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Summary The development of cervical carcinoma is strongly associated with specific types of human
papillomaviruses (HPVs). A role for cellular immunity in cervical disease is supported by the increased
occurrence of HPV-associated lesions in immunosuppressed individuals. Upon viral infection or malignant
transformation, ensuing alterations in gene expression result in the generation of novel sets of peptides which
can form complexes with specific HLA class I heavy chains and B,-microglobulin. These are then expressed at
the cell surface as potential targets for specific T cells. In this study of 100 carcinomas HLA-A and -B class I
expression by the tumour cells was down-regulated at one or more alleles in at least 73% of cervical
carcinomas. Interference with the transporter associated with antigen presentation (TAP), which translocates
cytosolic peptides from endogenously synthesised proteins (e.g. viral) into the lumen of the endoplasmic
reticulum was found in 38% of the HLA class I down-regulated tumours. Loss of expression for common
HLA class I alleles ranged from 36% to 71%, and such changes might be expected to influence specific
immunogenic peptide presentation and consequent immune recognition. These results underline the impor-
tance of single as well as multiple allelic loss in cervical neoplasia and have important implications for
attempts to intervene immunologically in cervical cancer.
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The development of carcinoma of the cervix is strongly
associated with certain high-risk human papillomaviruses
(Niedobitek and Herbst, 1991; Munoz et al., 1992), and the
E6 and E7 oncogenes that are frequently retained by the
tumour cells are believed to play a necessary role in the
tumorigenesis (Smotkin and Wettstein, 1987; DiMaio, 1991).
A role for the immune response in cervical neoplasia is
supported by the increased occurrence of HPV-associated
cervical lesions in immunosuppressed individuals (Laga et al.,
1992; Schneider and Koutsky, 1992). The immunological
recognition of viral antigens by T cells is restricted by the
HLA class I polymorphic products of the major histocom-
patibility complex (MHC). Following translation, class I
heavy chain and B,-microglobulin molecules are translocated
to the lumen of the endoplasmic reticulum (ER) and bind
allele-compatible peptides (usually nonamers) (Bjorkman ez
al., 1987; Monaco, 1992). These peptides are generated from
endogenously synthesised proteins (e.g. virus) in the cyto-
plasm, possibly by the proteasome (Goldberg and Rock,
1992). The peptides are transported to the lumen of the ER
via a specific ABC-type transporter associated with antigen
processing (TAP), which is composed of TAP-1 and -2
subunits encoded by genes in the MHC (Trowsdale et al.,
1990; Kelly et al., 1992). When peptides bind to specific HLA
heavy chains there are conformational changes which are
probably stabilised by the binding of B,-microglobulin
molecules (Townsend et al., 1990). In the absence of appro-
priate peptide, heavy chain may associate with B,-micro-
globulin, but the complex is not stable and is unlikely to be
expressed at the surface (Townsend et al., 1989; Ljunggren et
al., 1990; Baas et al., 1992). It is the heavy chain—8,-
microglobulin—peptide complexes which are the potential
targets for immune surveillance mechanisms mediated by
CD8"* cytolytic T cells.
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Any virus/disease-related alterations in MHC expression
would critically influence immune surveillance of viral infec-
tion and have important consequences for the elimination of
infected cells. The loss or down-regulation of HLA class I
expression in different types of cancers including cervical
carcinomas is well documented (Moller and Hammerling,
1992; Garrido et al., 1993; Duggan-Keen et al., 1994). Most
studies have been performed by immunohistochemistry using
monoclonal antibodies (MAbs) which recognise either all
HLA-A, -B, -C molecules or locus-specific reagents, both of
which will fail to detect down-regulation of any individual
allelic expression. It is possible that the down-regulation of
HLA class I may be the result of immunoselective events,
advantageous to the evolution of an invasive cancer. If this
were true then it follows that those HLA allelic products
capable of presenting target peptides, for example HPV 16
E6/E7, would be preferentially lost. This phenotype could be
produced as a result of interference at any level in the
regulation of expression of HLA (Stern and Duggan-Keen,
1994). Thus, the tumours with an HLA class 1 down-
regulated phenotype could be very heterogeneous in their
defects. TAP function appears to be one important factor in
the observed down-regulation of HLA class I expression in
cervical cancer, but it is not known what proportion of the
observed losses may result from this mechanism (Cromme et
al., 1994a,b).

