, spa-

tial structure, and function.

Table 2. The predictions and scores of the most deleterious nsSNPs determined by 10 bioinformatics tools along with their dbSNP IDs if available.

AA

variation

dbSNP ID SIFT Score PolyPhen2 PROVEAN Mutation Assessor SNAP2 SuSPect PhD-SNP PMut CADD (PHRAD) Meta-SNP (score)

L509Q 28730691 0.023 0.997 -4.7 medium 20 84 disease 0.58 29.6 0.53

R619C 199712134 0 1 -7.8 high 45 97 disease 0.76 31 0.83

D944V - 0 0.977 -5.9 medium 54 58 disease 0.59 28.9 0.75

Y1151C 151082401 0.017 0.983 -6.3 Medium 57 87 disease 0.64 24.8 0.78

R1161G 202197441 0.002 0.976 -6.3 medium 46 72 disease 0.64 25.8 0.69

K1452N - 0 0.981 -4.1 medium 21 57 disease 0.80 23.5 0.68

A1513D 374529391 0.001 0.999 -4.1 medium 40 86 disease 0.75 28.6 0.70

E1610K 199612643 0.022 0.996 -3.5 medium 37 43 disease 0.59 32 0.55

R1616C 17848545 0 1 -5.4 medium 20 83 disease 0.67 32 0.69

T1977R - 0 1 -5.2 medium 59 66 disease 0.80 28.9 0.72

N2043S 371511548 0.005 1 -3.9 medium 16 75 disease 0.75 25.7 0.56

https://doi.org/10.1371/journal.pone.0270919.t002
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The detailed analysis for each of the substitutions is presented in Table 3. From the reports,

it could be seen that every amino acid substitution affected the protein’s size and, in some

cases, charge also. Among these 11 sites, there were 8 sites with changes in the charge: 4

changed from positive to neutral, 1 changed from negative to neutral, 1 changed from neutral

to positive, 1 changed from neutral to negative and 1 changed from negative to positive. In the

case of R1161G, K1452N, and R1616C, the wild-type residues lost their charges. It was pre-

dicted that such variations could affect the protein’s interaction with other molecules. On the

Fig 3. Conservancy and solvent accessibility analysis of selected amino acid positions within mTOR protein.

Position of the most deleterious SNPs along with their relative surface accessibility predicted by NetSurfP-2.0 with a

threshold of 25% which represents SNPs having>25% RSA are predicted to be exposed on the protein surface. The

conservation state of the SNP positions predicted by ConSurf is represented with color codes.

https://doi.org/10.1371/journal.pone.0270919.g003

Table 3. The effect of the nsSNPs on mTOR protein’s stability as determined by I-Mutant 3.0 and MUpro and on structural features of the protein as determined

by HOPE.

I-Mutant 3.0 MUpro Summary of HOPE report

Amino acid

variation

ΔΔG value

(Kcal/mol)

ΔΔG value

(Kcal/mol)

Affects size

and charge

Affects

hydrophobicity

Disrupt hydrogen

bond/Salt bridge

Interferes with

protein function

Interferes with other

protein interaction

L509Q -1.86 -1.84 Affects size Yes No Yes No

R619C -0.93 -0.66 Yes Yes Disrupts hydrogen

bond

Yes Yes

D944V -0.26 -0.55 Yes Yes Disrupts salt bridge Yes Yes

Y1151C -1.15 -0.12 Affects size Yes Disrupts hydrogen

bond

Yes No

R1161G -1.46 -1.61 Yes Yes Disrupts salt bridge Yes Yes

K1452N -0.17 -0.91 Yes No Disrupts hydrogen

bond and salt bridge

Yes Yes

A1513D -0.85 -0.99 Yes Yes No Yes No

E1610K -0.29 -1.25 Yes No Disrupts salt bridge Yes Yes

R1616C -0.72 -0.56 Yes Yes Disrupts hydrogen

bond and salt bridge

Yes Yes

T1977R -0.23 -0.67 Yes Yes Disrupts hydrogen

bond

Yes No

N2043S -0.53 -1.12 Affects size Yes Disrupts hydrogen

bond

Yes Yes

https://doi.org/10.1371/journal.pone.0270919.t003
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other hand, A1513D and T1977R substitutions introduced a negative and a positive charge

respectively, in a buried residue within the protein which can lead to protein folding problems.

