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Abstract: Murine models of cytomegalovirus (CMV) infection have revealed an exceptional kinetics
of the immune response. After resolution of productive infection, transient contraction of the viral
epitope-specific CD8 T-cell pool was found to be followed by a pool expansion specific for certain viral
epitopes during non-productive ‘latent’ infection. This phenomenon, known as ‘memory inflation’
(MI), was found to be based on inflationary KLRG1+CD62L− effector-memory T cells (iTEM) that
depend on repetitive restimulation. MI gained substantial interest for employing CMV as vaccine
vector by replacing MI-driving CMV epitopes with foreign epitopes for generating high numbers of
protective memory cells specific for unrelated pathogens. The concept of an MI-driving CMV vector
is questioned by human studies disputing MI in humans. A bias towards MI in experimental models
may have resulted from systemic infection. We have here studied local murine CMV infection as a
route that is more closely matching routine human vaccine application. Notably, KLRG1−CD62L+

central memory T cells (TCM) and conventional KLRG1−CD62L− effector memory T cells (cTEM)
were found to expand, associated with ‘avidity maturation’, whereas the pool size of iTEM steadily
declined over time. The establishment of high avidity CD8 T-cell central memory encourages one to
pursue the concept of CMV vector-based vaccines.

Keywords: avidity maturation; central memory CD8 T cells (TCM); cytomegalovirus; effector memory
CD8 T cells (TEM); conventional TEM (cTEM); inflationary TEM (iTEM); KLRG1; memory inflation;
vaccine vector

1. Introduction

Human cytomegalovirus (hCMV) is the prototype member of the β-subfamily of herpesviruses.
In the immunocompetent host, infection is well-controlled by the immune system, despite the expression
of viral immune evasion proteins specialized to interfere with essentially all mechanisms of intrinsic
antiviral defense as well as of innate and adaptive immunity [1–5]. After clearance of productive infection,
the viral genome is maintained in a non-replicative state, referred to as latent infection, or briefly as
‘latency’ [6–9]. Overt hCMV multiple-organ disease and organ failure resulting from cytopathogenic
tissue infection is restricted to congenital or perinatal infection of immunologically immature fetuses and
premature infants, respectively, [10,11] as well as to immunocompromised patients. A clinical challenge
is hCMV reactivation from latency [12–14] under conditions of iatrogenically compromised immunity.
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This includes recipients of solid organ transplantations (SOT) and hematopoietic cell transplantation
(HCT) [15–17].

The mouse model using murine cytomegalovirus (mCMV) has already proven its value for
defining basic principles of CMV pathogenesis, immune control, and experimental immunotherapy
(reviewed in [18]). A prominent feature of the immune response to mCMV is ‘memory inflation’
(MI). In essence, it was found that the acute immune response is followed by a contraction phase,
during which numbers of epitope-specific CD8 T cells decline before frequencies of cells specific for
certain epitopes increase steadily over time [19–24]. The epitope-selectivity of MI, distinguishing
‘MI-driving’ and ‘MI-neutral’ epitopes, is still under investigation. The current hypothesis of episodes
of CD8 T-cell restimulation by presentation of antigenic peptides is based on the finding that genes
in latent viral genomes are temporarily desilenced in a stochastic off–on–off fashion, independent of
the reactivation of productive gene expression (reviewed in [25]). Episodes of desilencing lead to a
low-level of ‘transcripts expressed in latency’ (TEL). If a TEL happens to encode an antigenic peptide
presented by an MHC class-I (MHC-I) molecule, it can potentially drive MI, provided that antigen
processing is efficient, and that the functional avidity of the CD8 T cells is high enough to also detect
limited peptide presentation [26–28]. All these parameters must fit, and this condition appears to be
met only by a few viral epitopes.

MI gained broad attention by proposing CMV(s) as a new class of vaccine vector(s), in which
antigenic peptides of target pathogens or tumors replace endogenous MI-driving peptides or are
expressed under the control of a viral promoter that is frequently desilenced during viral latency.
Proof-of-concept was first provided for foreign epitopes expressed under the control of the mCMV ie2
enhancer-promoter [29]. Since then, numerous studies demonstrated protective immunity induced by
recombinant CMV vectors in experimental settings (reviewed in [30,31]). It is the aim of T cell-based
vaccination to generate a large pool of long-lived CD62L+ central memory cells (TCM) that have stem
cell capacity and high proliferative potential for rapidly mounting a recall response upon vaccine
pathogen encounter [32,33]. While the term MI might suggest an expansion of TCM, MI was found
to be based on activated KLRG1+CD62L− cells that depend on frequent restimulation. These cells
were originally characterized as short-lived effector cells (SLEC) [34]. More recently, it was reported
that inflationary KLRG1+CD62L− cells in latent infection differ from KLRG1+CD62L− SLEC of the
acute response, in that they have an extended life span due to IL-15-mediated expression of the
anti-apoptotic protein Bcl-2, which makes them ‘memory cell-like’ [35]. We propose here to name
these cells ‘inflationary effector-memory T cells’ (iTEM), to emphasize their key characteristic that
distinguishes them from the conventional KLRG1−CD62L− effector-memory T cells (cTEM).

The decisive question for medical translation will be if the concept of MI-driving CMV-vector
vaccines works also in humans. All previous experimental work has taken it for granted that MI
is a ‘hallmark’ of CMV infections in general. This assumption has been challenged recently in an
overview of decades of human studies, ending up with the conclusion “that there is only limited
evidence supportive of ‘memory inflation’ occurring in humans” [36]. It thus appears that infection
conditions, which drive MI in mouse models, are not consistently met in human infection. If one
looks for a common denominator in mouse models in which MI was observed, high-dose systemic
infection via the intraperitoneal or intravenous routes as well as systemic virus spread in transiently
immunocompromised HCT recipients stand out. These conditions all lead to a high load of latent
viral genomes in tissues and a correspondingly high TEL activity that provides antigenic peptides for
frequent episodes of CD8 T-cell restimulation favoring the expansion of iTEM. However, the licensing
of CMV vector-based vaccines will be unlikely when immunity depends on systemic infection for
driving MI.