The analysis of expression of individual HLA class I allelic
products by tumour cells using appropriate MAbs would
provide a complete tumour MHC phenotype. However, this
approach is limited by the availability of allele-specific
antibodies. In this study we analysed the extent of HLA class
I down-regulation in cervical cancer with a knowledge of
patient HLA class I tissue type and an immunohistochemical
analysis of cervical biopsies (100 tumours, seven normals)
using a novel set of allele- or locus-specific HLA class I
MAbs. It was possible to fully document expression in 62%
and 89% of HLA-A and HLA-B alleles respectively in these
specimens. The contribution of the loss of peptide trans-
porter (TAP-1) expression in relation to individual allelic loss
was investigated.
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Materials and methods

Patients

One hundred cervical cancers (94 squamous cell carcinomas,
five adenosquamous/adenocarcinoma and one anaplastic
tumour) were obtained consecutively from one operating list
from women attending the Christie Hospital, Manchester,
UK. With informed consent, blood was collected pre-
operatively and biopsies were taken at the time of surgical
staging before treatment with radiotherapy. In addition,
seven specimens of normal cervix were taken from women
undergoing elective hysterectomy for benign conditions and
in whom only previous normal cervical smears were
documented. The mean age for the group of 100 patients was
52.8 years with a range of 25-85 years. The distribution of
stage determined at the time of radiotherapy was: stage I, 22;
stage II, 40; stage III, 35; stage IV, 3. The incidence of HPV
detection in these tumours was 74.1% HPV 16 (including
three cases with HPV 16 and 18), 23.5% other HPV types
(including 11, 1.2%; 18, 11.6%,; 31, 1.2%; 33, 2.3% and X,
7.0%) and 2.4% HPV negative, determined as previously
described (Van de Brule et al., 1990).

Immunohistochemistry

Allelic expression was determined using the patient HLA
class I tissue type (Glew et al., 1993a) and immunohis-
tochemistry performed on 7 pm sections from snap-frozen
tumour biopsies with a set of HLA-specific MAbs (Connor
and Stern, 1990). The tumour tissue was identified using a
MAb, CK-1 (LP34 clone, Dako), recognising epithelial
cytokeratins 6 and 18. In consecutive sections the following
primary MAbs were used: W6/32 (monomorphic HLA class
I), HC10 (HLA-B and -C locus), BM63 (B,-microglobulin),
HB82 (HLA-A2), GAP-A3 (HLA-A3), BB7.1 (HLA-B7),
116/5/28 (HLA-Bw4) and 126/30 (HLA-Bw6). Additional
antigen-specific IgM monoclonal antibodies were provided by
One Lambda (Canoga Park, CA, USA) and validated on at
least six different tissue typed sections. In all sections normal
stromal tissue was present and staining for class I was
confirmed by using MAb W6/32. Only MAbs which stained
for the antigen of their specificity and that did not label
sections with other tissue types were used in this study.
MAbs H41l (HLA-A9), H213 (HLA-A26), H173 (HLA-
A30,31), H135A (HLA-A32), 404HA-1 (HLA-B8), H66
(HLA-B12), 211BHA-1 (HLA-B13) and H47 (HLA-B18)
were used in a three-step technique with avidin—biotin

complex/horseradish peroxidase (Dako). A polyclonal rabbit
antiserum against the TAP-1 protein was used as previously
described (Cromme et al., 1994a).

