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� Associations of PFAS and risk of hepatocellular

carcinoma were tested in humans.

� PFAS and untargeted metabolomics were assessed
in pre-diagnostic samples.

� Exposure to high PFOS levels was linked to
increased hepatocellular carcinoma risk.

� The likely mechanisms were via alterations in
glucose, amino acid, and bile acid metabolism.
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Per- and polyfluoroalkyl substances (PFAS), often
referred to as “forever chemicals” because they are
difficult to break down and stay in the human body for
years, are extremely common and can cause liver
damage. In a first of its kind study, we found that
exposure to high levels of perfluorooctanesulfonic
acid, one of the most common PFAS chemicals, was
linked to increased risk of hepatocellular carcinoma in
humans. Hepatocellular carcinoma is difficult to treat
and is one of the most common forms of liver cancer,
and these findings may provide new avenues for
helping to prevent this disease.
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Background & Aims: Exposure to poly- and perfluoroalkyl substances (PFAS), a class of persistent organic pollutants, is
ubiquitous. Animal studies suggest that PFAS may increase risk of fatty liver and hepatocellular carcinoma (HCC) via impacts
on hepatic lipid, amino acid, and glucose metabolism, but human data is lacking. We examined associations between PFAS
exposure, altered metabolic pathways, and risk of non-viral HCC.
Methods: In this nested case-control study, pre-diagnostic plasma PFAS and metabolomics were measured in 50 incident HCC
cases and 50 individually matched controls from the Multiethnic Cohort (MEC) study. Cases/controls were matched by age,
sex, race, and study area. PFAS exposure and risk of HCC were examined using conditional logistic regression. A metabolome-
wide association study and pathway enrichment analysis was performed for PFAS exposure and HCC risk, and key metab-
olites/metabolic pathways were identified using a meet in the middle approach.
Results: High perfluorooctane sulfonic acid (PFOS) levels (90th percentile from NHANES; >55 lg/L) were associated with 4.5-
fold increased risk of HCC (odds ratio 4.5, 95% CI 1.2-16.0). Pathway enrichment analysis showed that PFOS exposure was
associated with alterations in amino acid and glycan biosynthesis pathways, which were also associated with HCC risk. We
identified 4 metabolites linking PFOS exposure with HCC, including glucose, butyric acid (a short-chain fatty acid), a-ketoi-
sovaleric acid (a branched-chain a-keto acid), and 7a-hydroxy-3-oxo-4-cholestenoate (a bile acid), each of which was posi-
tively associated with PFOS exposure and risk of HCC.
Conclusion: This proof-of-concept analysis shows that exposure to high PFOS levels was associated with increased risk of
non-viral HCC, likely via alterations in glucose, amino acid, and bile acid metabolism. Larger studies are needed to confirm
these findings.
Lay summary: Per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals” because they are difficult
to break down and stay in the human body for years, are extremely common and can cause liver damage. In a first of its kind
study, we found that exposure to high levels of perfluorooctanesulfonic acid, one of the most common PFAS chemicals, was
linked to increased risk of hepatocellular carcinoma in humans. Hepatocellular carcinoma is difficult to treat and is one of the
most common forms of liver cancer, and these findings may provide new avenues for helping to prevent this disease.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Liver cancer was the 6th most common cancer and the 3rd

leading cause of cancer death worldwide in 2020.1 In the United
States, liver cancer incidence rates have more than tripled since
1980.2 In 2021, liver cancer was the 5th and 7th leading cause of
cancer deaths in the US among men and women, respectively.2

Hepatocellular carcinoma (HCC) is the most common form of
liver cancer, accounting for 85% of cases.1 With a 5-year survival
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rate of less than 20%, HCC is one of the most lethal cancers.3

While global vaccination efforts and effective antiviral treat-
ments have helped to decrease the incidence of HCC related to
HBV/HCV infection, the incidence of non-alcoholic fatty liver
disease (NAFLD)-related HCC is increasing, and NAFLD is pro-
jected to become the predominate cause of HCC in many
countries by 2030.4 In the USA, the incidence of HCC has
decreased since 2011, driven by decreasing HBV and HCV rates.5

However, the incidence of HCC in individuals born after 1985 is
beginning to match that of baby boomers, which is likely driven
by increasing rates of metabolic syndrome, NAFLD, and non-
alcoholic steatohepatitis.5 Mirroring the increasing global
rates of obesity, diabetes, and NAFLD, the incidence of HCC is
expected to increase further, and the health impact of this in-
crease is compounded by its dismal prognosis.4 Thus, there is an
urgent need to identify the risk factors for non-viral-related
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HCC in order to improve the identification and surveillance of
high-risk populations and ultimately reduce the burden of this
disease.