As a more realistic model, we have here studied intraplantar infection. The mouse planta as an
application site at an extremity more closely matches the favored vaccine application site in humans,
namely subcutaneous and/or intramuscular injection into the upper arm. Such local infections do
not bypass draining lymph nodes, the key checkpoint for virus replication and first lymphoid site
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of priming an antiviral immune response [37–40]. Our data show that MI constituted by iTEM does
not occur after local infection of immunocompetent mice. Whereas the iTEM pool steadily declined
over time, proportions of cTEM, and even more of TCM, rose over time. This population dynamics
was accompanied by ‘avidity maturation’ in that CD8 T cells with high functional avidity, capable of
recognizing infected tissue cells, expanded preferentially. From this, we conclude that the concept of
using CMVs as vaccine vectors is still worth pursuing, even though such vaccines will not work by
iTEM-based MI, as proposed previously, but rather by establishing a pool of high avidity TCM.

2. Materials and Methods

2.1. Mice, Viruses and Infection Procedures

Female BALB/cJ mice were bred and housed at the translational animal research center
(TARC) of the University Medical Center of the Johannes Gutenberg-University Mainz under
specified-pathogen-free (SPF) conditions. Animal experiments were approved by the ethics committee
of the ‘Landesuntersuchungsamt Rheinland-Pfalz’ according to German federal law §8 Abs. 1 TierSchG
(animal protection law), permission numbers 177-07/G09-1-004 and 177-07/G14-1-015. Mice were used
at the age of 8-to-12 weeks. For intraplantar infection, which combines subcutaneous and intramuscular
infection, purified virus was injected into the left hind footpad. Both intraplantar and intraperitoneal
infections were performed with 105 plaque-forming units (PFU) of mCMV-BACW (bacterial artificial
chromosome-derived virus MW97.01) [41]. For cell culture assays, murine embryonal fibroblasts (MEF)
were infected using mCMV-BACW-derived recombinant viruses with deletions of immune evasion
genes [42]. For all experiments, BAC sequence-free [41], high titer virus stocks were prepared from
infected MEF by standard protocol [43,44].

2.2. Experimental Hematopoietic Cell Transplantation

Syngeneic HCT was performed, as described in greater detail previously [43]. Briefly, recipient
female BALB/cJ mice were subjected to total-body γ-irradiation with a single dose of 6.5 Gy,
and 5 × 106 BALB/cJ donor-derived tibial and femoral bone marrow cells were infused into the
tail vein, followed by intraplantar infection with 105 PFU of mCMV.

2.3. Quantitation of Infectious Virus

Infectious virus (expressed as PFU) was quantitated for whole organ homogenates by a virus
plaque assay performed on monolayers of MEF, making use of increasing the sensitivity by the method
of ‘centrifugal enhancement of infectivity’ [43].

2.4. Quantitation of Viral Genomes

DNA from latently infected organs was extracted with the DNeasy blood and tissue kit (catalog
no. 69504, Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Viral genomes
were quantitated in absolute numbers by M55-specific and pthrp-specific qPCRs normalized to a
log10-titration of standard plasmid pDrive_gB_PTHrP_Tdy, as described previously [44].

2.5. Peptides

Synthetic peptides corresponding to reported epitopes presented by MHC-I molecules Kd,
Dd, and Ld are derived from the mCMV open reading frames (ORFs) m04, m18, M45, M83, M84, M105,
m123/IE1, m145, and m164 (listed in [26,27]). Custom peptide synthesis with a purity of >80% was
performed by JPT Peptide Technologies (Berlin, Germany). Synthetic peptides were exogenously
loaded on P815 mastocytoma cells (H-2d) or BALB/c (H-2d) MEF, as specified in the figure legends,
for use as stimulator cells in the enzyme-linked immunospot (ELISpot) assay described below.
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2.6. Preparation of Single-Cell Suspensions from Lungs and Spleen

Mice were lethally anesthetized by carbon dioxide inhalation, and mononuclear leucocytes from
lung tissue were isolated essentially as described [43], with modifications. In brief, lungs were perfused
via the right ventricle to remove circulating cells from the capillary bed of the lungs. Lungs were
excised, tracheae, bronchi, and pulmonary lymph nodes were discarded, and the lung lobes were
minced. The digestion of tissue derived from 4–5 lungs was performed in 15 mL of supplemented
DMEM, containing collagenase A (1.6 mg/mL; catalog no. 10 103 586 001, Roche, Mannheim, Germany)
and DNase I (50 µg/mL; catalog no. DN-25, Sigma-Merck, Darmstadt, Germany) for 1 h at 37 ◦C with
constant stirring. Mononuclear leucocytes were enriched by density gradient centrifugation for 30 min
at 760× g on Lymphocyte Separation Medium Histopaque-1077 (catalog no. 10771, Sigma-Merck).
For preparing single-cell suspensions of splenocytes, spleens were minced and passed through a cell
strainer, followed by the lysis of erythrocytes.