Slides were read by two independent observers and scored
‘+ 4+ if all tumour cells stained with similar intensity to the
surrounding stroma, ‘+’ if all tumour cells stained but the
intensity was clearly weak in comparison with the stroma,
‘t’ if there were clear negatively staining areas within the
tumour usually constituting between 25% and 75% of the
total area and ‘—’ where none of the tumour cells stained.
For the purpose of analysis ‘+ +’ and ‘+’ were treated as
normal expression and ‘*’ and ‘-’ as down-regulated.

Where MAb W6/32 (pan-HLA class I) showed loss of
staining, all alleles were scored as down-regulated (—) unless
discrepancies with allele-specific MAbs were found (see
Results). When W6/32 scored positive, individual alleles were
scored as unknown (?) unless specific MAbs could show that
the tumour cells expressed the allele. HLA-B locus expression
was further defined by the use of the HC10 MAb (HLA-B,
-C locus specific) and HLA-Bw4- and -Bwé6-specific MAbs,
the last two reagents defining exclusive groups of HLA-B
antigens (Bodmer et al., 1991). The HLA-A2S, -A32 cross-
sections of the Bw4é MAb were taken into account when
interpreting the data. In one case in this series such a cross-
reaction was evident by immunohistochemistry but the
phenotype was confirmed using the HLA-A32 MAb. All
inferred expression using group- or locus-specific MAbs was
confirmed with allele-specific MADbs if they were available so
that each specimen was examined with 7-11 MAbs on con-
secutive sections.

Results

In the seven normal cervical biopsies, expression was normal
in each of the 20/28 HLA alleles whose expression could be
determined. The staining was associated with the deep (basal)
layers, the area from which premalignant lesions originate
(Stanley, 1994), with variation in intensity of staining in the
middle and upper two-thirds, as described previously (Glew
et al., 1993b).

By contrast, complete or heterogeneous loss of HLA ex-
pression was found at one or more alleles in 73% of tumour
specimens. This constituted 30%, 38%, 10% and 22%
observed loss at one, two, three or four alleles of HLA-A
and -B (Table I). This is a minimum estimate since 20/27
other cases had unknown HLA-A or -B allelic expression.

Table I HLA class I genotype and phenotype of cervical tumours

Case No HPV  W6/32 HCI0O TAP! Down-reg. Known HLA A locus HLA B locus HLAC
1 NA ++ ++ ++ 0 1 23 ? 032 7?7 4 + 13 ? 4 6
2 16 ++ ++ ++ 0 1 1 7032+ 8§ 7 35 7 0
3 NA ++ ++ + 0 1 2+ 32 ? 14 ? 35 ? 8§ 0
4 16 ++ + ++ 0 1 1 ? 2 + 50 ? 55 ? 3 6
5 16 ++ ++ ++ 0 1 26 + 33 ? 14 ? 45 ? 6 8
6 16 ++ ++ ++ 0 2 1 ?7 33 ? 7 + 8§ + 7 0
7 16 ++ ++ ++ 0 2 1 ? 11 ? 7 + 8 + 7 0
8 16 ++ + + 0 2 1 ? 11 ? 7 + 8 + 7 0
9 X ++ ++ ++ 0 2 1 ? 3 0+ 8 + 14 7 8
10 16 ++ ++ ++ 0 2 1 ? 2+ 7 + 35 ? 7 0
11 16 ++ ++ ++ 0 2 2 + 28 ? 7 + 60 ? 3 7
12 16 ++ ++ ++ 0 2 1 ? 2+ 5 ? 4 + 5 0