Accumulating evidence suggests that poly- and perfluoroalkyl
substances (PFAS), a class of pervasive endocrine disruptors, are
hepatotoxic.6,7 PFAS are persistent and ubiquitous chemicals
which have beenwidely used in industry and consumer products
for more than 60 years.8–11 In humans, biological half-lives of
long-carbon chain PFAS, such as perfluorooctane sulfonate
(PFOS), perfluorooctanoate (PFOA), and perfluorohexane sulfo-
nate (PFHxS), range between 3 and 7 years.12,13 As such, human
biomonitoring studies report widespread exposure with detec-
tion rates of over 98% in the blood of US adults.14,16,17,43

PFAS partition preferentially to the liver, where they have
hepatotoxic and metabolism disrupting effects.6,18,19 Rodents
exposed to PFAS, even at low levels, developed liver enlarge-
ment, hepatocellular hypertrophy, elevated liver enzymes, and
hepatic steatosis.20–27 In rainbow trout, PFAS increase the inci-
dence of hepatocellular adenomas and tumors.28 PFAS also alter
hepatic lipid, amino acid, and carbohydrate metabolism, which is
hypothesized to be a mechanism linking PFAS exposure with
hepatotoxic endpoints.29

Despite compelling experimental evidence, investigation of
hepatotoxic effects in population studies is limited. Several hu-
man studies have examined the cross sectional associations of
PFAS exposure with liver enzymes, including of alanine amino-
transferase (ALT), a marker of liver function.7 For example, in the
NHANES study, higher blood PFOS and PFOA concentrations
were associated with increased levels of ALT in the general adult
population in the USA.30,31 In adults, PFAS have also been linked
to alterations in cytokeratin 18, a marker for liver apoptosis.32,33

Recent evidence also suggests that PFAS are associated with
increased risk of NAFLD, diagnosed using liver MRI or liver bi-
opsy, in both children and adults.34,35 Using untargeted metab-
olomics, these studies have also shown that alterations in lipid
and amino acid metabolism link PFAS exposure and risk of
NAFLD.34,35 However, research examining PFAS exposure and
HCC in humans is non-existent.

Therefore, we performed the first population-based study to
examine the association between PFAS exposure and risk of non-
viral HCC in a prospective cohort. We hypothesize that PFAS
exposure increases risk of HCC via effects on lipid, amino acid,
and carbohydrate metabolism. In a well characterized, ethnically
diverse cancer cohort, we examined whether pre-diagnostic
levels of PFAS were associated with risk of HCC. We also exam-
ined the underlying metabolic pathways linking PFAS exposure
with risk of HCC using untargeted metabolomics.
Patients and methods
Study population
This study included 50 incident non-viral HCC cases and 50
controls from the Multiethnic Cohort (MEC) study. Cases and
controls were matched by age, sex, race/ethnicity, and study
area. MEC is a unique, ethnically diverse prospective cohort of
>200,000 African Americans, Latinos, Native Hawaiians, Japanese
Americans, and Whites followed since the early 1990s in Cali-
fornia and Hawaii.36 Incident cancers including HCC over >20-
years of follow-up were identified by the National Cancer In-
stitute’s Surveillance, Epidemiology, and End Results (SEER)
program. Comprehensive epidemiologic risk factor data from
questionnaires, health condition data from Medicare claims, and
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California hospital discharge and mortality information from
national mortality databases were also collected. The underlying
etiology of HCC was identified using a combination of viral
hepatitis testing and Medicare claims and classified into viral
(hepatitis B or hepatitis C related), NAFLD, alcohol related, and
others as previously described.37–39 The breakdown of etiology
in HCC cases was 33 (66%) NAFLD, 4 (8%) alcohol related, and 13
(26%) cryptogenic cirrhosis. HCC cases with known viral etiology
were excluded from this study. Controls were free from diag-
nosed liver disease, including metabolic dysfunction-associated
fatty liver disease. This study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki, and ethics
approval for this study was provided by the Institutional Review
Boards at the University of Southern California (HS-17-00714)
and the University of Hawaii (CHS 9575).

