
Review Article
Determination of Microalgal Lipid Content and Fatty Acid for
Biofuel Production

Zhipeng Chen, LingfengWang, Shuang Qiu , and Shijian Ge

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering,
Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China

Correspondence should be addressed to Shuang Qiu; qiushuang89@njust.edu.cn and Shijian Ge; geshijian1221@njust.edu.cn

Received 29 December 2017; Revised 12 March 2018; Accepted 4 April 2018; Published 21 May 2018

Academic Editor: Xiaoling Miao

Copyright © 2018 Zhipeng Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Biofuels produced frommicroalgal biomass have received growingworldwide recognition as promising alternatives to conventional
petroleum-derived fuels. Among the processes involved, the downstream refinement process for the extraction of lipids from
biomass greatly influences the sustainability and efficiency of the entire biofuel system. This review summarizes and compares
the current techniques for the extraction and measurement of microalgal lipids, including the gravimetric methods using organic
solvents, CO

2
-based solvents, ionic liquids and switchable solvents, Nile red lipid visualization method, sulfo-phospho-vanillin

method, and the thin-layer chromatography method. Each method has its own competitive advantages and disadvantages. For
example, the organic solvents-based gravimetric method is mostly used and frequently employed as a reference standard to validate
other methods, but it requires large amounts of samples and is time-consuming and expensive to recover solvents also with low
selectivity towards desired products. The pretreatment approaches which aimed to disrupt cells and support subsequent lipid
extraction through bead beating, microwave, ultrasonication, chemical methods, and enzymatic disruption are also introduced.
Moreover, the principles and procedures for the production and quantification of fatty acids are finally described in detail, involving
the preparation of fatty acid methyl esters and their quantification and composition analysis by gas chromatography.

1. Introduction

Nowadays, limited stock of petroleum-derived fuel resources
combined with perpetually increasing demands for energy
due to the rapid industrialization and population growth
has troubled many governments and organizations across
the world [1]. Moreover, the combustion of fossil-derived
fuels has led to increasing emission of greenhouse gases such
as carbon dioxide (CO

2
), leading to global climate change

and posing threats to the biosphere [2]. In order to achieve
sustainable development, the critical issues noted above and
the gradually rising fossil-derived fuel prices have called for
the needs to search for alternative sustainable and renewable
energy sources [3].

Biofuels, produced from biomass, are promising alterna-
tives to fossil-derived fuels due to several distinct advantages
including carbon neutrality, reduced emissions of gaseous
pollutants (e.g., carbon monoxide, CO

2
, and sulfur oxides),

continuous availability of biomass feedstocks, and their safety

of production by farming [4]. According to their physical
characteristics, biofuels are divided into solid (i.e., biochar),
liquid (i.e., bioethanol, vegetable oil, and biodiesel), and
gaseous (i.e., biogas, biosyngas, and biohydrogen) fuels.
Based on the types of used feedstocks, biofuels are catego-
rized into three generations. The first generation feedstocks
mainly include food crops such as corn, soybean, rapeseed,
sunflower, and palm oil. The second-generation biofuels are
derived from nonedible feedstocks like Jatropha,Miscanthus,
Switch grass, and other organic wastes. Nevertheless, the
expanding demand for edible feedstocks as food sources
and their need for large areas of arable land for produc-
tion have limited the development of both the first- and
second-generation biofuels. The use of microalgae as a third-
generation biofuel feedstock avoids these issues and presents
several distinct advantages of not requiring agricultural or
arable lands for production, high photosynthetic efficiencies
and biomass productivities (biomass doubled in less than
one day), and 100 times more lipids per acre of land [5, 6].
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Figure 1: Lipid molecules. Triacylglycerol (NL) on the left. Phospholipid (polar lipid) on the right. R, R, and R in the triacylglycerol
molecule represent fatty acid chains. Phospholipid molecule is negatively charged [15].

Moreover, the main storage lipids in microalgae are neutral
lipids (NLs) or triacylglycerols that can be esterified to
FAMEs with the primary profiles of C16 and C18, proven to
be the most suitable for biofuel production [7]. Microalgae
exhibit great adaption to various environmental conditions,
making them easy to cultivate. For instance, they can grow
on marginal land in both the open pond and closed systems
using waste streams like wastewater, waste or CO

2
-enriched

gas (biogas, flue gas), waste organics (i.e., crude glycerol), and
waste heat to provide nutrients and carbon and temperature
maintenance (in a cold climate), achieving economically
feasible and environmentally sustainable biofuel production
and waste bioremediation [8]. Moreover, various routes of
microalgal metabolisms can be adopted for enhanced growth
and lipid production. Traditionally, phototrophic algae are
grown autotrophically with CO

