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Abstract

Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical
feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR)
and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to
extract and learn features from the environment in an unsupervised way is important. In this computational study we
explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical
architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or
training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from
previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the
key features of this proto-architecture that support DS.
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Introduction

The exploration of natural biological development and artificial

developing systems are mutually informative. The self-organizing

and high-dimensional open-ended learning ability of human

development has been inspirational for artificial learning systems,

and has led to the emergent area of developmental/epigenetic

robotics (for a review see [1]). The concept of biological

development has also been hugely influential in the field of

evolutionary robotics spawning the Artificial Embryogeny sub-

field [2]. Conversely, experiments in artificial networks and

computational modeling have provided insight into how develop-

mental processes could proceed. In particular, the ability of

unsupervised self-organizing artificial neural networks to extract

features from the natural environment has been highly influential,

notably in the area of visual cortical maps [3–14]. Although

exposure to the environment seems a compelling and sufficient

condition for feature extraction, there is increasing evidence that it

is not a complete explanation for natural development. There are

now many examples in visual development of precocious abilities

to extract visual features before visual experience has begun (for

examples see the review in [15]). This raises the issue that the

biological neonate may come equipped with a pre-conditioned

‘‘proto-‘‘ architecture tuned to make the best use of its upcoming

visual life.

Numerous studies have shown that many features of visual maps

such as retinotopy (point-to-point topographic connections

between the Lateral Geniculate Nucleus and V1), ocular

dominance columns (OD) and orientation-selectivity (OR) circuits

are already present at eye-opening (EO) and undergo further

refinement with visual experience (for specific examples see

[16,17] and for a recent review see [15]). This early organization

is thought to arise from two processes. Initially, molecular signals

control the development of relatively coarse retinotopic mappings

between and within the retina, superior colliculus, lateral

geniculate nucleus (LGN), and primary visual cortex (V1). Later,

spontaneous activity in the form of a series of retinal waves refines

this nascent connectivity: see [18] for a comparison of the two

mechanisms. Some previous computational studies have modeled

pre-EO activity-dependent learning [11,14,19–21].

The development of maps for sensitivity to direction of motion

(directional sensitivity, DS) is less clear with strong species

differences. In the mouse, DS is present at EO and is not delayed

by dark-rearing which implies it is independent of experience [22].

Retinal ganglion cells (RGCs) in the mouse retina exhibit

directional selectivity [23]. Mouse cortical DS maps are not

organized in cortical columns as is seen in other species, such as

cat or ferret but individual cortical neurons do have clear

preferences. It is not fully understood how retinal and cortical

DS interact pre-EO in the mouse. The ferret, like other carnivores,

is not known to have retinal DS and it is generally thought that

dark-rearing delays DS development. In [24] it was reported that

despite cortical DS being absent at EO, there was a very brief and

early critical period with rapid development of DS within 2–3

weeks of EO. They found that dark rearing from EO over the

critical period irreversibly disrupted the development of DS, but if

normal visual input was restored within the critical period DS

could subsequently develop. More recently, the work of [25]

reported the existence of a weak cortical DS sensitivity and a

neighbourhood bias at EO in ferret. However – as found by [24] -

learning occurs rapidly after EO and it is possible that testing for

DS may inadvertently have a training effect. Nevertheless, using a
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rapid sampling procedure the more recent work of [26] has

confirmed the weak DS at EO. Both studies have shown that this

initial DS facilitates later training for congruent stimulation. The

origins of this weak DS and bias at EO are unknown: intrinsic

cortical circuitry, retinal waves, spontaneous activity in the LGN

and cortex and DS RGCs have all been mentioned.

Most previous modelling studies looking at the development of

DS ([4,6,11,20]) have not mentioned that pre-existing selectivity

was present - some kind of activity-driven process has always been

included as a requirement to produce a cortical DS map. Only

[27] has attempted to explain initial DS without recourse to

spontaneous neural activity or any kind of training process

representing visual experience. They looked at how OR and DS

could arise solely from an initial pattern of intra-cortical

connections in an attempt to explain the apparent activity-

independence of some maps that has been seen experimentally.