Plasma PFAS
Plasma PFAS concentrations in fasting pre-diagnostic samples
were determined using liquid chromatography with high-
resolution mass spectrometry (LC-HRMS). Plasma samples
were prepared by adding 2.5 ll of an internal standard solution
containing 30 different 13C-labeled PFAS compounds to 40 ll of
plasma to obtain final 13C-labeled PFAS concentrations of 5 lg/L.
This was followed by adding 80 ll of ice-cold acetonitrile to
precipitate proteins. Treated samples were vortex mixed, equil-
ibrated on ice for 30 mins, and then centrifuged for 15 min at
18,000×g, at 4 �C. The resulting supernatant was diluted 2:1 with
LC-MS grade water and placed in refrigerated autosamplers.
Extracts were analyzed using a Vanquish Binary Pump F Ultra
Performance Liquid Chromatography (Thermo Fisher Scientific,
Rockford, IL, USA), connected to a Q-Exactive HF-X Orbitrap MS
system (Thermo Fisher Scientific, Rockford, IL, USA). PFAS anal-
ysis was completed using reverse phase chromatography with
negative electrospray ionization. Details on method parameters
and operation of the LC-HRMS are provided in the following
section.

Following analysis of all study samples, accurate mass m/z
peaks corresponding to PFAS and matched 13C internal standard
peaks were extracted and integrated using a mass error
threshold of 5 ppm in TraceFinder 5.1. PFAS were quantified by
comparing the ratio of the analyte peak and corresponding in-
ternal standard to a 6-point calibration curve prepared in char-
coal stripped plasma. Each batch of samples included replicate
analysis of NIST 1957 and 1958, as well as method and instru-
mental blanks. Analyte recovery for major PFAS exceed 90%, with
detection limits in the low pg/ml range and coefficient of vari-
ations less than 15%. Method accuracy was evaluated by com-
parison to NIST, and through participation in the CTQ AMAP Ring
Test for Persistent Organic Pollutants in Human Serum. The limit
of detection for plasma PFAS were 0.43 lg/L for PFOS, 0.01 lg/L
for PFOA, 0.01 lg/L for PFHxS, 0.01 lg/L for perfluorononanoate
(PFNA), 0.05 lg/L for perfluoroundecanoic acid (PFUnDA), and
0.01 lg/L for perfluorodecanoate (PFDA).

Untargeted plasma metabolomics
The plasma metabolome was determined in fasting pre-
diagnostic samples using LC-HRMS. To maximize detection of
endogenous metabolites, we expanded established methods40

to enable analysis using a dual column and dual polarity
approach that included analyses with both reverse phase (RP)
and hydrophilic interaction chromatography (HILIC). Untar-
geted analysis was accomplished using a Vanquish Duo liquid
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chromatography (LC) system (Thermo Fisher Scientific, Rock-
ford, IL, USA) equipped with dual pumps and columns with
independent flow paths interfaced to a Q-Exactive HF-X Orbi-
trap MS system (Thermo Fisher Scientific, Rockford, IL, USA).
The dual LC system was configured to enable parallel analytical
separation and flushing using columns with the same station-
ary phase and mobile phases optimized for positive or negative
ionization. To enable analysis using all 4 analytical configura-
tions, all study samples were first analyzed using RP, after
which the system was switched to HILIC. Details on sample
preparation and LC parameters for each mode are provided
below.