2
as the unique carbon source

and light providing all the energy needed. Moreover, some
microalgae species can grow heterotrophically using only
organic compounds, while others can grow mixotrophically
using both organic compounds and CO

2
to support growth

[9].
Currently, the high costs of the important microalgal har-

vesting and lipid extraction processes are the primary obsta-
cles impeding on the commercial application of microalgae-
derived biofuel production [10–12]. For example, lipid extrac-
tion is a high-power-consumption process because lipids are
stored in microalgal cells and the cell wall is a thick and rigid
layer composed of complex carbohydrates and glycoproteins
with high mechanical strength and chemical resistance,
posing difficulties for lipid extraction [13]. Therefore, certain
cell disruption techniques are generally considered prior
to lipid extraction to improve the extraction efficiencies.
Nevertheless, the efficiencies of cell disruption and lipid
extraction vary with methods selected with different operat-
ing conditions (e.g., temperature, atmospheric pressure, and
humidity), microalgae species, and biomass amount.

This review summarizes and compares themethodologies
employed for the extraction and quantification of microalgal
lipids. The pretreatment methods supporting cell disruption
and subsequent lipid extraction are also included. Finally, the
principles and procedures for the production and quantifica-
tion of fatty acids in microalgae are discussed in detail.

2. Microalgal Lipids

Microalgal lipids can be divided into two groups according
to their structures: nonpolar NLs (acylglycerols, sterols,
free fatty acids, wax, and steryl esters) and polar lipids
(phosphoglycerides, glycosylglycerides, and sphingolipids).
Figure 1 shows the structural formula of the polar lipid
and NLs [14, 15]. These lipids play different but important
roles in microalgal metabolism and growth period. Some
lipids such as phosphoglycerides, glycosylglycerides, and
sterols are imperative structural components of biological
membranes, while lipids like inositol lipids, sphingolipids,
and oxidative products of polyunsaturated fatty acids may
act as key intermediates in the cell signaling pathways
and play a role in sensing changes in the environment
[16]. The quantities of these microalgal lipids vary with
the type of species, growth conditions, and ambient envi-
ronments. It was reported that the lipid contents ranged
at 20–50% of dry biomass including Chlorella, Cryptheco-
dinium, Cylindrotheca, Dunaliella, Isochrysis, Nannochloris,
Nannochloropsis, Neochloris, Nitzschia, Phaeodactylum, Por-
phyridium, Schizochytrium, and Tetraselmis [17].

3. Microalgal Cell Disruption Methods

Specific microalgal cell pretreatment procedures must be
considered prior to the subsequent lipid extraction due to
the microalgal cell wall structure. When the extraction is
conducted from the wet biomass, the pretreatment step is
mandatory to disrupt the microalgal cell walls and allow the
lipids to be released into the extracting mixture. The com-
monly used pretreatment methods are summarized below.

3.1. Bead Beating. Bead beating, also known as bead mill or
ball mill, disrupts cells by the impact of high-speed spinning
of fine beads on the biomass slurry. The whole disruption
process could be done within minutes, and it could be
applied to any kinds of microalgae without preparation [18,
19]. Two common types of bead mills are shaking vessels
and agitated beads [20]. Shaking vessels usually consist of
multiple containers or well-plates on a vibrating platform,
and the cell disruption is done by shaking the entire vessel
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on a vibrating platform. The shaking vessels are usually
employed in laboratory, as they are only suitable for multiple
samples requiring similar disruption treatment conditions.
Comparatively, the agitated beads type that is made up
of a rotating agitator in a fixed vessel filled with beads
and cell culture could achieve better disruption efficiencies.
However, the cooling jackets must be equipped to protect the
heat-sensitive biomolecules as the rotating agitator generates
heat during disruption process [18, 19]. The combination of
agitation, collision, and grinding of the beads could produce
a higher disruption efficiency [20]. To sum up, the simplicity
of the equipment and the rapidness of the treatment process
are the two main advantages of bead beating methods, while
the requirement of an extensive cooling system to protect the
target products has limited it to scale up [18].

3.2. Microwave. Microwave is an electromagnetic wave with
the frequency ranging between 300MHz and 300GHz,
which is lower than that of infrared and higher than that of
radio waves. Microwave-assisted extraction technology has
been studied for extracting target compounds in a few fields,
including microalgal lipid extraction [50]. When microalgal
cells are exposed to themicrowavewith the specific frequency
(approximately 2450MHz), cell molecules generate a rapid
oscillation within the rapidly oscillating electric field, result-
ing in the heat generation due to the frictional forces from the
inter- and intramolecular movements [51]. The intracellular
heating causes the water to vapor, which disrupts the cells
and subsequently opens up the cell membrane. This method
exhibits strong advantages of short reaction time, low-
operating costs, and efficient extractionwith all of the species,
but the requirement of a vast cooling system to protect target
products limits its large-scale application [18, 19].