Their results showed that localised ‘cortical’ patches responded to

moving gratings in different directions and they produced DS

maps similar to those seen experimentally. They stated that the

OR/DS latent in the map architecture results from the cortical

dynamics induced by ‘mexican hat’ connectivity (short range

excitatory and long range inhibitory connections) and inhomoge-

neity in the lateral weights.

In this paper we describe a neural network similar to that of [27]

but implemented with spiking neurons. Spiking Neural Networks

(SNNs) use a neuron model which computes with pulses or spikes

as real neurons do and are becoming increasingly popular due to

their ability to model a range of biological phenomena. In

particular the possibility to study the role of spike timing as there is

now evidence that spike timing is important in behavioural

contexts ([28–31]). Another incentive to use SNNs for the creation

of bioinspired artificial systems is the increasing availability of

neuromorphic devices which provide a means to implement large

spiking networks directly in efficient low-power hardware.

In our work we concentrate mainly on how the structure of the

network supports Directional Selectivity (DS) and apart from a

different neuron model there are other key differences to the

model of [27]: we have included distance-dependent delays on the

intra-cortical connections and the contribution to neuron activity

from the lateral connections is not emphasised over afferent input

(as was the case in [27]) because we wanted to assess the relative

contribution of afferent and lateral connection structure to DS.

Our experimental results firstly confirm the results of [27] by

showing that this network forms a proto-architecture for DS which

manifests on presentation of moving input without the need for

any activity-dependent learning and also that OR is present in the

network. Additionally we show that both the form of the afferent

connectivity from an LGN-like input layer and cortical lateral

inhibition play a role in innate DS, with the cortical inhibition

being the more important. Finally we discuss the relevance of these

findings in relation to both biological and artificial systems.

Methods

The Visual Map Architecture
The network structure has been inspired by the Kohonen Self-

Organizing Map (SOM) architecture [32], similar to that used in

[33] but with some modifications to accommodate input from a

DVS 128 ‘silicon retina’ camera. Figure 1 shows a diagram of the

network architecture. The first layer consists of 1286128 neurons

(referred to henceforth as the Input layer) and its purpose is merely

to relay input spike data into the network at the same resolution as

the DVS camera. The second layer consists of 32632 neurons

(referred to henceforth as the LGN layer) and its purpose is to

achieve a down-sampling of the raw input data. The output or

‘map’ layer (referred to as the Cortical layer) consists of 60660

neurons of which 20% are randomly assigned as inhibitory and

80% as excitatory as these are believed to be the proportions of

inhibitory to excitatory neurons in real cortex [34]. Feed-forward

excitatory connections exist between all three layers. The layers

are not fully connected but instead there are connection fields

(CFs) where neurons in a layer are connected to a subset of

neurons in the previous layer. The Input layer is connected to the

LGN layer with excitatory connections with fixed weights of value

1.0. These connections are set up such that a 464 connection field

(CF) from the Input layer is connected topologically to 1 neuron in

the LGN layer. These CFs are not overlapping, thus each neuron

in the LGN layer averages the activity from 16 pixels in the Input

layer. The box marked 1. in Figure 1 shows an example of one

such set of connections. The neuron time constant and refractory

period for the LGN layer neurons are set to ensure that there is no

multiple firing in the LGN layer: i.e. any activity in the 464 group

of input neurons results in 1 spike in the LGN Layer neuron.

Similarly, the LGN layer is not fully connected to the Cortical

layer, but, in keeping with the approach of previous works

modelling the visual system each cortical neuron only ‘sees’

neurons from the LGN layer within its connection field. The CFs

from each cortical neuron overlap: see the box marked 2 in

Figure 1 for an example. In our experiments, a 565 square

connection field has been used as the ‘standard’ case. Afferent

connection weights are set to an initial random value between 0.4

and 0.5. The Cortical layer is recurrently connected: there are

sparse lateral connections and these follow a ‘mexican hat’ profile

of short-range excitation and long-range inhibition. Excitatory and

inhibitory connectivity is determined by probability functions

based upon distance between the two neurons as given in

equations 1 and 2.