13 18 ++ NA ++ 0 2 1 ? 0o ? 7 + 8 + 7 0
14 16 ++ ++ ++ 0 2 3+ 26 ? 8 + 35 ? 4 7
15 16 ++ + ++ 0 2 29 ? 33 ? 4 + 60 + 3 0
16 16/18 ++ ++ ++ 0 3 1 ? 3 0+ 7 + 8 + 7 0
17 16 ++ ++ ++ 0 3 3 0+ 1 ? 5 + 37 + 3 6
18 16 ++ - + 0 3 3 4+ 31 + 7 + 60 ? 3 7
19 18 ++ ++ ++ 0 3 11 7032 + 62 + 0o + 3 4
20 16 ++ ++ ++ 0 3 24 + 32 + 7 + 39 ? 7 O
21 16 ++ ++ ++ 0 4 9 + 0 + 8 + 13 + 7 0
22 16 ++ ++ ++ 0 4 2+ 0 + 57 + 60 + 3 6
23 16 ++ + ++ 0 4 2+ 3 0+ 7 + 13 + 7 0
24 - ++ ++ ++ 0 4 2+ 31 + 5 + 5 + 3 71
25 16 ++ ++ ++ 0 4 2+ 3+ 7 + St + 7 O
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Table I - continued

Case No HPV  W6/32 HCI0 TAP! Down-reg. Known HLA A locus HLA B locus HLAC
26 18 ++ ++ ++ 0 4 2+ 0 + 4 + 0o + 4 5
27 18 ++ ++ ++ 0 4 24+ 0 + 7 + o + 7 O
28 11 ++ ++ ++ 1 2 1 ? 11 ? 7 - 62 + 4 7
29 16 ++ ++ ++ 1 2 11 ?2 74 7 3 - 51 + 4 0
30 16 ++ ++ ++ 1 2 3 - 24 + 14 7 35 7 4 8
31 16 ++ ++ + 1 2 11 ? 0o ? 3 - 51 + 1 4
32 16 ++ + ++ 1 2 1 ? 2 - 8 + 18 ? 2 7
33 16 ++ ++ ++ 1 2 1 ? 9 ?2 37 + 61 - 2 6
34 16 ++ ++ ++ 1 2 2 4+ 24 - 14 7 55 ? 3 8
35 16 ++ ++ ++ 1 3 1 ? 2+ 5 + 8 - 7 0
36 18 ++ ++ ++ 1 3 1 724+ 8 + 57 - 6 17
37 16 ++ ++ ++ 1 3 1 70032 - 5 + 8 + 7 0
38 16 ++ ++ ++ 1 3 1 ? 2 - 7 + 4 + 5 17
39 NA ++ ++ ++ 1 3 2 + 28 ? 7 - 60 + 3 7
40 16 ++ ++ ++ 1 3 26 - 29 ? 41 + 51 + 7 0
41 16 ++ ++ ++ 1 3 1 ? 3 0+ 7 + 8 - 7 0
42 16 ++ ++ + 1 3 1 ? 3 0+ 7 - 8 + 7 0
43 - ++ ++ ++ 1 3 1 ? 3 0+ 7 - 8 + 7 0
44 16 ++ ++ ++ 1 3 3+ 28 7 7 - 4 + 71 0
45 X ++ ++ ++ 1 4 2 + 26 + 38 + 3% - 7 0
46 33 ++ ++ + 1 4 2 4+ 32 + 4 - 14 + 5 8
47 16 ++ ++ ++ 1 4 2+ 3 - 4 + o + S5 7
48 16 ++ ++ ++ 1 4 2+ 31 + 7 - 60 + 3 7
49 X ++ + ++ 1 4 2 - 3+ 4 + 0o + S5 0
50 X ++ - - 2 2 1 729 ? 17 - 4 - 7 0
51 16/18 ++ ++ ++ 2 2 1 ? 0o ? 8 - o - 7 0
52 16 + - + 2 2 11 ? 29 ? 5 4 - 5 7
53 16 ++ ++ ++ 2 2 23 0?29 ? 5 - 4 - 3 5