3.3. Ultrasonication. Ultrasonication has been a well-known
method for the microbial cell disruption due to its short
reaction time with high productivity [52]. When the ultra-
sound is applied to the liquid cultures, small “vacant regions”
called microbubbles are momentarily formed as the liquid
molecules are moved by the acoustic waves. Meanwhile,
the production of microbubbles causes cavitation, which in
turn creates pressure on the cells to break up [53]. During
the treatment, the rapid compression/decompression cycles
of the sonic waves generate transient and stable cavitation.
The transient cavitation occurs when oscillations that cavi-
tation undergoes are unsteady and implode ultimately. This
type of implosion could produce extremely localized shock
waves and high temperature, the conditions of which impart
mechanical stress on the cells and crack the cell wall and
membrane [54]. On the other hand, the cavitation that
oscillates for many cycles is referred to as stable cavitation,
which can produce microscale eddies, inducing stress or
physiological changes in microorganisms [55]. Ultrasonic
horn and bath are the two basic types of sonicators, and
they are commonly employed in batch operations but can
also be adapted for continuous operations [56]. Horns use
piezoelectric generators, which are made of lead zirconate
titanate crystals and vibrate with amplitude of 10–15mm.
As the energy generated at the horn tip dissipates rapidly

with distance, the cavitation must be created with sufficient
disruptive force. Transducers placed at the bottom of the
sonicator are used in sonicator baths to generate ultrasonic
waves. In sonicator baths, the number and arrangement of
transducers vary according to the capacity and shape of the
sonicator [20]. The working conditions of ultrasonication
treatment are easy to set up and the whole process could be
done in a very short timewhile with high reproducibility [19].
However, it is difficult to scale up as cavitation, the strong
effect of which is able to achieve cell disruption only occurs
in small regions near ultrasonic probes.

3.4. Chemical Method. The rupture of cells occurs when
chemicals are used to increase the permeability of cell up to a
particular value [57]. It was reported that, through chemical
treatments with acids (i.e., HCl and H

2
SO
4
), alkalis (i.e.,

NaOH), and surfactants, chemical linkages on the microalgal
cell envelope were degraded followed by the lysis of cell
wall [58]. Comparatively, chemical treatment consumes less
energy because it does not require a large amount of heat or
electricity while showing higher efficiency of cell disruption.
However, the continuous consumption of chemicals chal-
lenges the economic sustainability of this method. Moreover,
acids and alkalis have a high risk of corroding the reactor and
attacking microalgal lipids, thus ruining the whole process
[18].

3.5. Enzymatic Disruption. In addition to the autolysis,
the use of foreign lytic enzymes is extensively investigated
because enzymes are the commercially available and easily
controlled biologicalmaterials [59]. Specific enzyme is able to
degrade certain structural cell components, thus improving
the release of desired intracellular compounds [60]. In some
cases, a mixture of different enzymes is reported to have a
better economic and technical feasibility, and the lipid yields
could be improved when enzymatic hydrolysis is combined
with acid/alkaline pretreatment. Compared to the chemical
method that possibly destroys every particle existing in the
solution and even induces side-reactions of the target prod-
ucts (i.e., lipids), the reaction condition of enzymatic method
is mild, and its selectivity is high with specific chemical
linkages. Moreover, enzymatic disruption combined with
other methods is usually considered for economic process
and improved disruption performance [18]. However, more
researches need to be conducted to reduce the high cost and
relatively long treatment time, which have limited the large-
scale application of this method.

3.6. Other Methods. Apart from the methods noted above,
there are some other microalgal cell disruption approaches
that have been investigated as well. For example, when the
mixture of microalgae and other solvents is sprayed through
a narrow tube under high pressure, hydraulic shear force is
generated and high pressure homogenization (HPH), also
known as French press, makes use of this force to extract
internal substances of microalgae. By measuring the increase
in the soluble chemical oxygen demand (SCOD) during the
cell disruption, lots of researchers have evaluated the cell
disruption efficiency and found that HPH exhibited high cell
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Figure 2: Schematic diagram of thermal pretreatment apparatus
[61].

