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Abstract

Stimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a
powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low
penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth
non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS) of neurons in-vivo in transgenic mouse models. In
order to optimize the deep-brain stimulation strategy, we characterized two-photon activation efficacy at different near-
infrared laser parameters. The significantly-enhanced in-depth stimulation efficiency of FO-TPOS as compared to
conventional single-photon beam was demonstrated both by experiments and Monte Carlo simulation. The non-scanning
FO-TPOS technology will lead to better understanding of the in-vivo neural circuitry because this technology permits more
precise and less invasive anatomical delivery of stimulation.
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Introduction

While neuronal imaging has enabled the mapping of the

physical connectome [1] of the brain in a high-throughput

manner, there is now a growing need for an efficient, high

resolution method to functionally map the multitude of neural

connections in the brain. However, until recently, such a task was

challenging not only in terms of the non-invasiveness, but also in

the required cellular specificity in the sea of multifunctional neural

units. Recently, visible light-assisted activation of selected neuronal

group has been made possible with high temporal precision by

introducing a light-activated molecular channel; channelrhodop-

sin-2 (ChR2) [2,3,4,5] and its variants. This method has several

advantages over electrical stimulation [6,7,8] such as cellular

specificity and minimal invasiveness and therefore, growing as a

valuable tool in neuroscience research. Though the use of light-

activated molecular ChR2 for in-vivo models is increasing,

limitations of its utility exist. Although optogenetic methods

require very low intensity light (a few mW/mm2) [3], at the

activation wavelength for ChR2 (460 nm) significant absorption

and scattering of stimulating light occurs which leads to limited

(shallow) penetration of the beam [9] (Fig. 1a). Thus, in order to

stimulate cells in the most ventral regions of the brain, one has to

choose between one of two undesirable alternatives: The first is to

maintain the minimally invasive qualities of the approach but

requires that the average beam power be significantly increased.

Unfortunately, this approach using single photon (visible) light

often leads to significant deleterious effects on the cell viability in

the vicinity of the target, and thus may limit the translational

potential of this technology. The second alternative approach is to

use optical fiber [10,11,12] or mLED [13,14]-based blue light

delivery to excite neurons in close proximity to the optical fiber or

mLED. This approach may also compromise the minimally

invasive qualities of optogenetics because optical fibers (similar

to electrodes used in electrical stimulation techniques) or mLED(s)

need to penetrate through more superficial brain tissue in order to

reach more ventral brain regions. In this way, the more superficial

brain tissue gets damaged; and such damage can lead to difficulty

in interpreting the outcome of deep-brain stimulation. Therefore,

several attempts have been made to shift the activation peak of

ChR2 from the blue to the red wavelength region [15,16,17].

While there has been some success at the cost of altered light-

activation kinetics, it seems a near-infrared opsin would be ideal

for in-depth cell-specific optogenetic stimulation of excitable cells

in an organism. However, the success in developing a near-

infrared opsin would still not permit applicability of the method for

selective activation of small regions in deep (ventral) brain areas,
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since the single-photon (red or infrared) stimulating beam will also

stimulate neurons outside of the targeted population (in the path of

the beam, Fig. 1b).

Because of low absorption and scattering coefficients, the two-

photon optogenetic activation using a near infrared laser beam can

provide both deep penetration and high spatial precision, achieved

by virtue of the non-linear nature of ultrafast light interaction with

ChR2. Comparison of single-photon blue (a), and red-shifted

excitation (b) with two-photon optogenetic stimulation (c) is shown

in Fig. 1. Since the first demonstration [18] of in-vitro two-photon

optogenetic stimulation (TPOS) of ChR2-sensitized cells and

neurons by using point or scanning laser beam, there has been

significant progress [19,20,21,22] in using TPOS for probing

neural circuitry in cultured neuronal cells as well as brain slices.