To be folded in the minimum-energy configuration, the hydrophobic residues of a protein

usually remain together in the core while the hydrophilic ones are exposed to the surface. For

nine of the substitutions, HOPE could generate structural images showing both wild type and

the altered amino acid residue at the particular protein site and they are shown in Fig 4.

In addition, some of the amino acid positions including Y1151C, A1513D, and T1977R are

within the core domain of the protein. Changes at these residues were predicted to affect the

core structure of the protein. Particularly with Y1151C, it was predicted that such a

Fig 4. Structural images of the nine nsSNPs created by the HOPE report. Images of the modified structures of mTOR protein were generated using

Project HOPE. The whole protein is pictured in grey colour, the side chain of the wild-type residue is indicated in green and of the mutant residue is shown

in red. In A, B, C, E, F, and I, the mutated residue which is in red is smaller than the wild-type residue presented in green. On the other hand, in D, G, and

H the mutant residues are bigger than the wild type residues. All of these structural changes will disrupt the protein’s shape, conformation, and function.

Note: (A) D944V (B) Y1151C (C) R1161G (D) E1610K (E) R1616C (F) K1452N (G) A1513D (H) T1977R and (I) N2043S.

https://doi.org/10.1371/journal.pone.0270919.g004
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substitution would create an empty space within the core. In this case, the mutant residue

became smaller than the wild-type residue and that might be too small to make multimer con-

tacts. Moreover, conservancy analysis showed that at 619, 944, and 1610 positions, although

the wild-type residues were not conserved, the mutant ones were also not commonly observed

in the homologous sequences. Therefore, this analysis also predicted these mutations to be

probably damaging to the protein.

Certain effects of two amino acid positions were mentioned in the HOPE report. R1161G

mutation introduced a glycine at this position and glycines are very flexible. This mutation

was therefore predicted to disturb the required rigidity of the protein at this position. Another

was N2043S substitution, which is located in a region that interacts with the FKBP1A/rapamy-

cin complex. This amino acid change could disturb this region and interfere with this

interaction.

When the mutations were next analyzed by the MutPred2 server, 9 out of 11 nsSNPs scored

higher than 0.8 which indicated that they had high pathogenic properties. In this server, it was

predicted whether these mutations caused any gain of intrinsic disorder. Additionally, whether

they caused structural modifications and DNA binding alterations were also predicted with P-

value and Probability value. It was found that two of the mutations A1513D and T1977R

caused loss of ubiquitination, while R619C caused loss of acetylation. In addition, several of

the alterations including K1452N, A1513D, R1616C, and T1977R led to altered transmem-

brane properties. Similarly, E1610K and R1616C variations caused an altered disordered inter-

face. The details of the MutPred2 results are given in the S2 Table.

Lastly in this section, mTOR protein was also analyzed by mutation 3D web server. All 36

nsSNPs were given as input and it was found that amino acid residues at positions 1609, 1610,

and 1616 belonged to a cluster with a P-value of 6.25e-02.

3.5 Determining major interacting molecules of the mTOR protein

From the STRING network, the 10 major interacting molecules with mTOR protein were

revealed which included Eukaryotic translation initiation factor 4E-binding protein 1, GTP-

binding protein Rheb, Regulatory-associated protein of mTOR (RPTOR), DEP domain-con-

taining mTOR-interacting protein (DEPTOR), Rapamycin-insensitive companion of mTOR

(RICTOR), Target of rapamycin complex 2 subunit MAPKAP1, Serine/threonine-protein

kinase ULK1, Ras-related gtp-binding protein c/d (RRAGC), Ribosomal protein S6 kinase

beta-1 and Tuberin, a tumor suppressor protein (S1 Fig). Since several of the nsSNPs were pre-

dicted to interfere with the interaction of mTOR with other molecules, the function of these

interacting molecules could also get affected by these amino acid alterations.