disruption efficiency. It is worth mentioning that HPH has
lots of advantages such as producing less heat during the
extraction process, thus requiring less cooling cost and it is
easy to scale up. However, the pretreatment process relying
on HPH requires a relatively long time and consumes quite a
few amount of power. Electroporation can achieve permanent
cell disruption by applying a much stronger electromagnetic
field (EF) to the biomass that can damage the cell envelopes
beyond their healing abilities since the application of an EF
of suitable intensity will lead to the formation of pores on
the cell envelopes of the cells, and the pores are closed by
a healing process when the EF is removed. Electroporation
is a promising cell disruption method as it requires simple
equipment and operation procedures with high energy effi-
ciency [18, 20]. Thermal treatment could achieve effective
recovery of hydrocarbons as well and a typical process of
thermal pretreatment is shown in Figure 2. Firstly, place
the samples in vessel and replace the air in the vessel by
nitrogen gas. Then, heat vessel to the set temperature, and
afterwards, cool the vessel to the ambient temperature after
maintaining the samples at the set temperature.Then, stir the
samples mechanically. Finally, open the autoclave and care-
fully remove the samples for further analysis [61]. Recently,
plenty of work have been done to compare the efficiency
of different cell disruption methods; however, due to the
different species of microalgae used in experiments so as
the different operating temperatures, atmospheric pressures,
and other influence factors, the efficiency of different cell
disruption methods is short of comparability.

4. Microalgal Lipid Extraction and
Quantification Approach

The microalgal lipid extraction refers to the process of
separating the valuable NLs and fatty acids from the cellu-
lar matrix and water. As far, multiple methods have been
reported for the quantification of microalgal lipids, mainly
including the conventional gravimetric method using extrac-
tion solvents, Nile red lipid visualization method, SPV, and
TLC [62–64].

static organic
solvent film

bulk organic
solvent

cell membrane
and cell wall

cytoplasm

nucleus

1

1

2

2

3

3

4

4

5

5

Figure 3: Schematic diagram of the organic solvent-based microal-
gal lipid extraction mechanisms. The pathway shown at the top of
the cell is for nonpolar organic solvent while the pathway shown at
the bottom of the cell is for nonpolar/polar organic solvent mixture.
Orange circle: lipids, white circle: nonpolar organic solvent, and
white diamond: polar organic solvent [15].

4.1. Gravimetric Method. The gravimetric method is most
widely used to determine microalgal lipid content. It is
also frequently used as a reference standard to validate
other methods. The gravimetric method consists of the lipid
extraction using solvents and lipid quantification achieved
by recording the weight of extracted lipids after evaporating
the extracting solvents. The extraction solvents used include
the conventional organic solvents, CO

2
-based solvents, ionic

liquids (ILs), and switchable solvent.

4.1.1. Organic Solvent Extraction. The chemistry concept
of “like dissolving like” is the basic principle underlying
the organic solvent-based extraction of microalgal lipids.
Figure 3 illustrates the principle of the 5-step-microalgae
lipid extraction mechanism. Typically, the organic solvents
penetrate through the cell membrane into the cytoplasm
(step 1) and interact with the lipid complex (step 2). During
this process, the nonpolar organic solvent interacts with
NLs through van der Waals associations, while the polar
organic solvent interacts with the polar lipids by generating
hydrogen bonds that are strong enough to replace the lipid-
protein associations that prevent nonpolar organic solvent
from accessing the lipids. Subsequently, an organic solvent-
lipids complex is produced (step 3), followed by the organic
solvent-lipids complex diffusing across the cell membrane
(step 4) and the static organic solvent film (step 5) into the
bulk organic solvent driven by a concentration gradient.

The commonly used organic solvent extraction proce-
dures are summarized in Table 1. The nonpolar organic
solvents, such as hexane, benzene, toluene, diethyl ether,
ethyl acetate, and chloroform, are usually combined with the
polar organic solvents to maximize the extraction efficiency
of NLs. As such, when lipid extraction is achieved with
the use of a nonpolar/polar organic solvent mixture, the
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Table 2: Comparisons between conventional organic solvents extraction and CO
2
-based solvents extraction approaches.

Items Organic solvent scCO
2

lCO
2

Heavy metal contamination Unavoidable Free of heavy metals Free of heavy metals
Inorganic salt content Difficult to avoid Free of inorganic salts Free of inorganic salts
Selectivity Poor selectivity Highly selective Highly selective
Extracted compounds Polar and nonpolar compounds Nonpolar compounds Nonpolar compounds
Safety Flammable and/or toxic Nontoxic and nonflammable Nontoxic and nonflammable

Operation condition Regular temperature and pressure High temperature and pressure Lower temperature and pressure
than scCO

2

Recycling Solvent recovery is expensive CO
2
could be recycled and reused CO

2
could be recycled and reused

Operation cost High power consumption (in
solvent recovery) High power consumption Lower than scCO

2

Extraction time Time-consuming Shorter than solvent extraction Shorter than solvent extraction

polar organic solvent is intended to disrupt the neutral-
polar lipid complexes while the nonpolar organic solvent
aims to solubilize the intracellular NLs [65]. Moreover, the
lipid yields vary with the type of used organic solvents and
the ratios of polar solvents to nonpolar solvents. Therefore,
the final lipid extraction efficiencies using different organic
solvents extractionmethods cannot be impartially compared.
In addition, the different experiment steps, equipment, and
experimental conditions involved in the extraction process
also contribute to various extraction results.