Further, recent advances demonstrate that optogenetically-sensi-

tized neurons can be activated by spatially-sculpting [20] and/or

temporal-focusing [21] the TPOS beam. It is important to note

that the two-photon excitation has significant benefits over the

Figure 1. Two-photon Optogenetic stimulation. Schematic comparison: (a) single-photon blue excitation, (b) single-photon red-shifted
excitation and (c) two-photon optogenetic stimulation (TPOS). (d) Intensity profile emanating from the multimode fiber, scale bar: 100 mm, (e)
Spectrum of ultrafast tunable near-infrared fiber-optic beam, (f) Two-photon fluorescence (green) from polystyrene particle excited by multimode
profile. In-vitro two-photon activation of ChR2-expressing cells with ultrafast NIR laser beam: (g) Representative current responses to ultrafast NIR
laser beam at different wavelengths (in nm), (h) Fiber-optic two-photon activation spectrum at 0.02 mW/mm2 (100 ms pulses).
doi:10.1371/journal.pone.0111488.g001
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single-photon excitation such as less photo-damage, enhanced

penetration depth and localized stimulation [23]. Further, two-

photon cross-section of ChR2 is empirically estimated [19], [21] to

be larger than that of most of the fluorophores and therefore, has

potential for stimulating opsin-expressing neurons using weakly-

focused (and even defocused) two-photon beams. However, to

date, two-photon excitation has only been demonstrated in-vitro
with microscope-based setups [18,19,24] and recently by fiber-

optic stimulation [25]. Here, we demonstrate in-vivo fiber-optic

two-photon optogenetic stimulation (FO-TPOS) of in-depth

neuronal circuitry in transgenic mouse model. Our experiments,

reported here, demonstrate that multimode fiber can be used: (1)

in-vivo as a non-scanning beam unlike that used in earlier

microscope objective based two-photon stimulation reports, (2) to

achieve in-depth two-photon activation in-vivo and (3) to evaluate

intensity and wavelength-dependent in-vivo fiber-optic two-

photon optogenetic stimulation efficacy. Here, we would like to

emphasize that this manuscript does not examine the axial

localization ability of two-photon stimulation in-vivo. Stimulation

of ensemble of chemically-identical cells at large depths by two-

photon fiber-optic optogenetic means as demonstrated here, in a

non-invasive manner will enable dissecting the role of those

ensembles in particular function and thus modulate behavior.

Materials and Methods

Ethics statement
All experimental procedures were conducted according to the

University of Texas at Arlington-Institutional Animal Care and

Use Committee approved protocol A10.009. The IACUC

specifically approved this study.

Cell culture
HEK 293 cells were transfected with the ChR2-EYFP

construct, cloned into pcDNA3.1 neo (Invitrogen, USA). ChR2

cDNA was kindly provided by Dr. Georg Nagel (University of

Wuerzburg, Germany). EYFP was fused in-frame to the C-

terminus of ChR2 by PCR. Transgene-expressing cells were

identified by visualizing the EYFP fluorescence under suitable

illumination (514 nm). Stable clones were selected with 200 mg/l

G418 and colonies were picked after 2 weeks, and then expanded.

Clones that showed the highest level of EYFP fluorescence were

chosen for the optical activation experiments. Cells were

maintained at 37uC, 5% CO2 in DMEM containing 10% fetal

bovine serum. For generating light activation, cells were loaded

with all-trans retinal (1 mM) for at least 6 hours and activated with

fiber-optic laser beam.

Optogenetic stimulation
For both the in-vitro and in-vivo activation of ChR2-expressing

cells (identified by YFP fluorescence) or different brain regions

expressing ChR2, both two-photon and single photon sources

coupled to a 50 mm core optical fiber using a fiber coupler

(Newport Inc.), mounted on a mechanical micromanipulator so as

to position the tip of the fiber near the region of interest. The

single-photon source consists of a blue (473 nm, 30 mW) diode

laser coupled to the fiber, while the two-photon beam is provided

by a 200 fs near-infrared Ti: Sapphire laser (Maitai HP, Newport-

SpectraPhysics Inc.) beam operating at ,76 MHz, coupled to the

same fiber. Further, the two-photon laser wavelength was tuned

from 750 to 950 nm in order to compare the relative efficiencies of

the various NIR wavelengths. Macro-exposure pulses of stimula-

tion light were generated by a function generator driving the

electro-mechanical shutter in the beam path. The function

generator was synchronized to the in-vitro and in-vivo electro-

physiology recording system (Plexon and Biopac Inc.). Light power

at the fiber-tip was measured using a standard light power meter

(PM 100D, Thorlabs Inc).