54 16 ++ - ++ 2 2 1 729 ? 8§ - 4 - 7 0
55 18 ++ - ++ 2 2 1 ? 0o ? 17 - 49 - 6 0
56 16 ++ ++ ++ 2 2 25 ? 28 ? 3% - 70 - 7 O
57 16 ++ + ++ 2 2 1 ?2 029 ? 27 - 4 - 1 0
58 16 ++ ++ + 2 2 1 ?7 29 ? 8 - 4 - 7 0
59 16 ++ + * 2 3 1 ? 9 - 5 - 7 + 1 7
60 16 + - - 2 3 1 ? 3 - 7 - 8 + 7 0
61 16 + - + 2 3 11 ?2 30 + 18 - 4 - 5 0
62 16 ++ ++ ++ 2 3 2 - 25 ? 7 + St - 7 0
63 16 ++ ++ ++ 2 3 1 72 + 8 - 56 - 1 7
64 16 ++ + ++ 2 3 1 ? 2 - 8 - 4 + 5 7
65 16 ++ + + 2 3 11 724 - 7 - 62 + 3 1
66 18 ++ ++ ++ 2 3 1 ? 3 - 7 - 8 + 7 0
67 16 + + + 2 3 2+ 32 7?7 4 - o - S 0
68 16 ++ - ++ 2 3 24 + 28 ? 4 - S8 - 5 1
69 16/18 ++ - + 2 3 24 + 29 7 7 - 3 - 4 1
70 18 ++ ++ ++ 2 4 3 - 24 + 4 - 64 + 3 5
71 X ++ + ++ 2 4 3 0+ 31 + 7 - 4 - 5 1
72 16 ++ ++ ++ 2 4 2+ 3 - 5 + 7 - 7 0
73 18 ++ - t+ 2 4 2+ 0 + 4 - 60 - 3 7
74 16 + + + 2 4 2 - 3 + 13 - 18 + 6 17
75 16 ++ ++ ++ 2 4 2 - 3 + 4 - 51 + 1 0
76 16 + + ++ 2 4 23+ 32 + 4 - 0o - 4 5
77 16 ++ ++ + 2 4 24+ 0o + 7 - 4 - 5 17
78 33 + - - 3 3 1 ? 3 - 7 - 8§ - 7 0
79 16 + - ++ 3 3 26 - 28 ? 4 - 57 - 1 5
80 X ++ + ++ 3 3 17 2 - 8 - 4 - 5 7
81 16 ++ ++ ++ 3 4 2 - 0 - 4 + 60 - 3 5
82 16 - - - 3 4 2 - 3 + 51 - 62 - 3 0
83 31 ++ ++ + 3 4 2 - 26 + 4 - 0o - S5 6
84 18 ++ ++ ++ 3 4 2 - 32 - 7 + 18 - 7 0
85 16 + - + 4 4 ) 3 - 7 - 14 - 7 8
86 X t+ - + 4 4 2 - 3 - 18 - 60 - 3 7
87 33 + - ++ 4 4 2 - 0 - 4 - o - S5 7
88 16 - - - 4 4 1 - 26 - 27 - 37 - 1 6
89 16 - - - 4 4 1 - 3 - 8 - o - 7 0
90 18 - - - 4 4 1 - 24 - 8§ - 62 - 3 7
91 16 + - - 4 4 2 - 28 - 7 - 14 - 7 8
92 16 + - + 4 4 3 - 11 - 7 - 14 - 7 8
93 16 - - - 4 4 2 - 24 - 8 - 4 - 5 1
94 16 + + + 4 4 | 2 - 4 - o - S5 0
95 33 - - - 4 4 3 - 24 - 7 - 217 - 2 1
96 16 + + + 4 4 2 - 3 - 7 - 4 - 5 1
97 16 + + + 4 4 1 - 29 - 7 - 4 - 71 O
98 16 * + + 4 4 2 - 3 - 7 - o - 7 0
99 16 - - + 4 4 nm - 23 - 4 - 60 - 3 4