pexc~ exp {
dist

sigma

� �
ð1Þ

pinh~ exp {
sigma

dist

� �
ð2Þ

Where:

pexc is the excitatory connection probability (between 0 and 1.0)

pinh is the inhibitory connection probability (between 0 and 1.0)

dist is the Euclidean distance between the neurons

sigma is the spread

For our ‘standard’ case, Cortical excitatory connectivity uses a

sigma of 3.5 which gives a significant chance of connection at

distances up to 5 units. At distances greater than this the

probability is forced to zero. For Cortical inhibitory connectivity

a sigma of 8.0 is used and at distances less than 5 units and greater

than 21 units the probability is forced to zero. Figure 2 shows the

profile of connection probabilities generated by this method.

Lateral connection weights are set to an initial random value

between 0.3 and 0.4. Lateral connections also incorporate delays

which are calculated according to the distance between the two

neurons with added Gaussian noise. Refer to Table 1 for a

summary of all the network parameters and their initial values.

The network was implemented using the Brian spiking neural

simulator [35].
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Neuron Models
LGN layer neurons are represented by a simple Leaky Integrate

and Fire (LIF) model (equation 3).

tlm
dVi

dt
~{Vi ð3Þ

Where:

Vi is the membrane voltage of the LGN neuron

tlm is the LGN neuron membrane time constant

This is essentially a simple decaying voltage with spikes injected

from connected neurons in the Input layer. When a presynaptic

(Input) neuron fires the membrane voltage, Vi of the postsynaptic

(LGN) target neuron is increased as shown in equation 4.

Vl new~Vl new � w ð4Þ

Where:

Vl old is the original membrane voltage

Vl new is the updated membrane voltage

w is the synaptic weight

Synaptic weights are fixed at 1.0 for all connections. The

membrane time constant tlm is set at 10 ms and the refractory

period for LGN neurons is also 10 ms. This setup ensures that the

first firing of any Input neuron in the 464 group connected to the

LGN neuron will cause the LGN neuron to fire but immediate

Figure 1. Visual Map Architecture. The network consists of 3 2D layers of neurons. The Input (top) layer receives spikes directly from the DVS 128
Silicon Retina camera at its resolution of 1286128 pixels. To achieve downsampling to 32632 resolution, the Input layer neurons are connected to
LGN layer neurons (middle layer) at a ratio of 16:1 using a 464, non-overlapping connection field (box labelled 1.). The LGN layer neurons are in turn
connected to the Cortical map layer (bottom) with overlapping 565 connection fields (box labelled 2.). All connections between layers are
feedforward and excitatory. The Cortical layer consists of both excitatory and inhibitory neurons in a ratio 5:1 and these neurons are connected
sparsely to each other with excitatory neurons making short-range connections to nearby neighbours and inhibitory neurons making connections to
neurons further away.
doi:10.1371/journal.pone.0102908.g001
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firing of other Input neurons in the group within the refractory

period will not cause additional spikes in the LGN neuron.

For the Cortical layer neurons a simple Leaky Integrate and

Fire (LIF) model based upon the well-known Vogels and Abbott

CUBA (CUrrent BAsed) model [36] is used and described by

equation 5.

tm~
dV

dt
~ gezgi{VzNð Þ ð5Þ

Where:

V is the membrane voltage

ge is the contribution from excitatory synapses

gi is the contribution from inhibitory synapses

N is exponential noise

tm is the membrane time constant

The neuron receives input from both excitatory (ge) and

inhibitory (gi) synapses which are represented by the fast AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor

model which assumes that the action potential generated by the

presynaptic neuron is instantaneous and decays exponentially over

time in between further action potentials [37]. Following the

method used in [9] a positive noise term N is added to the model

to simulate background noise present in the cortex. This noise

term is exponentially distributed and generated by equation 6.

tn

dN(t)

dt
~{N(t)z0:35 mnzsn

ffiffiffiffiffi
1

tn

s !
g(t)

" #
ð6Þ

Where:

N(t) is the noise at time t

mn is the mean of the noise

sn is the standard deviation of the noise

tn is the time constant

g(t) is Gaussian white noise.