3.6 The association between the high-risk nsSNPs with cancer susceptibility

The oncogenic potential of the point mutations was first assessed by CScape. The results

showed that L509Q, D944V, A1513D, E1610K, and T1977R were deleterious, predicted with

the highest confidence score. Next, these mutations were also analysed by the CBioPortal

server over 190 non-redundant curated sets of studies. The position of each of the missense or

non-synonymous SNPs was checked and it was found that several of these mutations were

present in different cancer patients’ samples. The detailed results are shown in Table 4.

It could be seen that in some cases the results from CBioPortal and CanSAR Black over-

lapped with each other while in other cases novel associations were revealed. Among the can-

cer types, uterine endometrial, melanoma, renal clear cell carcinoma, kidney, prostate, and

lung cancer, each was found to be linked with two different mutations. Interestingly, L509Q
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and D944V substitutions were not found to be associated with any cancer study although

Cscape predicted these mutations to be oncogenic with high confidence.

3.7 Structural analyses of the protein mutations

The 3D structure of the mTOR protein was predicted in the SWISS-Model workspace using

6zwm as a template [59]. Also, the protein’s structure containing each of the 11 amino acid

alterations was predicted individually. After the predictions were done, the quality of the pro-

tein models was checked using the Ramachandran plot, QMEAN score, and MolProbity score

computed from the SWISS-MODEL structure assessment tool and ERRAT score from the

SAVES server. The results are shown in Table 5. In an ideal case, Ramachandran favored

region of a protein structure should be greater than 98%. All the predicted models in this study

including the wild-type and the mutated ones had 92–93% residues in the Ramachandran

favored region. QMEAN Z-scores reveal the degree of nativeness of a given protein structure

with scores around 0.0 reflecting a native-like structure and scores below -4.0 indicating a

Table 4. Association study of the high-risk nsSNPs with different types of cancer obtained from Cscape, cBioPortal and canSAR Black databases.

Amino acid

variation

Cscape cBioPortal canSAR Black

L509Q 0.92

R619C 0.86 Renal clear cell carcinoma, melanoma, uterine endometrioid carcinoma Uterine endometrial

D944V 0.91

Y1151C 0.88 Lung adenocarcinoma Lung

R1161G 0.85 Brain

K1452N 0.58 Kidney

A1513D 0.91 Uterine endometrioid carcinoma Uterine endometrial

E1610K 0.92 Prostate adenocarcinoma, colorectal adenocarcinoma

R1616C 0.78 Cutaneous melanoma

T1977R 0.95 Acute lymphoid leukemia, lung adenocarcinoma, renal clear cell carcinoma,

colorectal carcinoma

Lymphoma, Leukemia, Uterine endometrial,

Kidney, Prostate

N2043S 0.86

(Yellow values denote low-confidence oncogenic predictions and red values denote high-confidence oncogenic predictions made by Cscape)

https://doi.org/10.1371/journal.pone.0270919.t004

Table 5. Structure validation of the 3D protein models of mTOR protein and TM-score and RMSD values of mutated mTOR and wild-type mTOR.