100 18 ++ - ++ 4 4 3 - 0o - 7 - 62 - 3 1

The TAP-1, W6/32 and HC10 immunohistochemical labelling patterns of 100 cases of cervical carcinoma are shown. The HLA class I
tissue type of the patients is given, with the Down-reg. and Known columns defining the number of HLA-A and -B alleles, (total = 4) for
which expression is altered (down-regulated) and the number for which information was available (known) respectively; the latter is limited
because monoclonal antibodies recognising all individual alleles present were not available. Tumour expression of each allele is indicated by
‘+’ for normal, ‘- for down-regulated and ‘?’ for undetermined.
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Loss of expression at each locus was not evenly distributed;
8, 30 and 35 tumours show down-regulation of HLA-A,
HLA-B or both HLA-A and -B alleles respectively. These
differences may in part reflect better targeting of the HLA-B
locus with the MAbs available or reflect preferential HLA-B
locus loss. It is clear that definitive down-regulation of a
single antigen is relatively uncommon; most tumours show
loss of more than one antigen (Figure 1).

In nine specimens loss defined by the locus-specific
reagents was not confirmed by the allele-specific MAbs. The
specific alleles expressed by specimens 76 (HLA-A23, -A32),
82 (HLA-A3), 60 (HLA-B8) and 74 (HLA-A30, -B18) occur-
red even though there was altered W6/32 reactivity. With
HCI10 indicating down-regulation, the following specimens
had specific allelic expression: 49 (HLA-B44), 64 (HLA-B44),
65 (HLA-B62), 59 (HLA-B7) and 18 (HLA-B7). The last two
cases can be explained by HC10 not recognising HLA-B7
when complexed to B,-microglobulin (Gillet et al., 1990). The
remaining seven discrepancies cannot be explained by known
differences in the ability of the MAbs to detect individual
HLA antigens, but these may exist. In 7/9 of these cases,
locus-specific MAb staining was heterogeneous; this might
reflect low levels of HLA expression which was better
detected by the allele-specific MAb. Anti-B,-microglobulin
labelling was identical to W6/32 in all but two cases, which
probably exhibited only HLA-C expression. Down-regulation
of HLA-C expression could only be inferred from the HC10-
negative specimens; no HLA-C allele showed altered fre-
quency in this group.

Table II documents the frequency of individual HLA
antigens in the patients, the proportions of tumours in which
expression could be determined (304/400 HLA-A or -B
alleles) and their HLA phenotypes as well as the proportion
of down-regulation for each allele. The mean incidence of
antigen down-regulation was 53%, and in patients in whom
individual antigens are represented in ten or more specimens,
the frequency ranges between 36% and 71% (Figure 2).

One mechanism that would account for the frequent loss
of more than one allelic product in a given tumour is
interference with the TAP transporter. TAP-1 expression is
determined immunohistochemically and analysed in relation
to the HLA class I phenotype of the tumours (Table I). The
data indicate a link between TAP-1 and HLA class I expres-
sion, since when TAP-1 expression is abnormal there is
always some HLA class I loss. Of the 28 specimens with
down-regulated TAP-1 expression, 13 show concordant
down-regulation of HLA-A, -B, -C and B,-microglobulin and
14 exhibit HLA-B or HLA-B and -C down-regulation. How-
ever, HLA class I loss was frequently observed (45 cases)
with normal TAP-1 levels as determined immunohis-
tochemically. Table II and Figure 2 show the relationship
between TAP-1 and individual antigen expression and
indicates that TAP-associated and non-TAP mechanisms
may contribute differentially to the overall HLA antigen
down-regulation observed. No associations between altered

Four alleies lost
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(7.00%)
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Figure 1 The proportion of tumours showing varying degrees of
HLA-A and -B loss. For 100 tumours, it was possible to deter-
mine the individual expression of 62% of HLA-A and 89% of
HLA-B alleles. In the 27 cases with no loss demonstrated, 20
carried alleles whose expression was undeterminable; the full
extent of loss may be 93%.

expression of HLA-A, or -B or TAP-1 and HPV type were
seen (Table I).

Clinical staging defines the degree of spread from the
primary site of the tumour and is the most important prog-
nostic indicator in cervical cancer. There is a trend for in-
creasing HLA class I loss with disease stage (stage I, II, III,
IV have 64%, 81%, 86% and 100% loss respectively) but no
correlation is seen with tumour type or degree of
differentiation.