The organic solvent-based extraction methods usually
require a relatively large quantity of biomass and have few
environmental impacts. In addition, organic solvents are not
highly selective towards the desired neutral (mono-, di-,
and triacylglycerols) lipids and free fatty acid components;
some of them are not easily removable, posing difficulties
to the subsequent process. An ideal solvent for the lipid
extraction should be free of toxicity, easy to remove, and
more selective towards target products. These characteristics
have been found in CO

2
-based solvents, ionic liquids, and

switchable solvents, which will be introduced hereinafter.

4.1.2. CO2-Based Solvent Extraction. The supercritical
(scCO

2
) and liquid (lCO

2
) CO
2
are able to solubilize many

organic molecules and can be easily recycled at the end of
the process while leaving no residual solvents, making them
promising alternatives to traditional organic solvents.

(1) scCO2 Extraction. The supercritical fluid extraction (SFE)
is a promising green technology that can potentially displace
the use of traditional lipid extraction procedure, due to
its high selectivity, short extraction time, and their absent
use of toxic organic solvents [66]. As can be seen from
Table 2, scCO

2
has been regarded with interest in the field of

SFEs, because it offers advantages of negligible environmental
impact, high diffusivity, no toxicity, no oxidation or thermal
degradation of extracts, and easy separation of desired bio-
products [67]. Moreover, scCO

2
has high selectivity towards

microalgal NLs (mono-, di-, and triacylglycerols) and has
been used in the lipid extraction of microalgae such as Cylin-
drotheca closterium, Arthrospira maxima, Nannochloropsis
oculate, Chlorella vulgaris, and Spirulina platensis [68–71].

For example, Halim et al. [72] employed scCO
2
into a wet

Chlorococum sp. paste to obtain a yield of 7.1 wt% at a
temperature of 333 K and a pressure of 30MPa over an 80min
extraction time.Moreover, coupling the nonpolar scCO

2
with

the polar cosolvents (i.e., methanol, ethanol, and toluene)
could enhance the affinity towards NLs that form complexes
with polar lipids, resulting in a greater biofuel production
[73]. The general procedure of scCO

2
extraction is described

as follows: CO
2
is first condensed to lCO

2
and then to the

scCO
2
. Subsequently, the fluid is pumped into the extraction

vessel under the desired and controlled conditions of pressure
and temperature. After the extraction, the extracted lipids are
precipitated and collected into a glass trap, cooled in an ice
bath with the amount assessed by gravimetry. It should be
noted that the effects of operating conditions (i.e., extraction
vessel size and type, pressure, and extraction time) involved
in the scCO

2
extraction process noted above on the lipid yield

and selectivity should be investigated on a case-by-case basis.
Moreover, the high temperature (i.e., 100∘C) and pressure
(i.e., 41MPa) requirement are the main concerns that have
limited this approach from industrial-scale application [74].

(2) lCO2 Extraction. Comparatively, lCO
2
sharesmany of the

same benefits as scCO
2
while it requires lower temperature

and pressure than scCO
2
extraction (Table 2) and therefore

has emerged as a possible substitute. Paudel et al. [75]
recovered about 26wt% of the extractable lipids using lCO

2

directly from the wet biomass of Chlorella vulgaris under
different pressures (6.8–17MPa) and a constant temperature
of 25∘C. An extraction example using lCO

2
is described as

follows. Firstly, lCO
2
is pressurized to a certain pressure

(i.e., 6.8MPa) using the high pressure pump and during this
process, a coolant (i.e., 75% ethyleneglycol in distilled water)
must be used to keep the pump at −5∘C to prevent it from
being heated. Secondly, the pressurized lCO

2
is delivered

through the tube coil to tube vessel, aiming to make CO
2

coming from the cold pump warm up to the temperature
of the water bath. Thirdly, the vessel containing dry algae
is heated in water bath at 25∘C for 2 h, during which the
required pressure in the system ismaintained by backpressure
regulator (BPR). After the extraction, the remaining CO

2
is

vented into the flask, and the remaining extract exiting the
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Figure 4: Isothermal volumetric expansion of benign solvents by
CO
2
at 40∘C [77].

BPR is captured, separated, and dried. The extract is then
preserved in the ice-cold isopropanol.