Synaptic dynamics are represented by equation 7.

ts

dg

dt
~{g ð7Þ

Where:

g is the effective conductance for an excitatory or inhibitory

synapse

ts is the synaptic time constant

When a presynaptic neuron fires the effective conductance (g)

for excitatory and inhibitory synapses is updated as shown in

equation 8.

gnew~gold � w ð8Þ

Where:

gold is the original effective synaptic conductance

gnew is the updated effective synaptic conductance

w is the synaptic weight

Refer to Table 2 for a summary of the neuron model

parameters and their initialised values.

Input Patterns
In the main, previous works have used artificially generated

moving bars or gratings as input to create directionally selective

feature maps (for example, [6,9,11,12]). A novel feature of the

visual system in the current work is that the input is generated

directly as spikes by a DVS 128 silicon retina camera [38,39]. This

device has been developed within the domain of neuromorphic

engineering and has only very recently begun to be used in specific

Figure 2. Connection probability profiles for the cortical layer.
This figure shows the relationship between the cortico-cortical
excitatory and inhibitory connection profiles. The curves represent
the probability of connection (ordinate) by distance (abscissa). At
distances less than 5 excitatory connection probabilities are high but at
greater distances they fall to zero (solid line). At distances less than 5
the probability of inhibitory connections is zero, between 5 and 21 the
probability increases and then falls to zero (dashed line).
doi:10.1371/journal.pone.0102908.g002

Table 1. Summary of network architecture parameters.

Parameter Value

Nin, number of neurons in Input layer 16384 (1286128)

Nl, number of neurons in LGN layer 1024 (32632)

Nc, number of neurons in cortical layer 3600 (60660)

Waff, afferent synaptic weights Randomly initialised between 0.4 and 0.5

Wlat, lateral synaptic weights Randomly initialised between 0.3 and 0.4 (exc) and -0.3 and -0.4 (inh)

Exc_pconn, connection probability for lateral
excitatory connections

Calculated as exp(-dist/sigma) where dist is the Euclidean distance between the neurons and sigma
is 3.5

Inh_pconn, connection probability for lateral
inhibitory connections

Calculated as exp(-sigma/dist) where dist is the Euclidean distance between the neurons and sigma
is 8.0

doi:10.1371/journal.pone.0102908.t001
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biologically-inspired machine vision applications [40,41]. There

are 4 main advantages to using a DVS camera instead of a regular

camera: 1) the input is frame-free: it consists of individual packets

which hold an address (encoding the spatial position) and a

timestamp. Therefore it is not necessary to process whole image

scenes at a time, only events; 2) an event is only generated when

something changes and so no time or resources are wasted

processing visual information when nothing has actually hap-

pened; 3) the DVS 128 output is illumination independent as the

triggering of a spike event is based purely upon pixel-level changes

in the input. This is an extremely important issue for artificial

vision systems as they need to be able to cope with the light levels

in different environments; 4) minimal pre-processing is required as

the camera directly encodes spike events which can be relayed

straight into a spiking neural network. The DVS camera outputs

raw events in AER (Address-Event Representation) format which

consist of a 4-byte address and a 4-byte timestamp. The address

encodes a spatial x, y position (in the range (0,127)(0,127)) for the

event and also an event polarity of 1 or -1 signifying ON or OFF

events respectively. Therefore the camera can register both when a

pixel is activated and deactivated. In the current work the input

motion sequences comprised of logged data from the camera: pre-

recorded sequences of a bar-shaped object moving in one of eight

directions (N, NE, E, SE, S, SW, W, NW) from which we extract

and use only ON events. For more details on information

extraction and processing of AER data see the jAER SourceForge

wiki [42].