Discussion

This study has provided strong evidence for a very high
frequency of HLA class I down-regulation in cervical car-
cinoma. Such loss may allow a tumour to behave more
aggressively in the absence of effective immunosurveillance. It
is interesting to speculate that these changes are the result of
immunoselective influences in the natural history of cervical
neoplasia. Indeed, there is evidence of an increased incidence
of HLA class I down-regulation in cervical carcinoma lymph
node metastases (Cromme e? al., 1994b) and at an enhanced
frequency for HLA-B7/40 (Honma et al., 1994). Even the
loss of expression of a single MHC restriction element can
allow a tumour to grow progressively (Seung et al., 1993).

The concordance of down-regulation of the TAP-1, HLA
class I and B,-microglobulin proteins which occurs in a
significant proportion of the cervical carcinomas may result
from a coordinate interference with expression of each of the
encoding genes, for example at the transcriptional level of
regulation. However, given the sequence of events in the
peptide-processing pathway, interference with TAP function
could produce the observed results in 38% (28/73) of cases.
Lack of TAP-1 expression does not interfere with every HLA
allele’s expression, and this may account for some of the
tumours with abnormal TAP expression in which the follow-
ing allelic expression was detected: HLA-A2, -A3, -A24,
-A19, -B7, -B8, -B18 and B62 (Table I). These exceptions
might reflect endogenous peptides present in the ER lumen,
for example specific signal peptides which can promote HLA
expression in the absence of a functiongl transporter (Wei
and Cresswell, 1992).

While there may be a causal relationship between down-
regulation of TAP-1 and HLA class I expression, it cannot
account for all the HLA class I loss observed. Additional
non-TAP-associated mechanisms by which the various pat-
terns of HLA expression observed might be explained include
loss of one copy of chromosome 6 (Foulkes et al., 1993) or
selective down-regulation of the products of either the HLA-
A or -B locus (Schmidt er al., 1990). In this study HLA-A
and -B locus expression could be completely determined in 33
HLA class I down-regulated cases, and the patterns of ex-
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o o o o
T 1

Loss of allele expression (%)
N
o

o

A2 A9 group
A3 A26 (A10)

HLA class | alleles

A19 group B7
B5 group B8

B44 (B12)

Figure 2 Frequency of HLA-A or -B allelic loss and TAP-1 loss
in cervical tumours. Loss of TAP-1 is coincident with loss of
allelic expression only a proportion of the time. Some alleles
show significantly different frequencies of down-regulation (see
Table II). O, Normal TAP-1 expression; B, abnormal TAP-1
expression.



pression of HLA-A and -B were consistent with TAP-1
associated loss in 18 (55%), loss of a single chromosome 6 in
three (9%) and selective B locus loss in two (6%). In five
cases (15%) a loss of expression of a single HLA-A or -B
allelic product could be definitively documented, and there
were five others. In the group of 33 patients there was an
over-representation of homozygotes identical at either HLA-
A, HLA-B or HLA-A and -B loci, as well as a bias for
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particular HLA antigens for which MAbs were available, and
the latter speculative interpretation must be confirmed by
more direct molecular analysis. There is evidence for such
heterogeneity in mechanisms leading to HLA class I down-
regulation in many different cancers (Garrido et al., 1993),
and this presumably reflects the selection of immunologically
advantaged variants during the natural history of the disease.

The finding that individual MHC class I alleles are down-

Table I Down-regulation of individual HLA class I alleles in cervical cancer

Frequency =~ HLA phenotype  Down-regulated ~ 95% confidence

Down-regulated

HLA antigen (mn=100) known expression interval class I and TAP-1
Al 39 6 6 6
A2 39 39 19 (48.7%) 33.0-64.4 8
A3 30 30 15 (50.0%) 32.1-679 9
A9 (group) 19 17 7 (41.2%) 17.8-64.6 6
A23 (A9) 4 2 1 1
A24 (A9) 13 13 5 12.0-65.0 4
A10 (group) 10 7 3 (42.9%) 1
A25 (A10) 2 0