2.7. ELISpot Assay

Frequencies and avidities of mCMV-specific CD8 T cells were determined by an IFN-γ-based,
18-hr ELISpot assay, as described [38]. In brief, graded numbers of immunomagnetically purified
CD8 T cells from spleen and lung tissue were stimulated for IFN-γ secretion in triplicate assay
cultures. High- and low-avidity m164-specific cytolytic T-lymphocyte lines (CTLL) were generated by
repetitive restimulation with synthetic m164 peptide at molar concentrations of 10−10 M and 10−8 M,
respectively [26], and assayed for IFN-γ secretion accordingly. Stimulator cells were either P815 cells
or MEF, exogenously loaded with synthetic peptides at the saturating loading concentration of 10−6 M,
or with graded peptide concentrations. Effector cell stimulation under the influence of immune evasion
proteins was performed with MEF centrifugally infected with 0.2 PFU per cell, which corresponds to a
multiplicity of infection (MOI) of 4 [43], of the indicated recombinant viruses. After incubation for
90 min, the infected MEF were used as stimulator cells in the ELISpot assay.

2.8. Cytofluorometric Analyses

Single-cell suspensions were prepared from spleen and lung tissue as described above. Unspecific
staining was blocked with unconjugated anti-FcγRII/III antibody (anti-CD16/CD32; clone 93,
eBioscience, San Diego, CA, USA), and cells were stained with the following antibodies for multi-color
cytofluorometric analyses: ECD-conjugated anti-CD8α (clone 53-6.7; Beckman Coulter, Krefeld,
Germany), FITC-conjugated anti-KLRG1 (clone 2F1; eBioscience), and PE-Cy7-conjugated anti-CD62L
(clone MEL-14; Beckman Coulter). Phenotypic characterization of peptide-specific CD8 T cells was
performed using PE-conjugated MHC-I dextramers H-2Ld/YPHFMPTNL (IE1) and H-2Dd/AGPPRYSRI
(m164) (Immudex, Copenhagen, Denmark). Cytofluorometric analyses were performed with flow
cytometer FC500 and CXP analysis software (Beckman Coulter).

2.9. Statistics

For longitudinal immune response analyses, groups of age-matched mice were randomized before
treatment, and data for the indicated read-out times after infection represent the experimental average
for pooled samples. Frequencies (most probable numbers) of cells responding in the ELISpot assay
(see above) and the corresponding 95% confidence intervals were calculated by intercept-free linear
regression analysis from the linear portions of regression lines, based on spot counts from triplicate
assay cultures for each of the graded cell numbers seeded [38]. Spots were counted automatically
based on standardized criteria using ImmunoSpot S4 Pro Analyzer (Cellular Technology Limited,
Cleveland, OH, USA). For analyzing the dynamics of epitope-specific CD8 T-cell subpopulations,
a trend analysis by linear regression was performed with Graph Pad Prism 6.04 (Graph Pad Software,
San Diego, CA, USA). Rising and declining trends are reflected by positive and negative slopes of
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regression lines, respectively. Trends were considered as statistically significant by non-overlapping
95% confidence intervals and p-values of < 0.05, compared to the ‘null hypothesis’ of having no slope.

3. Results

3.1. Memory CD8 T-cell Population Dynamics Reveals Continuous Loss of iTEM and Increase in cTEM and
TCM after Local Infection of the Immunocompetent Host

CMV vectors that induce MI are proposed to represent a new class of vaccines by amplifying
memory cells over time. Much work on MI in the mouse model, however, was based on systemic
high-dose infection after intraperitoneal or intravenous virus application. Although this is of academic
interest in an experimental animal model, a medical translation of the findings is unlikely, because
such routes of vaccine application are not practicable in humans. As an experimental model for a CMV
vector-based vaccine that does not depend on systemic infection, we infected young adult BALB/c
mice with mCMV at one hind-foot planta. Such an intraplantar infection represents a site and route
more comparable to subcutaneous and/or intramuscular vaccine administration into the upper arm of
human vaccinees.

Draining regional lymph nodes, the popliteal lymph node (PLN) in the case of intraplantar infection,
represent the first lymphoid priming site of an antiviral immune response [37,38]. After administration
into the planta, mCMV rapidly reaches the PLN via the lymph stream and infects CD169+ macrophages
in a demarcated zone beneath the subcapsular sinus in an inoculum dose-dependent manner [37–40].
Intranodal viral gene expression, which is indicative of productive infection and antigen expression,
was detectable already on day 1, and with a lower-limit inoculum virus dose of 10 PFU [38].
Viral epitope-specific CD8 T cells in the PLN increased in frequency in a dose-dependent manner
from day 3 onward and peaked on day 7, corresponding with control of acute infection. Importantly,
both intranodal viral gene expression and CD8 T-cell frequency in the PLN reached a plateau at
an inoculum virus dose of 104–105 PFU, so that higher doses do not improve the local immune
response [38]. On day 7, CD44+CD62L−KLRG1+ CD8 T cells are present in the draining PLN and in
the spleen, but not in non-draining control LN, and were found to protect against mCMV infection of
immunocompromised recipient mice upon adoptive cell transfer (reviewed in [27]).

After the resolution of productive infection, viral latency is established, as documented for spleen
and lungs by long-term maintenance of viral genomes in absence of infectious virus (Figure S1). In a
first approach, we compared the widely used intraperitoneal infection, serving as a positive ‘reference
model’ for MI, with intraplantar infection at an identical infection dose of 105 PFU (Figure 1). It is
important to note that the comparison was made in the same experiment with randomized mice
and the same virus batch, to avoid any variables other than the route of infection. The CD8 T-cell
response to the two MI-driving epitopes IE1 (YPHFMPTNL-Ld) and m164 (AGPPRYSRI-Dd) in the
H-2d haplotype [45] was quantitated in the spleen in the acute phase of infection after 1 week, as well as
during latent infection after 4 months, by cytofluorometric staining with the respective MHC-peptide
multimers, combined with activation markers CD62L and KLRG1 (gating strategy and original data:
Figure 1A, summary of results: Figure 1B).