(3) Gas Expanded Liquids Extraction. Gas expanded liquids
(GXLs) are liquids expanded in volume by the application
of modest pressures with a compressible gas, among which
CO
2
is one of the most commonly used gases [76].The GXLs

are made up of a mixture of compressed gases and con-
ventional solvents. Jessop and Subramaniam [77] reported
that GXL solvents have the combined beneficial properties of
a compressed gas and organic solvent, so the properties of
solvent can be adjusted through variations in the pressure.
As can be seen from Figure 4, the gaseous CO

2
has a

considerable solubility in many benign organic solvents at
adequate pressures (<8MPa) such as ethanol, methanol that
show a 2- to 3-fold volumetric expansion at relatively mild
pressures and moderate temperatures [77]. As such, various
principles and applications of CO

2
-expanded liquids (CXLs)

including lipid extraction have been proposed [78, 79]. Due
to the fact that CXLs can be operated at mild temperatures
and pressures, a reduction in process costs and energy
consumption could be realized. The mass transfer rates can
also be improved via CXLs by reducing interfacial tension
and viscosity as well as increasing diffusivity [80]. Wang et al.
[78] used the CO

2
-expanded ethanol to successfully extract

lipids from Schizochytrium sp. with a 35.7 wt% lipid content
of dry biomass.TheCO

2
-expandedmethanol increased up to

82% of the selectivity of methanol towards the extraction of
biodiesel-desirable NLs and free fatty acids [75].

4.1.3. ILs Extraction. ILs are organic salts with the melt-
ing point below 100∘C, and they typically consist of large
asymmetric organic cations coupled with smaller anions [81].
Advantages such as thermal stability, synthetic flexibility,
nonvolatility, nonflammability, recyclability, and unique sol-
vent properties have made ILs promising replacements of
traditional organic solvents in lipid extraction as they can

dissolve highly recalcitrant biopolymers [82]. For instance,
ILs are capable of disrupting cell structure in wet microalgae
biomass under mild conditions. This allows either autopar-
titioning of the lipids or presumably improving access of
cosolvents to the intracellular lipids, thus facilitating the
extraction of lipids from microalgae and making it faster
than organic solvent extraction processes. Most solvent-
based extraction processes, however, are incompatible with
wet biomass, which add significant costs to the overall process
since dewatering and drying processes are thought to be
responsible for up to 70% of the biofuel production cost [83].

A typical lipid extraction procedure with the aid of ILs is
described as follows [84]. Firstly, mix microalgae paste with
1 : 10 mass ratio of dry equivalent microalgae to [C

2
mim]

[EtSO
4
] and incubate the mixture. Secondly, add water to the

mixture to improve separation after the addition of hexane
and remove the top layer to a new container. The procedures
noted above are repeated three times to achieve a high
extraction efficiency. After the extraction, wash the extracts
with NaCl and transfer the target part to a preweighed vessel.
The mass of extractable lipids is measured after evaporating
the solvent. For ILs recycling, add methanol/water to the
mixture to precipitate the residual solids and pool hexane
with the previous extraction. Subsequently, filter the solvent
and wash with methanol/methanol to collect ILs, and then
ILs are recovered by evaporation.

4.1.4. Switchable Solvents Extraction. Switchable solvents,
known as “reversible” or “smart” solvents, can reversibly
change their properties upon addition or removal of a
“trigger.”The switchable solvents (subclass of ILs) are divided
into two categories, switchable polarity solvents (SPSs) and
switchable hydrophilicity solvents (SHSs) [85, 86]. Specifi-
cally, the polarity of SPSs exhibits variation with the solution
CO
2
concentration. The polarity of the solvents can be

reversed by removing the CO
2
from the system by heating or

sparging the solution with nonacidic gases. SPSs are divided
into two classes, which are either single-component or two-
component species. In the two-component SPSs, a base with
an alcohol or with an amine is usually included while single-
component SPSs require a primary or secondary amine
[85]. Unlike SPSs, SHSs can change from a hydrophobic
solvent into a hydrophilic one, and their potential applica-
tions have extended to the extraction of microalgal lipids
[87]. In the SHSs system, the hydrophobic form creates a
biphasic mixture with water, and the hydrophilic form is
the corresponding bicarbonate salt; thus SHSs could also
be reversibly converted between the above two forms by
the addition or removal of CO

2
[88, 89]. A proposed lipid

extraction procedure using SHSs is illustrated in Figure 5.
Briefly, SHSs are employed to dissolve or extract lipids in
their hydrophobic state; the carbonated water is introduced
to revert SHSs’s hydrophilic form and form a two-phase of the
lipid and SHSs/water; finally, the SHSs/water mixture would
be separated into two components and then be reused by
flushing air through [88].