Experimental Procedure and Analysis
For each experiment five randomly initialised networks were

produced with afferent LGN and Cortical connectivity appropri-

ate to the experiment. Ten different instances each of the eight

input patterns (representing directions N, NE, E, SE, S, SW and

NW) were presented to the network and the average of the firing

rate in response to each direction was collected. Neuron

preference and Selectivity Index (SI) were calculated using the

vector average method as described in [10]. See Appendix for

details. As is common in previous experimental and modelling

studies we have visualised neuron direction preferences as a

composite ‘map’: a 2D grid representation of the ‘cortex’ where

pixels representing the spatial location of neurons are coloured

according to their preferred direction. The Selectivity Index (SI) is

a measure of the degree of selectivity of a neuron and takes values

between 0.0 and 1.0 with 1.0 indicating exclusive preference for

one direction or orientation.

Results

DS and OR is present in the initial architecture
Networks created with the architecture as shown in Figure 1

and as described in the Methods section exhibit distributed patchy

activity on presentation of moving input generated by the DVS

camera. When a plot was produced with Cortical neurons

coloured according to their preferred direction (see Appendix for

details of the calculation of neuron preference and selectivity) a

distinct map reminiscent of an experimental DS map was

generated. See Figure 3 for an example of the map from one

network. This map exhibits some of the features which appear in

maps derived from experimental data such as areas of rapidly and

smoothly changing preference and fracture points where the

preference changes abruptly by 180 degrees. For comparison see

Fig 2 in [43] and Fig 5 in [44]. We also generated tuning curves

for selected neurons. Figure 4 shows tuning curves for 3 neurons

exhibiting weak DS (Fig 4a), strong DS (Fig 4b) and OR (Fig 4c).

The location of the neurons are indicated by letter on Fig 3.

Similar to the tuning curves shown in Fig 3c in [27], the OR

selective neuron (our Fig 4c) occurs in a location where neuron

preference changes rapidly and the weak and strong DS neurons

(our Fig 4a and b) occur at locations where the preference changes

more smoothly.

We calculated the Selectivity Index (SI) for both DS and OR

over all neurons and all runs and these results are presented as

histogram/cumulative percentage plots in Fig 5. The distributions

for both DS and OR are very similar to the experimental curves

for the eyes closed condition shown in Fig 1b in [26]. Average DS

and OR selectivity are both approximately 0.28. For OR this

Table 2. Summary of neuron model parameters.

Parameter Value

Vreset, reset voltage (LGN and cortical) 0 mV

VThreshL, neuron threshold (LGN) 0 mV

VThreshC, neuron threshold (cortical) Randomly initialised as 1.0 mV plus noise normally distributed between 0 and
0.3 mV

tlm , membrane time constant (LGN) 10 ms

tm , membrane time constant (cortical) 5 ms

te , excitatory synaptic time constant 5 ms

ti , inhibitory synaptic time constant 5 ms

tn , noise time constant 5 ms

mn , noise mean 0.7

sn , noise stadard deviation 0.5

tdl ,delay on lateral synapses Set as distance between pre and postsynaptic neuron plus noise added by a
Gaussian with mean 0 and standard deviation 0.5

tl refrac , neuron refractory period (LGN) 10 ms

tc refrac , neuron refractory period (cortical) 5 ms

doi:10.1371/journal.pone.0102908.t002
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compares well with the value of ,0.25 found at eye-opening in

[26] but for DS the value is too high for an immature network

(experimental value in [26] was ,0.1). Fig 6 shows a scatter plot of

OR vs DS for 5000 neurons randomly selected from all runs. We

found that, as in biological networks, that there are actually a

range of combinations of OR and DS: OR and DS can both be

high, moderately high OR selectivity (.0.6) exists where DS is low

(0.1–0.4). We also saw cases where DS is moderately high (0.6-0.8)

and OR is low (0.1–0.4).