MI specific for these two epitopes was reproduced for intraperitoneal infection,
and KLRG1+CD62L− iTEM dominated over KLRG1−CD62L− cTEM and KLRG1−CD62L+ TCM.
In contrast, after intraplantar infection, proportions of epitope-specific cells in the spleen were higher
than after intraperitoneal infection in the acute phase, but MI, as defined by increasing numbers
of cells expressing epitope-specific T-cell receptors (TCR), was not observed during latent infection.
This finding is in agreement with missing or less pronounced MI noted for intraplantar infection by
Snyder and colleagues [46]. An analysis of the CD8 T-cell activation phenotypes revealed a reciprocal
image to intraperitoneal infection in that after intraplantar infection TCM dominated over iTEM and
cTEM during latent infection. Thus, within an almost stable overall pool of epitope-specific CD8 T
cells, the central memory pool was expanded at the expense of the iTEM pool.
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Figure 1. Comparison of intraperitoneal and intraplantar infection. Immunomagnetically-purified
CD8 T cells derived from the spleens of immunocompetent BALB/c mice (pool of 4–5 mice per time
of analysis) were tested at the indicated times, after intraperitoneal or intraplantar infection with 105

plaque-forming units (PFU) of murine cytomegalovirus (mCMV). (A) Cytofluorometric analysis for
defining activation phenotypes of IE1 and m164 epitope-specific CD8 T cells. After setting a ‘live gate’
in the forward vs. sideward scatter (SSC) plot (not shown), a second gate was set on CD8 T cells and a
third gate was set on CD8 T cells stained with the respective MHC-I-peptide dextramer. Gated cells
were tested for the expression of the activation markers CD62L and KLRG1, defining the populations
inflationary effector-memory T cells (iTEM) (KLGR1+CD62L−), conventional effector memory T cells
(cTEM) (KLGR1− CD62L−), and central memory T cells (TCM) (KLGR1−CD62L+). (B) Proportions of
the activation phenotypes. iTEM (green bars), cTEM (blue bars), TCM (red bars). The standard error
is indicated.
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As intraplantar infection is closer to a realistic application of CMV vector-based vaccines,
we focused our interest on this infection route and studied the dynamics of the CD8 T-cell response in
spleen (Figure 2) and lungs (Figure 3) in the long-term course, monitoring a large cohort of infected
mice by sampling at 3-month intervals. Recent work by Smith and colleagues [47] in a model of
systemic infection after intraperitoneal virus application has shown that MI is based on the expansion
of CD8 T-cell clonotypes that differ between individual mice, not by statistical error but by biological
variance. Specifically, some clonotypes persisted for the entire observation period in all mice tested
individually and longitudinally, although with expanding and contracting clone sizes in the time course.
Other clonotypes disappeared or appeared, leading to individual clonotype patterns. Thus, to describe
an averaged course of MI, systematic differences in individual responses were leveled out by pooling
samples for each time of analysis. Lungs were included in the analysis, because they represent a
relevant extra-lymphoid organ site of CMV pathogenesis, where protective CD8 T cells are enriched in
infiltrates [48].

Functional CD8 T cells specific for a panel of viral epitopes were quantitated by an ELISpot assay
based on their capability to secrete IFN-γ upon stimulation with the respective antigenic peptides
(Figures 2A and 3A). The advantage of the ELISpot assay compared to MHC-peptide multimer and
intracellular cytokine staining is the fact that it is not biased by gating decisions. The acute response
in spleen and lungs, measured at 1 wk, essentially confirmed the known epitope hierarchy for the
acute immune response to mCMV in immunocompetent BALB/c mice after intraplantar infection,
defining immunodominant and subdominant epitopes [49]. Note that relative cell numbers revealed an
enrichment of epitope-specific CD8 T lungs in the lungs compared to the spleen, also after intraplantar
infection. In the contraction phase at around 12 wks, frequencies of CD8 T cells had declined for all
epitopes, without a notable change in their hierarchy. The contraction was followed by an increase in
frequencies, preferentially for the epitopes IE1 and m164, during latent infection. Notably, these are the
same two epitopes defined previously as the prototypic MI-driving epitopes in the HCT model [45,50],
as well as after high-dose systemic/intravenous infection of immunocompetent mice [51]. So, as far as
functional cells are concerned, there exists MI also after intraplantar infection.

In parallel to the functional assay, and using the same pools of CD8 T cells, proportions of iTEM,
cTEM, and TCM were determined for MHC-peptide multimer-stained cells expressing TCR specific
for presented IE1 and m164 peptides (Figures 2B and 3B). For both epitopes, the pool of iTEM in the
spleen declined during latent infection between wk 12 and wk 48, and correspondingly, the population
became increasingly dominated by cTEM and TCM (Figure 2B). As expected for an extra-lymphoid site,
proportions of iTEM were generally higher in the lungs compared to the spleen. However, the general
trend of iTEM declining over time, paralleled by increasing proportions of cTEM and TCM, applied
also to the epitope-specific populations of pulmonary CD8 T cells (Figure 3B). Trend analysis by linear
regression revealed linearity and statistical significance of the decline in iTEM and the corresponding
increase in cTEM, and even more in TCM, in both spleen and lungs, after intraplantar infection
(Figure 4).
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Figure 2. Kinetics of CD8 T-cell specificity repertoires and activation phenotypes in the spleen. At the 
indicated times after intraplantar infection with 105 PFU of mCMV, spleen-derived CD8 T cells were 
immunomagnetically purified from pools of 4–5 BALB/c mice. (A) Frequencies of mCMV epitope-
specific CD8 T cells responding in the ELISpot assay with IFN-γ secretion to stimulation with P815 
cells exogenously-loaded with the indicated synthetic peptides at saturating concentration of 10−6 M. 
NP, control with no peptide. Bars represent the most probable numbers, and error bars indicate the 
95% confidence intervals determined by linear regression analysis. (B) Proportions of activation 
phenotypes of epitope-specific CD8 T cells defined by cytofluorometric analysis of KLRG1 and CD62L 