Plasma samples were analyzed in batches of 70 study samples
with 10 pooled quality assurance/quality control samples. Prior to
analysis, samples were thawed at 4 �C and plasma (40 ll for RP,
and 30 ll for HILIC) was extracted with ice-cold acetonitrile (80 ll
for RP, and 90 ll for HILIC) containing 13C-labeled PFAS and in-
ternal standards. Treated samples were vortexed for 10 s, equili-
brated on ice for 30 min, and then centrifuged for 15 min at
18,000×g, at 4 �C. The supernatant (40 ll for RP, and 30 ll for
HILIC) was added to 250 ll LC vials containing water (80 ll for RP)
or 1:1 (v/v) water/acetonitrile (90 ll for HILIC analysis) and placed
in a refrigerated autosampler. Samples were analyzed with mobile
phases optimized for positive or negative ionization. RP analyte
separation was accomplished by C18 (TARGA C18 5 lm 50
× 2.1 mm, Higgins Analytical, Inc, Mountain View, CA, USA) for
both positive mode and negative modes. Mobile phases for RP
included water and acetonitrile containing 0.1% formic acid for
positive mode and 10 mM ammonium acetate and 95/5 (v/v)
acetonitrile/water (A) for negative mode. For HILIC, positive ESI
analysis was completed using a SeQuant ZIC-HILIC column
(3.5 lm, 200 A 4.6 × 50 mm; MilliporeSigma, Burlington, MA,
USA), and mobile phase including 0.1% formic acid in water and
acetonitrile. For negative mode, a Waters XBridge Amide column
(3.5 lm 3.0 × 50 mm, Waters Corporation, Milford, MA, USA) was
used with mobile phases consisting of 10 mM ammonium acetate
in water adjusted to pH 9.60 with ammonium hydroxide and 95/5
(v/v) acetonitrile. Total runtime for each analysis was 7.5 min.
Mass spectral data was collected over the scan range 85–1,275 at
120,000 (FWHM) resolution. Spray voltages were maintained at
3.5 kV and 4.0 kV for positive and negative mode, respectively.
Sheath and auxiliary gas temperatures were 300 �C and 250 �C,
respectively, while sheath and auxiliary gas flow rates were set to
45 and 25 (arbitrary units). To minimize analyte fragmentation at
the source, the RF funnel level was set at 35. In addition to full
scan data collection, a subset of samples were selected for data-
dependent tandem mass spectrometry (MSMS), which collected
MSMS spectra for the top 20 most abundant peaks at MS2 reso-
lution of 15,000 using normalized collision energies of 20, 40, and
60. Metabolite peaks were extracted separately for each chroma-
tography and polarity pair using apLCMS and xMSanalyzer,40,41

and metabolite features were uniquely identified based upon
detected m/z, retention time and peak intensity. Following data
extraction, LC-HRMS features were corrected for batch effects
using the ComBat algorithm.42 Features were excluded from the
analysis if they were detected in less than 50% of samples or if the
quality control samples after batch correction were greater than
0.3, resulting in 4,360 metabolites for analysis.

Statistical analysis
Differences in participant characteristics between cases and
controls were tested using t tests for continuous variables and
JHEP Reports 2022
chi-squared tests for categorical variables. Differences in PFAS
levels by education status were tested using linear regression,
adjusting for case-control status. Associations between PFAS
levels and HCC in the matched case-control set were assessed
using conditional logistic regression. Adjusted odds ratios (ORs)
and 95% CIs were calculated for each case group compared to the
reference group. To examine the potential non-linear association
between PFAS exposure and risk of HCC, we performed a pre-
liminary analysis modeling PFAS concentrations using smoothing
splines within the conditional logistic regression framework.
Based upon visual inspection of these models, we observed a
potentially non-linear trend between PFOS and risk of HCC.
These associations were driven by high levels of PFOS, so for the
main analysis, we categorized all PFAS as high vs. low concen-
tration based on the 90th percentile of exposure in NHANES
1999-2000, the earliest date that PFAS monitoring was per-
formed in NHANES.43 In our data, this corresponded to the 85th

percentile for PFOS, and so to maintain consistency, the 85th

percentile was used to define high vs. low exposure for all other
PFAS.

Metabolome-wide association study
To examine the metabolic pathways linking PFAS exposure and
risk of HCC, we performed 2 metabolome-wide association
(MWAS) studies. For the first analysis, we performed an MWAS
examining the associations between PFAS levels and individual
metabolites using linear regression. This analysis was performed
independently for each PFAS which was found to be significantly
associated with risk of HCC. In these models, metabolites were
the dependent variable and PFAS concentrations were the in-
dependent variable. In order to account for oversampling due to
the matching case-control design, models were adjusted for the
matching variables, including case/control status, age at blood
draw, sex, race/ethnicity, and study area. For the second analysis,
we performed an MWAS examining the associations between
individual metabolites and HCC status using conditional logistic
regression. Prior to analysis, all metabolites were scaled to have a
mean of zero and a standard deviation of one.