The structure of LGN afferent receptive fields affects
innate DS

In order to determine to what extent the afferent connectivity

contributes to the innate DS we tested several different sizes of

connection field: 363, 565 and 767. We also looked at extreme

cases where connection fields were absent - where connectivity

between the LGN and Cortical layer was random (with connection

probability 0.2) and also full connectivity. Figure 7 shows plots of

the composite maps for all scenarios. In all cases there was some

kind of cortical ‘map’ with a distinctive patchy response. Figs 7b

(standard case CF 565; the same map as Fig 3) and 7c (CF 767)

Figure 3. Direction Preference map present in default network architecture. The distribution of neuron preference for directional selectivity
exhibits a similar patchy pattern to experimentally derived maps. In addition features seen in experimental maps such as regions of rapidly and
smoothly changing preference (box 1), fracture lines with abrupt switch to opposite preference (box 2) and saddle points (box 3) are present. The
letters a, b and c refer to neurons whose tuning curves are shown in Fig 4.
doi:10.1371/journal.pone.0102908.g003

Figure 4. Tuning Curves for Selected Neurons in the default network. Tuning curves are plotted with normalised rate (ordinate) against
direction (abscissa) and show cases where neurons have weak Directional Selectivity (a.), strong Directional Selectivity (b,) and Orientation Selectivity.
The neurons’ positions are indicated by letter on Fig 3.
doi:10.1371/journal.pone.0102908.g004
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show best similarity to experimental maps, whilst the others (and

particularly 7d and 7e) have much less smooth transitions of

preference and bigger areas of uncertain preference (speckled

patches). Table 3 gives the Selectivity Index (SI) averaged over all

neurons for all runs. We found that manipulating the form of the

afferent connectivity affected neurons’ selectivity but there was no

clear trend of decreased selectivity with disruption to the afferent

connectivity. Generally the differences in SI are modest, however,

there is a distinct peak in selectivity for the 767 case. A Kruskal-

Wallis test showed statistical significance in variation of SI across

the different cases (p,0.05). We also performed post-hoc tests

(pairwise comparison of all cases using the Mann-Whitney test)

which showed that in all comparisons the difference in SI was

significant.

To follow up the hint that the presence or absence of connection

fields might be affecting the smoothness of the map we calculated

direction preference gradient maps using the method described in

[10] (also see Appendix for method). The gradient values give an

indication of how smoothly the preference varies across the map

and larger values indicate more abrupt jumps between preference.

We calculated the average gradient for each map across 5 runs

and compared between the different connectivity cases – see

Table 4. We saw that there appeared to be a clear split between

the cases where the connectivity was structured (363, 565, 767)

and where it was not (Random. Full) with the latter having larger

gradient values. A Kruskal-Wallis test showed overall significance

(p,0.05) in the differences between all cases and post-hoc tests

confirmed that this came entirely from the difference between the

structured (363, 565, 767) and unstructured (Random, Full)

groups whereas differences within these groups were not

significant.

Sufficient lateral inhibition is required for innate DS
We compared the cases for a 565 LGN connection field and full

LGN-Cortical connectivity when the spatial range of lateral

inhibition was drastically reduced. This was done by forcing the

lateral inhibition to zero at distances greater than 8 units,

effectively reducing the range from approximately 56 the

excitatory range down to only 2x. Figure 8 shows plots of the

composite maps for the two cases and indicates that in both cases

the ‘map’ was significantly disrupted from the standard case.

When a connection field was present (Fig 8a) we saw that there

were some patches of the same preference and topological

arrangement of patches of similar preference but nowhere near

as structured as the map features shown in Figure 3. With full

afferent connectivity (Fig 8b) the map was much more significantly

Figure 5. Distribution of Direction and Orientation selectivity strength. Here the Selectivity Index (SI) has been calculated for all neurons
over all runs for both DS (a) and OR (b) and the data are presented as histograms with cumulative % graphs overlaid. The curves are very similar and
also compare well to those found experimentally for pre-EO animals.
doi:10.1371/journal.pone.0102908.g005

Figure 6. Comparison of individual neurons DS and OR strength. The scatter plot shows Orientation Selectivity Index (ordinate) against
Direction Selectivity Index (abscissa) for all neurons over all runs. Various combinations are evident: high DS and OR, low DS/high OR and high DS/low
OR.
doi:10.1371/journal.pone.0102908.g006
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disrupted. Table 5 shows statistics (to 2 decimal places) averaged

over all neurons and five runs and complements what is seen in the

plots. We found that the average neuron selectivity was very much

lower than the cases where inhibitory connectivity was intact (see

Table 3). The worst case was when there was both reduced lateral

inhibition and full afferent connectivity. This is very apparent from

Fig 8b. The difference between the two cases was found to be

statistically significant (Mann-Whitney, p,0.05) indicating (as

found in the previous experiment) that the form of the afferent

connectivity contributes something to DS even though the effects

of reduced lateral inhibition are dominant.