Figure 2. Kinetics of CD8 T-cell specificity repertoires and activation phenotypes in the spleen.
At the indicated times after intraplantar infection with 105 PFU of mCMV, spleen-derived CD8 T
cells were immunomagnetically purified from pools of 4–5 BALB/c mice. (A) Frequencies of mCMV
epitope-specific CD8 T cells responding in the ELISpot assay with IFN-γ secretion to stimulation with
P815 cells exogenously-loaded with the indicated synthetic peptides at saturating concentration of
10−6 M. NP, control with no peptide. Bars represent the most probable numbers, and error bars indicate
the 95% confidence intervals determined by linear regression analysis. (B) Proportions of activation
phenotypes of epitope-specific CD8 T cells defined by cytofluorometric analysis of KLRG1 and CD62L
expression within gated dextramer-stained cells (for more detail, see Figure 1). iTEM (green bars),
cTEM (blue bars), TCM (red bars). The standard error is indicated.
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Corresponding to the data shown in Figure 2 for the spleen, frequencies of viral epitope-specific 
functional CD8 T cells (A) and proportions of iTEM, cTEM, and TCM (B) were determined for 
pulmonary CD8 T cells from the same pools of mice. For more detail, see Figure 2. 

Figure 3. Kinetics of CD8 T-cell specificity repertoires and activation phenotypes in the lungs.
Corresponding to the data shown in Figure 2 for the spleen, frequencies of viral epitope-specific
functional CD8 T cells (A) and proportions of iTEM, cTEM, and TCM (B) were determined for
pulmonary CD8 T cells from the same pools of mice. For more detail, see Figure 2.
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from times during latent infection (wks 12, 24, 36, and 48) shown in Figure 2B (spleen) and Figure 3B 
(lungs) were subjected to linear regression analysis for determining the statistical significance of loss 
of iTEM (negative slope) and the corresponding rise of cTEM and TCM (positive slopes) over time. 
Dotted curves represent the 95% confidence intervals (CI). Trends are considered significantly 
different to the null hypothesis of no trend (slope 0) for p < 0.05. 

  

Figure 4. Trend analysis of CD8 T-cell memory population dynamics after intraplantar infection.
Data from times during latent infection (wks 12, 24, 36, and 48) shown in Figure 2B (spleen) and
Figure 3B (lungs) were subjected to linear regression analysis for determining the statistical significance
of loss of iTEM (negative slope) and the corresponding rise of cTEM and TCM (positive slopes) over
time. Dotted curves represent the 95% confidence intervals (CI). Trends are considered significantly
different to the null hypothesis of no trend (slope 0) for p < 0.05.

For a comparison, using the same site of infection and the same virus dose, MI specific for the
known MI-driving epitopes IE1 and m164 is dominated by iTEM in spleen and lungs in the HCT
model (Figure 5). Note, that in HCT, hematoablative conditioning of the recipients annuls immune
control in the draining PLN. This results in systemic infection despite local virus application, so that
MI in HCT after intraplantar infection is similar to MI after intraperitoneal or intravenous infection of
immunocompetent mice. We have recently documented high dynamics of the CD8 T-cell response after
HCT, differing between individual HCTs, despite an identical experimental set-up [50]. Here, we found
that IE1-specific MI, and to a lesser extent m164-specific MI, collapsed in the spleen after wk 24, but was
maintained in the lungs for a longer period with some difference between the epitopes (Figure 5A).
Importantly, in the HCT model, epitope-specific populations in the lungs were dominated throughout
the time course by CD62L− populations iTEM > cTEM, whereas CD62L+ TCM were found primarily
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in the spleen, where they increased from wk 24 onward (Figure 5B). This difference in lymphoid and
extra-lymphoid localization is consistent with the fact that CD62L, which defines TCM in non-naïve
mCMV-specific CD44+ CD8 T-cell populations [27], is involved in lymphocyte homing to lymphoid
tissues [52,53].

Vaccines 2020, 8, x 11 of 21 

 

For a comparison, using the same site of infection and the same virus dose, MI specific for the 
known MI-driving epitopes IE1 and m164 is dominated by iTEM in spleen and lungs in the HCT 
model (Figure 5). Note, that in HCT, hematoablative conditioning of the recipients annuls immune 
control in the draining PLN. This results in systemic infection despite local virus application, so that 
MI in HCT after intraplantar infection is similar to MI after intraperitoneal or intravenous infection 
of immunocompetent mice. We have recently documented high dynamics of the CD8 T-cell response 
after HCT, differing between individual HCTs, despite an identical experimental set-up [50]. Here, 
we found that IE1-specific MI, and to a lesser extent m164-specific MI, collapsed in the spleen after 
wk 24, but was maintained in the lungs for a longer period with some difference between the epitopes 
(Figure 5A). Importantly, in the HCT model, epitope-specific populations in the lungs were 
dominated throughout the time course by CD62L− populations iTEM > cTEM, whereas CD62L+ TCM 
were found primarily in the spleen, where they increased from wk 24 onward (Figure 5B). This 
difference in lymphoid and extra-lymphoid localization is consistent with the fact that CD62L, which 
defines TCM in non-naïve mCMV-specific CD44+ CD8 T-cell populations [27], is involved in 
lymphocyte homing to lymphoid tissues [52,53]. 