Metabolite annotation and pathway enrichment analysis
Based on the results from the MWAS analysis, we performed a
pathway enrichment analysis using both the mummichog algo-
rithm44 and the gene set enrichment algorithm,45 implemented
in version 2 of the peaks to paths module from MetaboAnalyst
version 5.0.46 The enrichment analysis was performed inde-
pendently using the results from both the PFAS to metabolite
MWAS as well as the metabolite to HCC MWAS. For this analysis,
all LC-MS features from both the positive and negative ion modes
were included. The mass tolerance was set to 5.0 ppm, the p
value for significant features was set to 0.05, and we included
retention time in the analysis to improve metabolite annotation.
Pathways which were independently associated with both PFAS
exposure and risk of HCC were selected for additional analysis.
Metabolites from overlapping significant pathways were identi-
fied using a meet in the middle approach.47

Sensitivity analysis
In order to examine the impact of different modeling assump-
tions on our main findings, we performed the following sensi-
tivity analyses. First, in order to examine the effect of modeling
PFAS exposure as a categorical variable, we performed a sup-
plemental analysis looking at the association between PFAS
3vol. 4 j 100550



Table 2. Geometric mean or 75th percentile of serum concentrations of
PFAS (in lg/L) in HCC cases and controls.

PFAS Controls (n = 50) Cases (n = 50)

PFOS, GM (GSD) 29.2 (1.95) 29.2 (2.37)
PFOA, GM (GSD) 4.78 (1.89) 4.21 (2.13)
PFHxS, GM (GSD) 2.07 (2.25) 1.84 (3.11)
PFNA, GM (GSD) 0.827 (1.85) 0.844 (2.05)
PFDA, GM (GSD) 0.278 (2.84) 0.27 (2.97)
PFUnDA, 75th percentile * 0.89

GM, geometric mean; GSD, geometric standard deviation; HCC, hepatocellular car-
cinoma; PFAS, perfluoroalkyl substances; PFDA, perfluorodecanoate; PFHxS, per-
fluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate; PFOS,
perfluorooctane sulfonate; PFUnDA, perfluoroundecanoic acid.
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exposure and risk of HCC using conditional logistic regression,
and modeling PFAS exposure as a continuous variable scaled to a
mean of zero and a standard deviation of one. Second, since
conditional logistic regression is prone to bias in small sample
sizes,48 we reran our main analysis using ordinary logistic
regression, and controlling for the matching variables (age, sex,
race/ethnicity, and study area). Third, due to uncertainties about
whether obesity and diabetes mellitus may be on the causal
pathway linking PFAS exposure with risk of HCC, we performed a
supplemental analysis by rerunning the main analysis with
either baseline BMI or baseline diabetes mellitus status as
covariates.
* Geometric mean not calculated for PFAS with >40% of samples below limit of
detection.
Results
Characteristics of the study population
Participant characteristics of HCC cases and controls can be
found in Table 1. Because of the matching design, age at blood
collection, sex, race/ethnicity, and study area were not different
between cases and controls. Compared to controls, HCC cases
were more likely to be overweight or obese (p = 0.003) and had
higher prevalence of diabetes mellitus (p = 0.01). Smoking status
and alcohol intake were similar in cases and controls.
Table 1. Characteristics of HCC cases and controls from the MEC.

HCC cases
(n = 50)

Controls
(n = 50)

p value

Age at blood collection, mean ± SD 69.7 ± 7.37 69.2 ± 7.42 0.76
Years between blood collection
and diagnosis, Median (range)

7.2 (0.9, 16.4) — —

Sex —

Male 62% 62%
Female 38% 38%

Race/ethnicity —

White 18% 18%
African American 6% 6%
Japanese American 38% 38%
Latino 24% 24%
Native Hawaiian 14% 14%

Study area —

California 36% 36%
Hawaii 64% 64%

Education 0.87
Some high school 18% 16%
Graduated high school 20% 24%
Vocational/some college 32% 36%
Graduated college/graduate/