A26 (A10) 8 7 3 (42.9%) 1
A34 (A10) 0

A66 (A10) 0

All 12 3 2 2
A19 (group) 31 14 3 (21.4%) 0-429 1
A29 (A19) 10 1 1 1
A30 (A19) 2 2 0

A31 (A19) 4 4 0

A33 (A19) 3 0

A32 (A19) 10 7 2 (28.6%) 0
A74 (A19) 1 0

A28 7 1 1 1
Single A 13

BS5 (group) 15 14 5 (35.7%) 10.6-60.8 3
B52 (BS) 0

B51 (BS) 7 7 2 1
B7 39 39 22 (56.4%) 40.8-72.0 12
B8 28 27 12 (44.4%) 25.7-63.1 5
B12 (group) 36 35 25

B44 (B12) 35 35 25 (71.4%) 56.4-86.4 12
B45 (B12) 1 0

B13 4 3 1 (33%) 1
B14 (group) 10 5 3 (60%) 3
B64 (B14) 1 1 0

B65 (B14) 0

B15 (group) 6 6 3 2
B62 (B15) 6 6 3 (50%) 2
B63 (B15) 0

B16 (group) 4 3 2 0
B38 (B16) 1 1 0

B39 (B16) 3 2 2 (100%) 0
B17 (group) 6 6 6 (100%) 1
B57 (B17) 3 3 2 0
B58 (B17) 1 1 1 0
B18 5 4 3 (75%) 2
B21 (group) 2 1 1 0
B49 (B21) 1 1 1 0
B50 (B21) 1 0

B22 (group) 5 3 1 (33%) 0
B54 (B22) 0

B55 (B22) 4 2 0 0
B56 (B22) 1 1 1 0
B27 3 3 3 (100%) 2
B35 8 3 3 (100%) 0
B37 3 3 1(33%) 1
B40 (group) 11 9 5 (55%) 3
B60 (B40) 10 8 4 3
B61 (B40) 1 1 1 0
B41 1 1 0

B70 1 1 1 0
Single B 13

The frequencies of HLA-A and -B antigens in the patient group (n = 100) are shown. Zero figures in the
frequency column indicate the absence of this antigen in this group. Overall, there are no significant differences in
the proportions of the HLA-A, -B, -C antigens in this group compared with local control populations. There is a
marginal increase in the frequency of HLA-B7 in a larger study (Duggan-Keen et al., submitted). The number of
cases where tumour expression of the allele could be documented (HLA phenotype known), the proportion which
showed down-regulated expression, together with 95% confidence intervals for the more common antigens, and,
finally, the number of specimens for which down-regulated HLA class I expression was associated with loss of
TAP-1 are shown. The 95% confidence intervals were calculated as % + 1.96 X standard error (s.e.) of %, where

% =
s.e. of % 7 (100 =

n

IR
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regulated at different frequencies is consistent with tumour
HLA molecules differentially presenting immunogenic pep-
tides and their subsequent immune recognition selecting
specific HLA loss variants. If certain alleles are important in
the immunological control of, for example, HPV 16 infection
and induce relatively strong responses similar to those
reported for certain HLA alleles involved in antiviral
immunosurveillance (Burrows et al, 1990; Gavioli et al.,
1993), then both down-regulation of expression of that allele
and/or the evolution of the pathogen target epitopes (Philips
et al., 1991; Hill et al., 1992) will also influence the develop-
ment and disease progression of cervical cancer. The impor-
tance of both HLA type and viral epitope presentation in
cervical cancer is emphasised by our recent data which have
shown an association between the HLA-B7 genotype and
poorer survival experience of cervical cancer patients. It
appears that both down-regulation of HLA-B7 (Duggan-
Keen, submitted) and viral heterogeneity (Ellis ez al., 1995)
may contribute to the HLA-B7 genotype influence on disease
outcome.

The viral aetiology of cervical cancer has encouraged the
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