 

Figure 5. Kinetics of the viral epitope-specific CD8 T-cell response in the HCT model of MI. At the 
indicated times after HCT and intraplantar infection with 105 PFU of mCMV, CD8 T cells were 
isolated from spleen and lungs (pool of 5 organs per time of assay) of the HCT recipients. (A) Time 
course of the response to MI-driving epitopes IE1 and m164. (B) Corresponding dynamics of memory 
CD8 T-cell populations iTEM (green symbols), cTEM (blue symbols), and TCM (red symbols). 

Figure 5. Kinetics of the viral epitope-specific CD8 T-cell response in the HCT model of MI. At the
indicated times after HCT and intraplantar infection with 105 PFU of mCMV, CD8 T cells were isolated
from spleen and lungs (pool of 5 organs per time of assay) of the HCT recipients. (A) Time course of
the response to MI-driving epitopes IE1 and m164. (B) Corresponding dynamics of memory CD8 T-cell
populations iTEM (green symbols), cTEM (blue symbols), and TCM (red symbols).

As the key message, this set of experiments has revealed a fundamental difference in the CD8
T-cell population dynamics between local infection and systemic infections. Whereas, in systemic
infections, iTEM dominate the response, local infection is associated with a continuous loss of iTEM
and corresponding establishment of memory constituted by cTEM and, in particular, by TCM.

3.2. Functional Avidity of CD8 T cells Is Decisive for Overcoming Viral Immune Evasion

Frequencies of functional epitope-specific CD8 T cells are usually determined under saturating
stimulation conditions aimed at detecting all cells that express TCR specific for the respective
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MHC-I-presented antigenic peptides (pMHC-I complexes). However, for polyclonal populations,
interaction between TCR and pMHC-I shows a Gaussian avidity-distribution, ranging from low to
high avidity. Previous work has revealed that TCR with high structural avidity have a better chance to
interact with limited numbers of pMHC-I complexes at the surface of infected cells, which correlates
with a higher protective capacity of the T cells [28]. The biologically important functional avidity [26]
integrates structural TCR avidity, TCR expression density, and co-receptors that stabilize the interaction
between T cells and infected target cells presenting pMHC-I complexes. High avidity interactions are
particularly important for the recognition of CMV-infected cells, because hCMV, as well as mCMV,
express immune evasion molecules [1,2], also referred to as ‘viral regulators of antigen presentation’
(vRAP) [54]. These proteins interfere with pMHC-I cell surface expression, resulting in limited numbers
of pMHC-I complexes available for recognition by T cells. Functional avidity was estimated here by
exogenous loading of uninfected cells with graded molar concentrations of antigenic peptides, starting
with a saturating concentration of 10−6 M. Although exogenous and endogenous peptide loading of
MHC-I molecules are not equivalent, one can define the concentration of exogenous synthetic peptides
that functionally corresponds to the recognition of infected cells in which the MHC-I molecules become
endogenously loaded with the respective naturally-processed peptides (Figure 6).

Whereas cells of a low avidity CTLL specific for the MI-driving m164 epitope recognized MEF
exogenously loaded with a peptide concentration of ≥ 10−8 M but not with 10−10 M, cells of a high
avidity CTLL of the same specificity still recognized cells at a peptide loading concentration of 10−10 M
(Figure 6, left panels). Based on this, we defined 10−9 M as the borderline peptide loading concentration,
separating low and high avidity. One may wonder why the response rate was low in the high avidity
CTLL compared to the low avidity CTLL. An explanation may be that high avidity interaction and the
resulting extensive signaling lead to exhaustion preferentially of high avidity cells, as shown recently
by Schober and colleagues [55] and discussed below for selective loss of high avidity clones in vivo.

Notably, MEF infected with mCMV expressing all three currently known vRAPs were recognized
only by the high avidity CTLL (Figure 6, right panels). It was previously shown that the vRAP m04/gp34,
when expressed alone, does not inhibit pMHC-I cell surface expression, whereas vRAPs m06/gp48
and m152/gp40 both have immune evasion function by inhibiting pMHC-I cell surface expression,
and thus the recognition of infected cells, with a strength of m152 > m06 [54]. Interestingly, when
cells were infected with vRAP gene deletion mutants of mCMV expressing the vRAPs individually,
an inhibitory function of m06 was only visible with the low-avidity CTLL, and in accordance with this,
the inhibition of target cell recognition by m152 appeared to be stronger when tested with the low
avidity line, compared to the high avidity line. These data resolve the misconception that immune
evasion molecules would completely prevent cell surface display of pMHC-I, a view that is based on
data published for CTLL with undefined, and presumably too low, functional avidities [56]. In addition,
assay type and sensitivity are important for detecting limited peptide presentation in the presence of
immunoevasive vRAPs. Specifically, cells of a CTLL recognizing IE1 peptide at exogenous loading
concentrations of ≤10−9 M were stimulated by infected cells for secretion of IFN-γ but failed in the
cytolysis assay [54]. Importantly, in vivo protection was found to correlate with IFN-γ secretion rather
than with in vitro cytolytic activity [54,57].