professional school
30% 24%

BMI (kg/m2) 0.003
<25 18% 38%
25-30 36% 46%
>−30 46% 16%

Alcohol intake (g/day) 0.58
0 48% 58%
<12 30% 26%
>−12 22% 16%

Smoking status 0.35
Never 26.0% 38.0%
Former 62.0% 48.0%
Current 12.0% 14.0%

Diabetes mellitus 0.001
No 62% 92%
Yes 38% 8%

Cases and controls matched on age, sex, race/ethnicity, and study area. Differences in
participant characteristics between cases and controls were tested using t tests for
continuous variables and chi-squared tests for categorical variables.
HCC, hepatocellular carcinoma; MEC, Multiethnic Cohort.
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Geometric mean and selected percentiles of serum concen-
trations of legacy PFAS (in lg/L) in HCC cases and controls can be
found in Table 2. PFOS, PFHxS, PFOS, PFDA, PFNA were detected
in all participants. PFUnDA was detected in 29% of all partici-
pants. Plasma levels of all PFAS were similar to those reported in
NHANES survey years 1999–2000 and 2003–2004.43 PFAS
ranged from uncorrelated to highly correlated, with Spearman
correlation coefficients ranging from −0.03 to 0.87 (Fig. S1).
There were no significant differences in PFAS levels by education
status, an indicator of socioeconomic status (p values ranging
from 0.26–0.99).
Plasma PFAS were associated with risk of HCC
We observed a positive association between pre-diagnostic
plasma PFAS concentrations and risk of HCC (Table 3). The
strongest association was between PFOS and HCC. Plasma PFOS
concentrations >54.9 lg/L were associated with 4.5 times higher
odds of HCC (95% CI 1.20–16.00; p = 0.02). This threshold cor-
responded to the 90th percentile of exposure in NHANES 1999-
2000.43 PFUnDA levels greater than 1.22 lg/L were associated
with 2.2 times higher odds of HCC, although this association did
not reach statistical significance (95% CI 0.92–5.50; p = 0.07).
The plasma metabolome was linked to PFAS exposure and to
risk of HCC
Based on the results of the exposure outcome analysis, we
examined the associations between high levels of PFOS and the
plasma metabolome using an MWAS. Of the 4,361 metabolomics
features included in the MWAS, 433 (9%) were associated with
high levels of PFOS exposure at a p <0.05, and 6 metabolites were
associated with PFOS exposure at a false discovery rate-corrected
p <0.2. Functional pathway analysis of the MWAS results
Table 3. Odds ratios and 95% CIs evaluating pre-diagnostic serum con-
centrations of PFAS and risk of HCC in the MEC.

PFAS lg/L Odds ratio (95% CI) p value

PFOS >54.9 4.50 (1.20, 16.00) 0.02
PFHxS >4.3 1.10 (0.56, 2.30) 0.72
PFOA >8.6 1.20 (0.52, 2.80) 0.67
PFDA >0.8 0.80 (0.31, 2.00) 0.64
PFNA >1.5 1.20 (0.49, 3.20) 0.64
PFUdA >1.2 2.20 (0.92, 5.50) 0.07

Effect estimates were calculated using conditional logistic regression to account for
the matched case-control study design. HCC, hepatocellular carcinoma; MEC,
Multiethnic Cohort; PFAS, perfluoroalkyl substances; PFDA, perfluorodecanoate;
PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, per-
fluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, perfluoroundecanoic
acid.
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Amino acid metabolism

Amino acid metabolism (Aromatic amino acids)

Amino acid metabolism (Branched-chain)

Carbohydrate metabolism

Glycan biosynthesis and metabolism

Lipid metabolism

Metabolism of cofactors and vitamins

Nucleotide metabolism

Steroid hormone biosynthesis and metabolism
0 1 2 3 4 0 1 2 3 4

Urea cycle/amino group met.
Methionine and cysteine met.

Lysine met.
Glycine, serine, alanine and threonine met.

Glutamate met.
Aspartate and asparagine met.

Arginine and proline met.
Alanine and aspartate met.

Tyrosine met.
Tryptophan met.

Valine, leucine and isoleucine degradation

Hexose phosphorylation
Galactose met.
Butanoate met.

Aminosugars met.

Sialic acid met.
N-Glycan degradation

Keratan sulfate degradation
Heparan sulfate degradation

Chondroitin sulfate degradation

Bile acid biosynthesis

Vitamin B3 (nicotinate and nicotinamide) met.
Biopterin met.

Pyrimidine met.

Androgen and estrogen biosynthesis and met.

-Log p
Sig. metabolites 10 20 30

Sig Sig. both PFOS and HCC Sig. PFOS only or HCC only

Fig. 1. Metabolic pathways associated with exposure to high levels of PFOS (on left) or HCC (on right) in 50 cases and 50 controls from the MEC cohort.
Metabolic pathways are grouped into super pathways as indicated on the right of the plot. Metabolic pathway enrichment was performed using MetaboAnalyst
version 5.0. Point size is proportional to the number of significant metabolites associated with each pathway. HCC, hepatocellular carcinoma; MEC, multiethnic
cohort; PFOS, perfluorooctane sulfonic acid.