4.2. Nile Red Lipid Visualization Method. Compared with
the mostly used gravimetric methods noted above, Nile
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Figure 5: The process of SHSs used for soybean oil extraction from soybean flakes without a distillation step. The dashed lines indicate the
recycling of the solvent and the aqueous phase [88].

red lipid visualization method is more convenient as the
number of samples and preparation time are greatly reduced.
The Nile red (9-diethylamino-5H-benzo[𝛼]phenoxazine-5-
one) is a lipid-soluble probe that fluoresces at the defined
wavelengths depending upon the polarity of the surrounding
medium. However, due to the composition and structure of
the thick and rigid cell walls in some microalgae species,
Nile red is prevented from penetrating the cell wall and cyto-
plasmic membrane, and therefore, lipids cannot provide the
desired fluorescence. Thus, the dimethyl sulfoxide (DMSO)
is introduced to microalgal samples as the stain carrier at
an elevated temperature [63]. When microalgal lipids are
measured by Nile red visualization method, a standard curve
preparation is included in most cases. Table 3 summarizes
some specific Nile red lipid procedures for the determination
of microalgal lipids. Different solvents are combined with
Nile red solution to stain microalgal culture samples, and the
samples are diluted if necessary. The lipid content determi-
nation is achieved by comparing the resulting fluorescence
values to a certain standard curve, in which the wavelength
of excitation and emissionmay be different. Nevertheless, the
lipid contents measured by this method are usually interfered
by the environmental factors and other components in the
cell cytoplasm, and the fluorescence intensity varies between
samples. Thus, the optimal spectra and reaction conditions
should be determined for each type of sample prior to the
fluorescent measurement [90].

4.3. SPV Method. The colorimetric SPV method is a rapid
alternative for lipid measurement because of its fast response
and relative ease in sample handling [91]. The SPV reacts
with lipids to produce a distinct pink color, and the intensity

is quantified using spectrophotometric methods; therefore,
it is employed for direct quantitative measurement of lipids
within liquidmicroalgal cultures [40]. However, the results of
SPV assay can be affected by lots of factors such as the degree
of oil saturation, incubation time, heating, and cooling; thus
the SPV assay may give misleading results [27].

The general procedure of SPV method includes the sam-
ple addition, solvent evaporation, sulfuric acid addition, sam-
ples incubation, color developing by adding phosphovanillin
reagent, absorbance reading, and measurement of the lipid
content based on the standard curve [62]. Phosphovanillin
reagent is prepared by dissolving vanillin in absolute ethanol
and DI water, followed by the addition of concentrated
H
3
PO
4
. To prepare standard lipid stocks, canola oil is firstly

added to chloroform, and then different amount of standard
lipid stocks is added to the tubes. After that, these tubes are
treated to evaporate the solvent followed by the addition of
water. Subsequently, these samples are prepared by following
SPV reaction methods: (1) suspend tested samples in water
and place in a glass tube; (2) add concentrated sulfuric acid
followed by heat treatment and ice bath; (3) add freshly
prepared phosphovanillin reagent and incubate in incubator
shaker; (4) read absorbance at 530 nmanddetermine the lipid
content by comparing to the standard curve.

4.4. TLC Method. TLC is also a promising alternative to
conventional lipids measurement approaches as it requires
minimal equipment which is available in most laboratories,
and it can also provide additional information about lipid
classes, which is important for biofuel production [92].
Among different solvent systems, the multi-one-dimensional
TLC (MOD-TLC) separates the lipid classes rapidly and
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reproducibly. The MOD-TLC method can achieve the quan-
tification for the majority of microalgal lipids through modi-
fications in solvent mixtures and lengths of separation times,
and the mass of each resolved lipid band is determined by
comparing band intensities of unknown samples (visualized
by the lipophilic dye primulin followed by an automated
laser-fluorescence detector scanning) to dilution curves of
authentic standards. Compared to two-dimensional thin-
layer chromatography, MOD-TLC directly analyzes multiple
samples on a single TLC plate, while still providing good
resolution for the quantification of most major classes of lipid
species [32]. SomeTLC running procedures are introduced in
detail (Table 4). Usually, TLC plates must be activated before
TLC running, and NLs are separated by certain solvents such
as a mixture of chloroform :methanol : acetic acid : water
(85 : 12.5 : 12.5 : 3, v/v/v/v). The determination of microalgal
lipid content is finally achieved by comparing the resulting
fluorescence values with a standard curve.