Patch-clamp recording setup
The opto-electrophysiology set up was developed on an

Olympus upright microscope platform using an amplifier system

(Axon Multiclamp 700B, Molecular Devices Inc.). Parameters of

the pipette puller were optimized in order to obtain desired

borosilicate micropipettes of resistance from 3 to 5 MV for whole-

cell patch clamp. The micropipette was filled with a solution

containing (in mM) 130 K-Gluoconate, 7 KCl, 2 NaCl, 1 MgCl2,

0.4 EGTA, 10 HEPES, 2 ATP-Mg, 0.3 GTP-Tris and 20 sucrose.

The electrode was mounted on a XYZ motorized micromanip-

ulator (Newport Inc.). The standard extracellular solution

containing (in mM): 150 NaCl, 10 Glucose, 5 KCl, 2 CaCl2,

1 MgCl2 was buffered with 10 mM HEPES (pH 7.3). The output

from the amplifier was digitized using a National Instruments card

(PCI 6221). For electrophysiological recording, the hardware was

interfaced with patch-clamp software from University of Strath-

clyde (non-commercial use). Electrical recordings were performed

at a holding potential of 260 mV at room temperature (20–24uC).

For activation of ChR2-expressing cells (identified by YFP

fluorescence), the optogenetic stimulation beam (473 nm, or

NIR) was delivered via a 50 mm core optical fiber, mounted on

a mechanical micromanipulator so as to position the tip of the

fiber near the desired cell being patch-clamped. For generating

and controlling pulses of light, the electromechanical shutter in the

laser beam path was interfaced with a PC. TTL pulses of desired

frequency were generated using National Instruments (PCI 6221)

card in order to generate required laser pulses for activation. For

electrophysiological measurements subsequent to optical activa-

tion, the shutter was synchronized with the patch clamp recording

electrode. The whole system was built on a vibration isolation

table (Newport Inc.) and electrical isolation was done by means of

a Faraday cage that was placed around the setup. pClamp

software was used for data analysis.

Monte Carlo Simulation
Monte Carlo simulation is known as the most reliable and

flexible method for modeling photon migration in biological tissue.

Here, we used the widely-used Monte Carlo simulation codes for

light propagation in multi-layered biological tissue named

‘MCML’ [26] and ‘COV’ [27]. The brain was modeled as a

two-layered tissue including grey matter and white matter. We set

up parameters [28,29,30] (ma = absorption coefficient; ms = scatter-

ing coefficient; g = anisotropy factor; n = refractive index, and

d = thickness of cortical layers) as listed in Table S1 for the

simulation, and then computed light propagation with the MCML

code. Then the paired code ‘COV’ was utilized to extract the

simulation output and calibrate the computed fluence rate

distribution by quantitatively carrying the effect of Gaussian beam

distribution and respective parameters, including beam size, laser

power, and numerical aperture (NA). 107 photons were launched

in each simulation to achieve an excellent signal-to-noise ratio in

simulation output [26,27].

Mouse preparation
The (Thy1-ChR2-YFP) transgenic (n = 6, age between 12 to 16

weeks), and wild-type (C57BL/6J) mice (n = 3, age between 12 to

16 weeks) used in the reported experiments, were purchased from

Jackson Labs. All aspects of experimental manipulation of our

animals were in strict accordance with guidelines of the University
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of Texas at Arlington’s Institutional Animal Care and Use

Committee (IACUC). Mice were maintained on a 12:12 light

cycle (lights on at 07:00).

In-vivo electrophysiology recordings
Animals were deeply anesthetized with 90 mg/kg ketamine and