Protein

model

Template and sequence

identity (%)

SWISS Model Ramachandran favored

region

QMEAN

score

MolProbity

score

ERRAT

score

TM-

score

RMSD

value

Wt 6zwm.1.A (100) 92.93% -2.01 1.33 92.0821 - -

L509Q 6zwm.1.A (99.96) 93.56% -1.96 1.27 92.4473 0.9747 0.045

R619C 6zwm.1.A (99.96) 93.13% -2.02 1.45 91.63 0.9768 0.094

D944V 6zwm.1.A (99.96) 93.13% -2.05 1.3 92.719 0.9728 0.011

Y1151C 6zwm.1.A (99.96) 93.13% -1.99 1.31 91.7826 1.0000 0.087

R1161G 6zwm.1.A (99.96) 92.93% -2.04 1.3 92.1816 1.0000 0.052

K1452N 6zwm.1.A (99.96) 92.89% -2.06 1.39 91.9983 1.0000 0.047

A1513D 6zwm.1.A (99.96) 93.20% -2.05 1.41 89.8113 0.98 0.139

E1610K 6zwm.1.A (99.96) 92.97% -2.03 1.33 92.1207 1.0000 0.011

R1616C 6zwm.1.A (99.96) 92.97% -2.10 1.43 92.4204 1.0000 0.062

T1977R 6zwm.1.A (99.96) 93.44% -2.10 1.37 90.3725 0.9800 0.123

N2043S 6zwm.1.A (99.96) 93.40% -2.22 1.39 91.288 0.9671 0.078

https://doi.org/10.1371/journal.pone.0270919.t005
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model with low quality. In this study, all the models had a Z score of around -1 or -2. Another

assessment score was MolProbity Score which is also a protein quality score that refers to the

crystallographic resolution at which such a quality would be expected. This score should be as

low as possible. The last tool that was used to cross-check the quality of the protein structures

was the ERRAT score. ERRAT is considered an overall quality factor for non-bonded atomic

interactions, with higher scores indicating higher quality. If a protein model scores more than

50, it is regarded as a high-quality model [60], and it could be seen that in this study all the pre-

dicted models scored more than 89. The Ramachandran plots generated by PROCHECK for

all the mutant structures as well as the wild-type model are shown in S2–S13 Figs.

Structural comparisons were needed to be performed to find out whether the mutated pro-

tein structures differed from the wild-type protein structure. For this purpose, two different

scores were analyzed, and the results are also shown in Table 5. TM-align performs a

sequence-independent structural comparison and the result, given by the TM-score scales the

topological similarity between two structures. This score ranges between 0 and 1, where 1 indi-

cates a perfect match between the wild-type and the altered structures. The second score was

the RMSD (Root-mean-square deviation) value which reflects the average deviation between

the corresponding atoms of two proteins. Smaller values indicate higher similarity between

two structures. It can be seen from Table 5 that in the case of R619C, A1513D, and T1977R

substitutions, when the mutated structures were compared with the wild-type protein model,

the TM-score came to be less than 1 although the RMSD values were similar. The TM score

shows that the particular mutations might lead to significant changes in the mTOR protein’s

structure. The superimposed structures of these three mutants over wild-type mTOR are

shown in S14–S16 Figs.

Based on this observation, the predicted 3D structures of the mTOR protein containing the

following mutations: R619C, A1513D, and T1977R were visualized in PyMOL and Discovery

studio. Particular focus was given to how these mutated residues differed from the wild-type

version in their interaction with their neighboring residues in terms of bond angle, C alpha

distance, and the number of hydrogen (H) bonds. When the angle between 619R with adjacent

residues at 618 and 620 were measured, it was found to be 93.5 Å with respect to O atoms, and

when the wild-type residue was replaced by Cysteine, the angle changed to 97.2 Å. When ala-

nine was mutated to aspartic acid at position 1513, the angle changed from 90.6 Å to 90.5 Å.

And when threonine changed to arginine at the 1977 position, the angle decreased from 81 Å
to 78.3 Å. In all three cases, the structures of the mutated proteins were markedly changed at

the site of the point mutation. Similarly, when the distance between the C alphas of the tripep-

tides containing the altered amino acid in the middle, was measured, all three showed changed

distances. In the case of R619C mutation, the C alpha distance between 618 and 619 positions

increased from 3.0 Å to 3.1 Å while the distance between 619 and 620 residues decreased from

3.2 Å to 3.1 Å. In the case of A1513D substitution, the distance increased between 1512 and

1513 positions from 3.1 Å to 3.2 Å. Again, for T1977R, the distance increased between 1977

and 1978 residues from 3.1 Å to 3.2 Å. When the C alpha distances changed due to these alter-

ations, the dihedral angles also got affected which would ultimately affect the shape of the

alpha-helices.