5. Quantification for Microalgal Fatty Acids

The theoretical biofuel potentials of microalgal biomass are
ultimately determined by the acyl chains of the lipids, and
therefore the lipid contents are quantified as the sum of
their fatty acid constituents. The fatty acids constituents vary
with their structural features such as chain length, degree
of saturation, branching of carbon chain, positional isomers,
configuration of double bonds, or other chemical groups
(i.e., hydroxy, epoxy, cyclo, and keto) [93]. It was reported
that C16 and C18 are the most abundant microalgal fatty
acids including palmitic acid (hexadecanoic, C16:0), stearic
acid (octadecanoic, C18:0), oleic acid (octadecenoic, C18:1),
linoleic acid (octadecadienoic, C18:2), and linolenic acid
(octadecatrienoic, C18:3). The other fatty acids such as C14,
C20, and C26–C32 are relatively in low concentrations [94].

Table 5 summarizes and compares different methods of
themeasurement and quantification ofmicroalgal fatty acids.
These methods consisted of two steps: (1) the preparation
of FAMEs; (2) quantification and composition analysis of
FAMEs by gas chromatography (GC). In the first step via
the transesterification or in situ transesterification process,
the triglycerides contained in algal lipids are reacted with
methanol to produce FAMEs and glycerol. Catalysts (acid
catalyst, base catalyst, or the mixture) and heat (water or
oil bath) are usually required during the transesterification
process to speed up the reaction. The common catalysts for
this transesterification include NaOH [95], HCl [35], H

2
SO
4

[37], acetyl chloride/methanol (1 : 10, v/v) [42], and a mixture
of methanol, H

2
SO
4
, and chloroform (1.7 : 0.3 : 2.0, v/v/v)

[47]. In the second step, the separation of FAMEs from
the mixture and their quantification are performed using
GC. The procedure noted above is based on the amount
of fatty acids after the lipid extraction in algal biomass.
Comparatively, the in situ transesterification is a relatively
simpler process and achieves the transesterification to get
FAMEs directly from the whole biomass with no requirement
of lipid extraction. Therefore, it is able to obtain all fatty
acids in the biomass and accurately represent the reflection
of biofuels potential [49, 96]. In addition, various procedures

for transesterification are followed in terms of microalgal
species, lipid contents, and targeted FAMEs fraction. The
specific transesterification procedures performed in literature
are listed in Table 5. In brief, the lipid extracts or the algal
biomass are mixed with the catalysts and methanol and are
reacted at the conditions of high temperature. The produced
FAMEs are then recovered in solvents like hexane for further
purification and quantification. Subsequently, the purified
FAMEs are separated and analyzed by GC equipped with
the flame ionization detector (FID) and specific columns
running at various temperatures. The identification and
quantification standards are required such as the commercial
37-component standards, pentadecanoic acid, and heptade-
canoic acid [40, 41, 47, 48, 97]. Specific FAMEs are quantified
by comparing their peak areas with those of the standards.
It should be noted that there is still not a routine method
for the quantification of fatty acids specific to algal biomass
issued by Association of Analytical Communities (AOAC)
International. All the methods noted above vary significantly
including the procedures, types of used chemicals and their
doses, and analytical apparatus. This might result in a lack of
comparability between FAMEs concentrations obtained from
different methods.

6. Conclusion

Microalgae have proven to be one of themost promising feed-
stocks for the production of third-generation biofuels that are
both economically feasible and environmentally sustainable.
Rapid, accurate, sustainable, and cost-effective methods for
the lipid extraction and quantification are essential for the
rational application of microalgae-based biofuel production.
Gravimetric method is most widely used but requires quite a
few amount of samples; Nile red lipid visualization method
is rapid as the number of samples and preparation time are
greatly reduced while a correlation between fluorescence and
lipid levels must be previously established as the cell staining
varies among different microalgae species; the results of SPV
assay can be affected by lots of factors such as the degree
of oil saturation, incubation time, heating, and cooling; thus
the SPV assay may give misleading results; in addition to the
quantitative measurement of microalgal lipids, TLC can also
provide additional information about lipid classes which is
important for biofuel production.Various lipid quantification
methods could be considered on a case-by-case basis, but
more effective and greener techniques (e.g., CO

2
-basedmeth-

ods) for microalgal cell disruption and extraction are still
required to maximize lipid yields while avoiding the issues of
toxicity, flammability, and time consumption for extraction.
In addition, the identification and quantification of fatty acids
in extracted lipids are also important to evaluate the quality of
microalgae-derived biofuel, during which transesterification
and in situ transesterification are involved in the preparation
of FAMEs for the further the quantification and composition
analysis of FAMEs by GC. It is worth mentioning that in situ
transesterification is relatively simpler and more convenient
as it does not require lipid extraction, thus achieving the
transesterification to get FAMEs directly from the whole
biomass.
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