10 mg/kg xylazine and placed in a stereotaxic frame (Kopf

Instruments Inc.). For in-vivo recording, a linear midline skin

incision was made and burr holes were bilaterally drilled in the

skull at the anteroposterior (AP) (in reference to bregma) and

mediolateral (ML) coordinates corresponding to VTA (23.2 mm

AP; 60.5 mm ML). The electrode was implanted stereotaxically

to allow recording from deep brain regions. Continuous electrical

activity was then recorded either via a multichannel acquisition

system (Omniplex, Plexon Inc.) or via an amplifier (MP-150,

Biopac Inc.) interfaced with the Acqknowledge acquisition

Figure 2. In-vivo fiber-optic optogenetic stimulation using single (blue) vs two-photon (NIR) stimulation. (a) Set-up for in-vivo single and
two-photon fiber-optic optogenetic stimulation and electrophysiological recording. Inset in right: Glass electrode and fiber based optrode. (b) In-vivo
raw spiking of locally stimulated neurons (upper panel) corresponding to two-photon stimulation (shutter opening: lower panel) at 870 nm. (c) Peak-
amplitude of recorded local electrical activity as a function of incident power density of in-vivo fiber-optic TPOS at two different wavelengths (also
shown fitted lines). (d) Variation of peak amplitude of single photon (473 nm)-activated local electrical activity as a function of power density. (e)
Peak-amplitude as a function of pulse width of in-vivo fiber-optic TPOS (870 nm) at two different power densities.
doi:10.1371/journal.pone.0111488.g002
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Figure 3. In-depth fiber-optic optogenetic stimulation using single (blue) vs two-photon (NIR). Monte Carlo simulation of light
propagation in two-layered cortex for beam diameter of 60 mm, with laser power of 5 mW, (a) two-photon and (b) single-photon Gaussian beam. The
color bar has unit of ln(W/cm2). Confocal immunofluorescence images of a deep brain region of Thy1-ChR2-YFP transgenic mice: (c) YFP, (d) tyrosine
hydroxylase (TH), (e) composite image. Arrows point to examples of colocalized YFP-ChR2 in dopaminergic neurons. (f) Raw spiking activity at
different depths due to in-vivo fiber-optic two-photon optogenetic stimulation (FO-TPOS). (g) Comparison of single and two-photon activated depth-
dependent peak amplitude. *: p,0.05 vs. single photon. (h) Variation of peak amplitude of two-photon (850 nm)-activated local electrical activity as a
function of depth at different power densities. (i) Comparison of peak-amplitude at two different wavelengths of in-vivo fiber-optic TPOS at different
depths.
doi:10.1371/journal.pone.0111488.g003
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software on a networked PC. The animals were euthanized

following electrophysiology recoding. by intraperitoneal injection

of Sodium Pentobarbital (100 mg/kg).

Statistics
Data were analyzed using Statistical Package for the Social

Sciences (SPSS, IBM). One-way analysis of variance (ANOVA)

followed by Tukey’s post-hoc test was used to determine whether a

significant difference occurred. The data were plotted as mean 6

S. D. The accepted level of significance was p,0.05.

Results

In-vitro fiber-optic near-infrared ultrafast laser irradiation
leads to optogenetic stimulation

In contrast to the use of a microscope objective for focusing the

two-photon laser beam, we employed a tunable (800–900 nm),

ultrafast (200 fs) fiber-optic beam for non-scanning two-photon

optogenetic activation. It is important to note here that earlier

TPOS methods utilized different scanning modes (spiral, raster) for

activation of ChR2-expressing cells to optimize the efficiency of

Figure 4. Depth-dependent in-vivo fiber-optic single and two-photon optogenetic stimulation. Sketch showing in-depth stimulation limit
of fiber-optic (a) blue (single-photon) vs (b) NIR (two-photon) light. Different cortical layers are marked by blue lines. Raw electrical recording at 3 mm
depth for (c) single photon (473 nm, 4 mW) and (d) two-photon (870 nm, 80 mW) stimulation. (e) Overlay of raw spikes (red profiles) with shutter
(fiber-optic two-photon stimulation ON) opening (black profiles) at different depths for two different wavelengths. Also shown are representative
single photon signals (blue profiles) at different depths, with shutter-ON marked by black profiles. (f) Comparison of latency of spikes at different
depths stimulated by single photon and two-photon (870 nm) fiber-optic beams. *: p,0.05. (g) Histogram of latency of spikes at different two-
photon wavelengths for three depths. *: p,0.05 vs. latency at 1 mm. (h) Variation of latency as a function of depth for different two-photon (870 nm)
power densities.
doi:10.1371/journal.pone.0111488.g004
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excitation [19]. For testing the efficiency of fiber-based non-

scanning two-photon activation in-vitro, HEK-293 cells expressing

ChR2 were used and channel activities were recorded with patch

clamp. The patch clamp set up for electrophysiological measure-

ment subsequent to FO-TPOS is shown in Fig. S1a. The tunable

Ti: Sapphire laser (FSL, 76 MHz) beam was expanded using a

beam expander (BE) and coupled to an optical fiber using a lens

(L). A shutter (S) controlled the exposure (macro-pulse) duration

and a circular neutral density filter (NDF) was used to control the

average beam power. In the case of single mode fiber-optic beam

or laser beam focused by microscope objective, the intensity and,

therefore, the two-photon stimulation is maximum at the center

and slowly decays towards periphery (Gaussian nature). However,

in case of the multimode fiber-optic beam, as used here, the

maximum intensity spots are distributed over the irradiated cell(s)

and two-photon stimulation is expected to occur in these spots

leading to non-scanning activation of the cell(s). Fig. 1d shows the

intensity profile of the NIR (875 nm) beam emanating from the

multimode fiber at a distance of ,1.3 mm from the cleaved end.