PFOS HCC

0.0 0.1 0.2 0.3 0 1 2 3 4

7alpha-hydroxy-3-oxo-4-cholestenoate
Alpha-ketoisovaleric acid

Butyric acid
D-Glucose

Log OR (95% CI)β (95% CI)

Fig. 2. Effect estimates for metabolites associated with high levels of PFOS
and risk of HCC in 50 HCC cases and 50 controls from the MEC. For PFOS
exposure, effect estimates were calculated using linear regression adjusting for
age, sex, race/ethnicity, and study site, and indicate the mean difference and
95% CI in the log2-transformed metabolite intensity between high (>−85

th

percentile) vs. low levels of PFOS exposure. Effect estimates for HCC were
calculated using conditional logistic regression, and indicate the OR and 95% CI
for the risk of HCC per doubling of pre-diagnostic metabolite levels. HCC, he-
patocellular carcinoma; MEC, multiethnic cohort; OR, odds ratio; PFOS, per-
fluorooctane sulfonic acid.
identified significant enrichment of 18 metabolic pathways
(Fig. 1). These pathways were primarily related to the meta-
bolism of amino acids, the metabolism of carbohydrates, and
glycan biosynthesis and metabolism (Fig. 1).

For HCC, 499 (11%) of LC-MS features were associated with
HCC at a p <0.05, and 109 LC-MS features were associated with
HCC at a false discovery rate-corrected p <0.2. Functional pathway
analysis of the MWAS results identified significant enrichment of
13 metabolic pathways (Fig. 1). These pathways were primarily
related to carbohydrate metabolism, glycan biosynthesis and
metabolism, and aromatic amino acid metabolism (Fig. 1).

Five metabolic pathways were enriched for both PFOS and
HCC. These included tryptophan metabolism, keratin sulfate,
heparin sulfate, chondroitin sulfate, and N-glycan degradation.
Additionally, 4 metabolites were positively associated with both
PFOS exposure and risk of HCC (Fig. 2). These included glucose,
butyric acid (a short-chain fatty acid), a-ketoisovaleric acid (a
branched-chain a-keto acid), and 7a-hydroxy-3-oxo-4-
cholestenoate (a bile acid).

Sensitivity analysis
When modeling PFAS exposure as continuous, we observed a
similar positive association between PFOS and risk of HCC,
although this association did not reach statistical significance
(OR 1.2; 95% CI 0.91–1.60; p = 0.18; Table S1). When analyzing
our results using ordinary logistic regression and controlling for
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matching variables, we observed a similar positive association
between high levels of PFOS and HCC (OR 4.40; 95% CI
1.20–20.00; p = 0.03; Table S2). When rerunning the main
analysis and accounting for baseline BMI, we observed a similar
positive association between PFOS and risk of HCC, although this
association did not reach statistical significance (OR 2.90; 95% CI
0.78–10.00; p = 0.11; Table S3). When rerunning the main
5vol. 4 j 100550



Research article
analysis and accounting for baseline diabetes mellitus, we
observed a similar positive association between PFOS and risk of
HCC (OR 5.70; 95% CI 1.10–30.00; p = 0.04; Table S4).

Discussion
To our knowledge, this is the first prospective study to examine
the association between PFAS exposure and risk of HCC. We
found that exposure to high levels of PFOS was associated with
increased risk of non-viral HCC. Using untargeted metabolomics,
we identified several metabolites positively associated with PFOS
exposure and risk of HCC. Our findings suggest that PFAS expo-
sure may increase risk of HCC via alterations in glucose meta-
bolism, bile acid metabolism, and metabolism of branched-chain
amino acids.

Research examining the associations between PFAS exposure
and liver cancer is limited. One existing study has examined the
prospective association between PFOA and PFOS concentrations
with incident cancer, including liver cancer, in the general
Danish population between 1993-2006.49 Although this study
reported null associations between PFAS levels and risk of liver
cancer, a major limitation of this study was that liver cancer was
not split by cancer type, and etiology of liver cancer was not
available. Between 2004-2006, HCC only accounted for 43% of
liver cancer diagnoses in Denmark50; it was not until after 2007
that the incidence of HCC dramatically increased, which paral-
leled increases in obesity, diabetes, and NAFLD.51 Therefore,
non-viral HCC cases were likely a small portion of the total liver
cancer cases, which may explain the null findings reported in
this study.