Using UCSF Chimera, the hydrogen bond interactions of these three residues were also

visualized. In every case, the number of H bond interactions remains unchanged although the

distance changed. The detailed result is shown in Table 6.

The predicted structures of all the mutant proteins were also analyzed in Missense 3D and

interestingly for the same three amino acid variations, structural damage was predicted. For

R619C polymorphism, it was predicted that since a buried charged residue was getting

replaced with an uncharged residue, it may disrupt a wild-type salt bridge. The salt bridge was
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between the NE atom of ARG 619 and the OD1 atom of ASP 666. For A1513D substitution, a

protein folding problem was predicted as a buried hydrophobic residue was getting replaced

with a hydrophilic residue and thus a charge was introduced into a buried residue. Finally, for

T1977R substitution, a change was predicted between the buried and exposed state of the tar-

get variant residue where the wild-type threonine was buried and mutant arginine was

exposed.

3.8 Analysis of the non-coding SNPs at the 5´ and 3´ UTRs

Only three non-coding SNPs could be retrieved from the Ensemble database with a global

minor allelic frequency (MAF) value ranging between 0.05 and 0.5. In RegulomeDB database

analysis, one (rs2295079) out of the three SNPs scored 0.88219 and ranked 2b which indicated

that several datatypes including TF binding, any motif, DNase Footprint, and DNase peak

were available for the chromosomal position. The probability score that was close to 1 also sug-

gested that the respective SNP would most likely be a regulatory variant. Afterwards, the three

SNPs were checked in PolymiRTS Database 3.0 and it was found that rs12139042 has two

alleles C and T in the database with the functional classes of D and C, respectively in all their

target sites with negative context scores. Class D denoted that the derived allele disrupted a

conserved miRNA site while class C denoted that the derived allele created a new miRNA site.

4. Discussion

As a major regulator of cell growth and proliferation, the mTOR signaling pathway influences

several different key processes in the body including apoptosis, growth, and autophagy of cells

[61]. The protein has also been found to be aberrantly expressed in multiple diseases like

tumorigenesis, arthritis, and osteoporosis [62]. One of the causal factors for such abnormal

expression of a protein lies within its SNPs. SNPs are widespread in the human genome and

can vary from one person to another. While they may change the encoded amino acids, they

can also be located within the non-coding regions of a gene. Unraveling the relationship

between genetic variations like SNPs and their functional and structural impact on a protein

may lead to potential biomarkers for disease diagnosis and prognosis. Accordingly, several

studies have identified nsSNPs within the mTOR gene to be associated with acute leukemia,

colon cancer, gastric cancer, and many other types of cancer [13] as well as with the risk of dia-

betes mellitus [63]. However, the entire landscape of SNPs located in the mTOR locus and

their potential effects on the protein’s structure and function have not yet been characterized.

In the present study, a comprehensive in silico analysis has been performed using computa-

tional tools to identify potentially deleterious coding and non-coding SNPs within the target

gene.

Several different tools were combined for the initial screening of the most deleterious

nsSNPs to ensure a robust and accurate prediction with increased reliability. Some tools

Table 6. Alteration of H bond interactions and their lengths due to amino acid substitutions.

Protein model Wild type Altered

H bond Bond length (Å) H bond Bond length (Å)

R619C R619-H615 3.294 C619-His615 3.238

R619-A623 3.06 C619-A623 2.964

A1513D A1513-Q1509 3.006 D1513-Q1509 3.073

A1513-A1517 2.897 D1513-A1517 2.810

T1977R T1977-I1973 3.005 R1977-I1973 3.113

https://doi.org/10.1371/journal.pone.0270919.t006
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including SIFT, Mutation Assessor, and PROVEAN based their prediction on parameters like

sequence homology, evolutionary conservation, and physical properties of the amino acids.