Discussion

We have shown that with a simplified architecture and

assumptions similar to previous modelling studies, DS is innate

in the structure of our network and manifests on presentation of

moving patterns without requiring a period of learning or ‘visual

experience’. OR is also present in the network and the distribution

of OR selectivity strength and average SI compares well with

experimental findings for animals at eye-opening. The DS maps

exhibit similar features to experimental maps although they are

not identical. We believe that the differences might be due to the

fact that we use real moving objects as stimuli. Experimental

studies use moving sinusoidal gratings (as do most computational

studies, for example [27]) which will ensure a consistent level of

stimulation spatially and temporally. We also found that the

average DS Selectivity Index is somewhat higher than that found

in experiments, pre eye-opening – 0.28 compared to [26] where

values of DS for animals after eye-opening at Postnatal Day (PND)

,35 and .35 are approximately 0.15 and 0.25 respectively. We

believe this may be due to the fact that our levels of lateral

inhibition are set too high for an immature network.

As well as reproducing the findings of [27] with respect to DS

and OR we have made a deeper study of the features of the

network architecture that support innate DS by performing

experiments that changed the afferent and lateral connectivity in

various specific ways. We showed that the LGN layer afferent

connection fields (which control the input available to cortical

neurons) and the extent of lateral inhibition in the cortical layer

interact to produce DS. Comparing the results of our experiments

with varying afferent connectivity and lateral inhibition it is clear

that the primary prerequisite for the presence of strong DS is

sufficient lateral inhibition but maximal disruption to the DS was

Figure 7. Direction Preference maps for different LGN afferent connectivity conditions. The figures in the top row show the effects of
varying the LGN-Cortical connection field size on the arrangement of cortical responses. The cases are a) 363 connection field b) 565 connection
field c) 767 connection field d) Random connectivity between the LGN and Cortical layers and e) LGN and Cortical layers fully connected. The
characteristic distributed patches of activity in response to different patterns are present in all maps (although there are differences in the neuron
selectivity see Table 3). Figures 7b (standard case CF 565; the same map as Fig 4) and 7c (CF 767) show best similarity to experimental maps, whilst
7d and 7e have much less smooth transitions of preference and bigger areas of uncertain preference (speckled patches).
doi:10.1371/journal.pone.0102908.g007

Table 3. Direction Selectivity for Afferent Connectivity Experiments.

Afferent Connectivity Selectivity Index

363 connection field 0.31

*565 connection field 0.28

767 connection field 0.36

Random 0.28

Full 0.31

*This is the standard case scenario.
doi:10.1371/journal.pone.0102908.t003
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achieved when both afferent connection fields were absent and the

radius of lateral inhibition was significantly reduced. In [27] the

innate DS was attributed only to the cortical dynamics caused by

inhomogeneities in the cortical connections and did not investigate

the contribution from afferent connections. In terms of future

work, there are aspects of our system that remain to be

investigated which might impact on innate DS. Does the precise

form of the spiking neuron model matter and do the values for

membrane and synaptic time constants affect the response? We

have used initial conditions in line with previous modelling works,

but it would be interesting to establish if our proto-architecture is

sensitive to specific initial distributions of connection weights and

delays. We also believe it is important that such a proto-

architecture is able to be tuned by visual experience as in real

networks and future work will explore a learning scenario to see if

experimental results can be reproduced. An example of such

results is the work described in [26] which gives values for

individual neuron selectivities before and after visual experience

and also the global picture shown as a cumulative percentage

graph which exhibits a distinct rightwards shift after visual

experience showing that a large proportion of neurons increased

their selectivity.