As a quintessence of these findings, protective CD8 T cells are expected to require a functional
avidity corresponding to an exogenous peptide loading concentration of ≤10−9 M in order to recognize
infected cells and protect against CMV disease, despite the expression of viral immune evasion genes.
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Figure 6. vRAP-modulated recognition of infected cells depending on CD8 T-cell functional avidity.
CTLL differing in functional avidities for the Dd-presented m164 epitope were generated by repetitive
stimulation of mCMV-primed memory CD8 T cells with the corresponding synthetic antigenic peptide
at concentrations of 10−8 M (positively selecting low avidity cells) and 10−10 M (positively selecting
high avidity cells). (Left panels) Recognition of MEF target cells by the m164 epitope-specific low and
high avidity CTLL cells after exogenous loading with synthetic m164 peptide at the indicated molar
concentrations. NP, negative control with no peptide loading. Arrows point to the decisive message
highlighting the difference between low and high avidity. Bars show the proportion of cells responding in
the ELISpot assay by secretion of IFN-γ, error bars indicate the 95% confidence intervals. (Right panels)
Corresponding recognition of MEF infected with a panel of recombinant mCMVs selectively expressing
the indicated ‘viral regulators of antigen presentation’ (vRAP). None, no vRAP expressed after infection
with the triple gene-deletion mutant mCMV-∆vRAP. All, vRAPs m04, m06, and m152 expressed after
infection with the parental virus that corresponds to wild-type mCMV. n.i., uninfected MEF. Frequencies of
responding cells were normalized to the response against MEF not expressing vRAPs after infection with
the triple gene-deletion mutant. Bars represent response ratios, with ratio 1.0 defined by the most probable
number determined for the triple gene-deletion mutant. Error bars represent the 95% confidence intervals.
The arrows highlight the impact of functional avidity on the recognition of cells expressing all vRAPs.

3.3. Avidity Dynamics of Functional Viral Epitope-Specific CD8 T cells

With this insight in mind, we revisited MI in the spleen after intraplantar infection of
immunocompetent mice in due consideration of functional avidity of CD8 T cells specific for the
MI-driving epitopes m164 and IE1 (Figure S2, reproduced in a separate experiment with prolonged
observation time in Figure 7). ‘Cumulative avidity distributions’ reveal the numbers of cells responding to
target cells exogenously loaded with graded molar concentrations of the respective peptide, which implies
that frequencies measured at a defined concentration sum up cells responding to this concentration and
all lower concentrations. In contrast, based on the same data, ‘Gaussian avidity distributions’ reveal the
number of cells responding to target cells loaded with precisely the indicated peptide concentration. At a
glance, after a marked contraction at wk 12, MI occurred and was made up by cells of ‘protective avidity’
(corresponding to ≤10−9 M) and of ‘non-protective’ avidity (>10−9 M) (Figure 7A). Curiously, while MI
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for both epitopes essentially represents an increase in the numbers of high avidity cells, a population with
very low avidity, corresponding to a peptide loading concentration of 10−6 M, expanded in a late phase of
ongoing MI measured at wk 48. These results are summarized in graphs, showing numbers of IE1 as well
as m164 epitope-specific CD8 T cells in the time course, and classified according to high or low avidity
(Figure 7B). Using the total response, which includes all avidities, for comparison, the graphs highlight
that MI is based primarily on the expansion of high avidity memory T cells.
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Figure 7. Kinetics of m164- and IE1-epitope-specific functional avidity patterns. (A) Immunomagnetically
purified CD8 T cells derived from spleens of BALB/c mice (pools of 10) were tested at the indicated times
after intraplantar infection with 105 PFU of mCMV. Bars indicate numbers of CD8 T cells responding in
the ELISpot assay with IFN-γ secretion to stimulation by P815 cells exogenously loaded with synthetic
peptide at the graded molar concentrations indicated. Cumulative avidity distributions reveal frequencies
of cells responding to the indicated concentration tested, which includes cells that also respond to lower
concentrations. Error bars represent 95% confidence intervals. Gaussian-like avidity distributions reveal
frequencies of cells responding exactly to the peptide loading concentration indicated. These are deduced
from the cumulative avidity distributions by plotting the difference between neighboring cumulative
frequencies. (B) Preferential MI of high avidity CD8 T cells in the time course. Data from the avidity
distributions shown in A were classified into high avidity recognition (green solid and dotted lines:
≤10−9 M) and low avidity recognition (red solid and dotted lines: >10−9 M). Black lines: sum of cells of
all avidities.
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Unexpectedly, when the latently infected mice had reached the stage of senescence at the quite late
time of wk 72, a secondary contraction phase was observed that is characterized by a preferential loss
of high avidity cells (Figure 7B). As the remaining cells are mostly of non-protective avidity, this gives
the important information that CMV vector-based vaccines may not confer lifelong immunity.

4. Discussion

Our data have revealed two important new findings in the model of intraplantar mCMV infection:
(1) MI of viral epitope-specific functional CD8 T cells proved to be based on TCM and cTEM, instead
of on iTEM previously found to dominate in models of systemic infections, including the systemic
infection of transiently immunocompromised HCT recipients. Whereas one might argue that MI of
TCM and cTEM in the model of intraplantar infection is quantitatively far less impressive than MI of
iTEM after systemic infection, we believe that our finding of an expanding TCM pool is in fact promising
news for promoting CMV as a vaccine vector for use in humans in whom vaccines that depend on
systemic infection are impracticable. (2) MI is associated with ‘avidity maturation’ by a selection of
epitope-specific CD8 T cells of ‘protective functional avidity’. High avidity is definitively always an
advantage in terms of protective capacity, even if the vaccine target should not express equivalents of
CMV immune evasion proteins. Many pathogens and basically all tumors also have evolved strategies
of immune evasion that limit antigen presentation and call for high avidity recognition. High avidity
CD8 T cells have a better chance to become activated and secrete IFN-γ despite very few pMHC-I
complexes being displayed at the cell surface of infected cells under conditions of immune evasion.
In the case of mCMV, IFN-γ by itself is not a direct antiviral effector molecule [58], but it inhibits
virus assembly in combination with TNF-α [59] and it relieves immune evasion by enhancing the
presentation of pMHC-I complexes [58,60]. Thus, by enhancing antigen presentation, IFN-γ produced
by high avidity cells in the first place can subsequently recruit also low avidity cells for antigen
recognition and protection.