Others like SNAP2 and PolyPhen2 relied on machine learning methods to predict the struc-

tural and functional impact of the variations. Some additional tools including PhD-SNP, SuS-

Pect, and PMut were also included in the analysis to directly assess whether the

polymorphisms were associated with pathogenicity. In total, 11 nsSNPs were selected as most

deleterious as they were predicted to be high-risk by all the SNP prediction algorithms applied

in this study.

The conservancy analysis revealed six of the selected SNPs (R619C, R1161G, K1452N,

A1513D, T1977R and N2043S) were located at functionally and structurally important regions

of the protein as their conservation scores were high. Likewise, from the UniProt database, it

was found that three of the polymorphisms were located within regions that were vital for

interacting with other proteins (Fig 5). N2043S lies within a region that interacts with

FKBP1A/rapamycin complex while L509Q and R619C are located in a region that interacts

with NBS1 protein which is essential for DNA double-strand break repair [64]. The polymor-

phisms may affect the protein’s structure at these particular sites and hence interaction with

the other molecules. On the other hand, K1452N, A1513D, E1610K, and R1616C variations

were found within a core domain, FAT (Fig 5), which suggests these alterations may affect the

protein’s core structure and function. Furthermore, whether these amino acid positions were

exposed on the protein’s surface or buried within the protein, the surface accessibility of the

residues was checked. Some residues were found to be exposed, indicating their potential

impact on interaction with other molecules. Others were found to be buried within the protein

showing their possible roles in maintaining the core structure of the protein.

All of the nsSNPs were found to decrease the mTOR protein’s stability as revealed by the

negative free energy change values calculated in I-Mutant 3.0 and MUpro servers. Seven varia-

tions including L509Q, R619C, Y1151C, R1161G, A1513D, R1616C, and N2043S were shown

to be largely destabilizing suggesting they might affect the protein’s folded structure. The struc-

tural effect of the selected variations was also analyzed by running HOPE projects. It was

observed that eight of the 11 nsSNPs went through either a change in their charge or loss of

their charge due to the alterations and that could result in interrupted interaction with other

molecules. In addition, it could be seen that nine of these high-risk amino acid variations

impacted either hydrogen bonds or salt bridges, or both within the mTOR protein. To further

strengthen the predictions in this study, the MutPred2 tool was also applied which scores the

probable pathogenicity of the amino acid variations showing the affected molecular mecha-

nisms behind their pathogenicity. It was found that three of the mutations resulted in altered

PTM sites, another four of the mutations resulted in the loss of transmembrane property and

another one affected the secondary structure. Overall it could be seen that the deleterious

nsSNPs could potentially affect the mTOR protein’s native structure and thereby function.

For a more detailed structural insight into the effect of the polymorphisms, the mutated

models of the protein for the corresponding amino acid substitutions were generated in the

SWISS-Model workspace. The RMSD and TM align values were calculated to determine the

extent of change in the 3D protein structures due to the mutations. The RMSD value was quite

low (less than or around 0.1) for all the mutated models suggesting that the mutant protein

structures did not deviate much from the wild-type protein structure. However, for six of the

amino acid substitutions, the TM align values came between 0.5 and 1 which indicated dissim-

ilarity between the wild-type and mutant structures. Afterwards, three of these mutant struc-

tures including R619C, A1513D, and T1977R were further analyzed as their RMSD values

were also comparatively higher than the other variant structures. Through structural analysis it

was found that although the number of hydrogen bonds did not change between wild type and
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mutated residues, the bond angles, C alpha distance as well as the length of the H bonds

changed due to the amino acid alterations further confirming that the polymorphisms may

disrupt the protein’s native structure and stability. Several studies have shown that the inter-

play between protein backbone geometry and local conformation has an important contribu-