Our findings are potentially important for both future biological

investigations and the creation of artificial systems. It seems

reasonable that in natural systems a ‘proto-architecture’ might

exist to canalize the development of something as vital as visual

capability and ensure a degree of functionality early in the

developmental process. It is equally important that this structure

should be able to be tuned by visual experience when it becomes

available. We believe that the concept of a proto-architecture

delivering an initial capability which is modifiable by experience

might be a general one with applications wider than that of just

vision and should be a topic of investigation for developmental

biologists. It is likely that new techniques or novel applications of

existing techniques will be required to confirm or deny the

presence of a proto-architecture and whether such a structure has

a genetic basis. Complementary to our current work, more

modelling studies are needed to establish that the form of cortical

connectivity necessary for innate DS could arise from a genetic

specification via a plausible developmental process. The recent

modelling work of [45,46] in growing cortical-like architectures

using biologically plausible genetic/developmental processes indi-

cates that this should be achievable.

The developmental approach to robotics has taken its inspira-

tion from the fact that natural systems do not spring into being

fully formed but undergo considerable periods of refinement and

change, and in particular adapt in response to input from the

environment. Crucial developmental processes in both pre- and

early post natal life set the stage for later capability. The

importance of such developmental processes, and in particular

the gradual acquisition of capability, has been noted by previous

robotics researchers exploring visual-motor coordination [47,48].

However, these studies are still based on the concept of activity or

‘experience’ as the primary driver for development, often

requiring significant training time to acquire a level of skill. We

have shown that it is possible for a system for motion sensitivity to

exist without the overhead of a learning mechanism and extensive

training. For developmental robotics, this implies that a ‘tabular

rasa’ may not be the most efficient starting point for artificial

learning.

Table 4. Direction Preference Gradient for Afferent Connectivity Experiments.

Afferent Connectivity Average Gradient

363 connection field 30.8

565 connection field 30.2

767 connection field 28.0

Random 37.4

Full 33.2

doi:10.1371/journal.pone.0102908.t004

Figure 8. Direction Preference maps for reduced lateral inhibition. In both cases reducing lateral inhibition has almost completely disrupted
the characteristic patchy structure seen in previous figures. When a 565 connection field is present (a) there are some patches of the same preference
and topological arrangement of patches of similar preference but nowhere near as structured as the intact case. With full afferent connectivity (b)
there is complete map disruption: most neurons are active for all of the motion directions and selectivity is very low (see Table 5).
doi:10.1371/journal.pone.0102908.g008
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Appendix

Calculation of Neuron Preference and Selectivity
Having collected the average firing rate for each neuron in

response to each direction, neuron orientation and direction

preference was calculated using the vector average method

described in [10]. For orientation, firing rates were averaged over

the two opposite directions of motion as was done in [27] and the

vector sum V(x,y) for each neuron was calculated using equations

9 and 10:

Vx~
X

w
gw cos (2 � w)ð Þ ð9Þ

Vy~
X

w
gw sin (2 � w)ð Þ ð10Þ

Where:

Vx and Vy are the x and y component sums

gw is the firing rate for orientation w

The preferred orientation h can then be found using equation

11:

h~
1

2
a tan 2 Vy,Vx

� �
ð11Þ

Note that equation 11 produces orientations in the range 0 to

+/2 180 degrees. To convert to 0–180 range, 180 degrees need to

be added to negative angles.

For direction preference the same method is used except that as

direction is 2p-periodic, w is not multiplied by 2 in equations 9 and

10 and there is no division by 2 in equation 11. Negative angles are

converted to 0–360 range by adding 360 degrees.

The Selectivity Index (SI) is the magnitude of vector V.

Normalised selectivity is calculated using equation 12.

SI~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

xzV2
y

q
X

w
gw

ð12Þ

Calculation of Preference Gradient
The direction preference gradient was calculated using the

method described in [10]. Having calculated each neuron’s

direction preference, h, using equations (9–11), the differences

between each neuron and its preceding neighbour in the x and y

directions were computed:

Dx, i, j~hi, j{h(i{1), j ð13Þ

Dy, i, j~hi, j{hi,(j{1) ð14Þ

Where:

hi,j is the direction preferred by neuron i,j.

The gradient magnitude is then calculated as:

Di,j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x, i, jzD2
y, i, j

q
ð15Þ
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