Studies examining associations of PFAS exposure with risk of
other cancers, such as kidney cancer, in the general population
have found similar associations to those reported here. For
example, in the only existing nested case-control study exam-
ining the prospective association between PFAS levels and risk of
renal cell carcinoma, PFOS levels >50 lg/L were associated with a
more than 2-fold increased risk of developing renal cell carci-
noma (OR 2.51; 95% CI 1.28–4.92), and similar associations were
reported for PFOA and PFHxS.52 These findings are notable due to
the similarity in PFOS concentrations associated with risk of HCC
in our study. Other epidemiological studies examining associa-
tions of PFAS and cancers have occurred in highly exposed co-
horts such as the C8 project,53 which can limit the
generalizability of findings to different populations. However,
participants in the MEC had PFAS exposure levels similar to the
general population. MEC participants were recruited in the early
2000s, and the geometric mean of PFOS in our study (29.2 lg/L)
is close to the geometric mean for PFOS in the 1999-2000
NHANES survey (30.4 lg/L, 95% CI 27.1–33.9).

PFAS exposure has been linked to insulin dysregulation and
type 2 diabetes,54 which is an emerging risk factor for HCC.38,55

In the current study, using untargeted metabolomics we found
that PFAS exposure was associated with higher fasting glucose
levels, and that higher glucose levels were associated with
increased risk of HCC. Increased fasting glucose is a hallmark of
type 2 diabetes, suggesting that the association between PFAS
exposure and risk of HCC may be partially due to effects of PFAS
on glucose and/or insulin dysregulation.

In addition to glucose, we identified 3 additional metabolites
linking PFAS exposure and HCC. The compound most strongly
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associated with both PFOS exposure and with risk of HCC was a-
ketoisovaleric acid, a branched-chain ketoacid and a byproduct
in the catabolism of branched-chain amino acids.56 Recent evi-
dence in rats suggests that branched-chain ketoacids are asso-
ciated with alterations in insulin secretion, hepatic lipid
metabolism, and hepatic steatosis.57 Previous studies have also
shown that alterations in branched-chain amino acid meta-
bolism may link early life PFAS exposure with risk of liver injury
in children.58 The second compound which was associated with
PFOS and HCC was 7a-hydroxy-3-oxo-4-cholestenoate, a bile
acid synthesized in the liver. Bile acids are steroid acids with
important roles in signaling energy availability and nutrient
status.59 As such, they play important roles in metabolic dis-
eases including obesity, diabetes, and non-alcoholic steatohe-
patitis.59 Recently, increased levels of primary bile acids have
been linked to risk of HCC in humans.60 Animal and human
studies also suggests that PFAS impact bile acid metabolism,
increasing risk of liver injury.34,61 The third compound associ-
ated with both PFOS and HCC was butyric acid, a short-chain
fatty acid which is primarily produced via intestinal fermenta-
tion. Short-chain fatty acids play an important role in energy
sensing and metabolic regulation in a variety of tissues,62 and
have been implicated in NAFLD.63 While previous research has
identified the importance of branched-chain ketoacids, bile
acids, and short-chain fatty acids in the etiology of metabolic
disorders and liver disease, our results provide the first human
evidence that PFAS-associated alterations in these compounds
may increase the risk of HCC.

This study has several strengths. The identification of HCC
was based on linkages with SEER-based cancer registries, which
are over 95% complete.64 We included pre-diagnostic levels of
PFAS and metabolomics, which decreases the possibility of
reverse causality explaining the observed association between
PFAS exposure and HCC. Additionally, the use of fasting plasma
samples for determination of the untargeted metabolome
removes the potential for confounding due to recent dietary
intake, especially for metabolites related to glucose or lipid
metabolism. The nested case-control study design allowed us to
efficiently examine associations of PFAS exposure with HCC. We
were able to individually match cases and controls on age, sex,
race/ethnicity, and geographical region, removing potential
confounding due to these known risk factors for HCC.37 Despite
these strengths, there are some limitations worth noting. First,
the sample size of 50 cases and 50 controls is a potential limi-
tation. Because of the limited sample size, we were not able to
examine effect modification by known risk factors such as race,
sex, BMI, or diabetes status. Second, PFAS exposure can change
across time, and we were only able to measure PFAS at a single
timepoint. However, the long biological half-life of PFAS, and
especially PFOS, means that risk of exposure misclassification is
low.

This is the first prospective study to demonstrate that PFAS
exposure was associated with risk of HCC. Findings from this
proof-of-concept study suggest that PFAS exposure may play an
important role in the pathology of HCC. These associations may
be driven by alterations in branched-chain keto acids and bile
acids. These findings may provide a new insight into the mech-
anisms of environmental-associated liver disease; however,
larger studies are warranted to confirm these findings.
6vol. 4 j 100550
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