tion to protein stability [65]. Since backbone geometry can be affected by bond distances,

bond angles, and dihedral angles, changes in such parameters resulting from the selected

amino acid substitutions may affect the mTOR protein’s backbone geometry. This in turn may

affect the protein’s local conformation and thus stability. The protein models were also ana-

lyzed in the Missense 3D tool and structural damage was predicted for the same three muta-

tions: R619C, A1513D, and T1977R. In summary it can be said that these three SNPs could

potentially impact mTOR protein’s functions as they have been found structurally and func-

tionally deleterious. It should be noted here that data from various cancer-related databases

also showed that these three mutations have been found to be associated with multiple types of

cancers including renal clear cell carcinoma, melanoma, uterine endometrioid carcinoma,

acute lymphoid leukemia, lung adenocarcinoma, and colorectal carcinoma [66–68].

Among the non-coding SNPs, rs2295079 was predicted to have a regulatory role over

mTOR protein as it had a prediction of transcription binding sites, matched or unmatched

motifs, and DNase footprint with DNase peak. On the other hand, rs12139042 was predicted

to either disrupt a conserved miRNA site or create a new miRNA site. By altering miRNA

binding sites, the particular SNP may hamper the regulation of the mTOR protein by miRNA.

This study has several limitations. For instance, due to variable penetrance, some disease-

causing alleles do not manifest into a detectable phenotype, and therefore phenotypes cannot

be entirely predicted based on genotype. Moreover, a single nsSNP is unlikely to provide

insight into the phenotype of complex genetic traits like diabetes, heart disease etc. In addition

to that, a common mutation may have a variable expression and diverse effects in different

organs and tissue types of the body [14]. Therefore, efficient experimental analysis needs to be

carried out in the future to ascertain the disease-associated nsSNPs.

5. Conclusion

In this study, several different bioinformatics tools were combined to screen for the most dele-

terious SNPs located within the mTOR protein. In total, eleven nsSNPs were filtered out to be

the most high-risk as they affected the native protein’s structure and thereby function. Among

these mutations, R619C, A1513D and T1977R were shown to cause structural damage to the

protein while in addition to these three, L509Q, Y1151C, R1161G, R1616C and N2043S were

also found to confer destabilizing effect over the protein. Furthermore, due to their position

Fig 5. Domains and interaction sites within the mTOR protein. The positions of the final 11 nsSNPs are shown

within mTOR protein with respect to the NBS1 interacting domain, FAT domain, PI3K/PI4K catalytic domain, and

FATC domain. The domains are shown in grey horizontal bars and the nsSNPs are depicted by blue arrows. The exons

(58 exons) are shown by green vertical bars while the introns are shown by green horizontal lines. The scaling of the

exon positions and the domains is approximate.

https://doi.org/10.1371/journal.pone.0270919.g005
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within interacting regions of mTOR, mutations like L509Q, R619C and N2043S may affect

mTOR protein’s interaction with NBS1 protein and FKBP1A/rapamycin complex. Previous

studies have associated several of these mutations with different cancer types however, D944V

and N2043S have not been linked with any cancer yet, although they have shown disrupting

structural consequences over the protein. These SNPs along with non-coding SNPs predicted

to have detrimental effects on the protein structure, need to be further validated through labo-

ratory experiments to confirm their roles in the pathogenesis of related diseases. The findings

can serve as an important guide for the development of potential diagnostic and therapeutic

interventions targeting these functional SNPs. All in all, this study has several promising pros-

pects. One prospect is- based on these findings a guideline can be prepared to detail all the del-

eterious SNPs within mTOR which can potentially increase the risk of cancers and other

disease susceptibilities. Another prospect is to perform extensive population-based studies

involving clinical investigations to characterize the phenotypic effects of these genetic varia-

tions on the human population. And lastly, it will also be interesting to investigate the homozy-

gosity and heterozygosity dependent pathogenicity level of these disease-associated mutations.
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