Avidity maturation can be explained by limited peptide presentation during viral latency, based
on low transcription incidence and low numbers of TEL coding for antigenic peptides. The paucity of
pMHC-I cell surface complexes on latently infected non-hematopoietic tissue cells (reviewed in [6,25])
logically requires high avidity interaction for T-cell stimulation and thus favors selection of pre-existing
high avidity T-cell clones, with clone sizes increasing over time based on repeated restimulations.
In line with this interpretation, recent work led to the conclusion that the inflationary T-cell pool is
comprised mainly of high avidity CD8 T cells, outcompeting lower avidity CD8 T cells, and that the
amount of early-primed KLRG1- cells and the number of cells with a central memory phenotype are a
critical determinant for the overall magnitude of the inflationary T-cell pools [61,62]. Our findings add
the information that avidity maturation by positive selection in polyclonal CD8 T-cell populations
applies not only to the pool of iTEM, but also to the pools of cTEM and TCM.

In seeming contradiction to avidity maturation during MI, we casually noticed at a late time
of still ongoing MI an unpredicted increase in cells with a very low avidity that corresponded to an
exogenous peptide loading concentration of 10−6 M. The fact that this phenomenon was observed
for both MI-driving mCMV peptides makes a cross-reactive ‘molecular mimicry’ recognition by cells
specific for an unrelated antigenic peptide based on TCR degeneracy [63–66] less likely, although
one cannot formally exclude an incidental existence and the consequent expansion of T cells of
two different unrelated specificities, each cross-recognizing either of the two mCMV epitopes with
low avidity. A recurring acute response to a reactivated productive infection might be discussed
as an alternative explanation. We consider this also unlikely, as for both epitopes, the avidity
distributions during the acute response at wk 1 were clearly different to the patterns seen at wk 48,
when only cells recognizing 10−6 M peptide had expanded to levels higher than during the acute
response. Regardless of the unknown nature of these low avidity cells, they will not mediate functional
‘heterologous immunity’ [66], as based on their exceedingly low avidity, they will not recognize limited
mCMV-antigen presentation after endogenous antigen processing.
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After an observation time of 72 wks, when mice had reached senescence, a secondary contraction
was observed, during which primarily the pool of high avidity cells collapsed. Interestingly, Schober
and colleagues [67] discussed a model predicting such a preferential loss of high avidity T-cell clones
at late stages following MI, due to ‘proliferative senescence’, and evidence in support of this model has
been provided just recently [55]. Our data are consistent with this finding and indicate that loss of high
avidity cells is not just the fate of individual clones but indeed applies also to polyclonal populations
and to different epitopes. Furthermore, our observations refer to the immunocompetent host in which
T-cell clones cannot develop freely but compete for proliferation niches and growth factors, and may be
subject to immunoregulatory networks. This is important, as it represents a situation closer to real-life
complexity in a healthy human vaccinee than are studies on individual, barmarked clonotypes in an
immunodeficient host environment.

The secondary contraction may be discussed to relate to the more recently disputed phenomenon
of immunosenescence/immunoexhaustion in the elderly host [68–71]. It is important to call to mind
that the recognition of infected cells, which is the basis for protection, requires functional avidities that
correspond to exogenous peptide loading concentrations of ≤10−9 M (this report). As the functional
avidities of those cells that survived the secondary contraction were mostly lower, corresponding to
>10−9 M, the loss of high avidity clones predictably results in loss of protective capacity of the CD8
T-cell population. Thus, immunosenescence is not associated with a still ongoing MI, but rather with
the collapse of MI and loss of high avidity cells at very late stages. This may explain why CMV-specific
immunosenescence is not consistently observed.

The key question remains why MI, after an intraplantar infection of the immunocompetent host,
differs from systemic infection models. A clue to an answer is given by the overall very low latent
viral genome load of only 10–100 viral genomes in the lungs that is established following limited
virus replication in the acute phase under conditions of efficient immune control (Figure S1). This is
the decisive difference to the HCT model where extensive virus replication and spread during acute
infection were found to result in a ≈100-fold higher viral genome load in latently infected lungs [72,73],
which leads to more frequent events of TEL transcription and TEL-derived peptide presentation that
drives the expansion of the iTEM pool [25]. Consistent with such a causal relation, mathematical
modeling revealed that the time course of iTEM-based MI is best described by a model that assumes
frequent restimulation events [74]. With this fundamental understanding, it is predictable and almost
trivial that any modulation of the immune control during acute infection, and thus a modulation of viral
load, has an impact on MI during latent infection, as exemplified for immune modulation by IL-10 [75].
Efficient immune control of acute infection results in low load and dampening of iTEM-based MI,
whereas inefficient immune control of acute infection results in high load and fueling of MI.

According to an established model of linear memory CD8 T-cell differentiation upon repetitive
restimulations leading from TCM to cTEM, and finally to iTEM [76], we propose the hypothesis
that high latent viral genome load, associated with high antigen-encoding TEL activity, results in
many rounds of T-cell restimulation that drive proliferation and differentiation to the stage of iTEM.
In contrast, low latent viral genome load, which is associated with low antigen-encoding TEL activity
and accordingly fewer rounds of restimulation of TCM, generates primarily cTEM, but not iTEM
(Figure 8).
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