In Fig. S1(e), we show the time-lapse (1 sec) intensity profiles (in

different colors) along a line drawn across the beam profile (Fig.

S1d). The beam profile was found to be stable (average correlation

coefficient between two frames is 0.98) unless the fiber was

mechanically actuated externally (Movie S1). In order to estimate

the pulse width of the ultrafast NIR fiber-optic beam, the spectrum

was measured using spectrometer (Ocean Optics Inc) at different

wavelengths (Fig. 1e). At a fixed wavelength, variation of intensity

(by changing the pump laser intensity) led to change in pulse width

at lower pump power as shown in Fig. S1b. Since no significant

change in pulse width at high oscillator power (1.3 to 1.7 W) was

observed, this range was used for intensity-dependent studies. This

range of oscillator IR laser power corresponds to ,150 to

260 mW at the coupling end of the multimode fiber. With a

coupling efficiency of nearly 50%, the average power at tip of the

fiber was measured to be 75 to 130 mW. Before evaluating two-

photon activation of cells by multimode fiber-optic beam, we

examined if the ultrafast fiber-optic near-infrared beam has

sufficient photon densities to result in two-photon excitation.

Therefore, we carried out two-photon excitation of fluorescent

polystyrene particles (Bangs Lab) by placing the cleaved fiber tip

near the particles. The beam spot size is about 50 mm when the

fiber was placed 10 mm away from the particles. Fig. 1f shows the

green fluorescence emitted from 45 mm polystyrene particle(s)

excited by the multimode fiber-optic beam (Movie S2). Non-linear

nature of the incident intensity-dependent fluorescence emission

confirmed role of two-photon excitation. It may be noted that as

distance of the fluorescent particle from the fiber increases, the

excitation intensity decreases due to divergence of the beam from

the fiber and therefore, leads to change in excitation volume.

In order to map the in-vitro fiber-optic two-photon activation

spectrum of ChR2, the wavelength of the near-infrared stimula-

tion laser beam was tuned from 800 to 900 nm. Expression of

ChR2 in HEK 293 cells was confirmed by fluorescence imaging of

reporter fluorescent protein (YFP). The cleaved multimode fiber

tip was positioned ,100 mm away from the clamped-cell. In

Fig. 1 g, we show representative current responses recorded from

Figure 5. In-depth c-Fos expression in dopinergic cells due to fiber-optic two-photon optogenetic stimulation. Confocal
immunofluorescence images of ventral tegmental area (VTA) of Thy1-ChR2-YFP transgenic mice. (a) YFP, (b) tyrosine hydroxylase (TH), and (c)
Composite image showing co-localization of YFP and TH. Arrows point to examples of co-localized cells. Increase in c-Fos expression of dopinergic
cells in VTA due to fiber-optic two-photon optogenetic stimulation (FO-TPOS); (d) TH, (e) c-Fos, and (f) Composite image showing co-localization of
TH and c-Fos. Few cells have been marked as predicted (MC simulation) by the boundary of the FO-TPOS beam profile.
doi:10.1371/journal.pone.0111488.g005
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a single cell, irradiated with ultrafast NIR laser beam (100 ms

pulses, with average power density of 0.02 mW/mm2, at cell

membrane) at different wavelengths. The fiber-optic two-photon

activation spectrum of ChR2 (Fig. 1 h) in-vitro shows that the

peak activation wavelength is at 850 nm. Theoretically, two-

photon optogenetic excitation is expected to be maximal near

920 nm (double the single photon excitation peak wavelength).

The current amplitude at 900 nm was 9.960.6 pA (n = 18), which

was lower than the current amplitude at 850 nm (28.062.4 pA,

n = 19). The observed blue-shift of the two-photon activation

spectrum can be attributed to the parity selection rules favoring

the two-photon excitation of all-trans-retinal and thus activation of

ChR2 (in closed form) to higher energy (open) state than the

respective single-photon-induced activation. This ‘‘blue-shifted’’

optimum stimulation wavelength for two-photon excitation with

respect to single-photon excitation is similar to that observed

[31,32] in two-photon absorption of many fluorescence dyes and

in two-photon activation ChR2-sensitized HEK cells [20].

Estimation of two-photon absorption cross section
For estimation of fiber-optic two-photon cross-section of ChR2-

activation (Fig. S2), we have considered the dispersion-induced

measured pulse-width. We estimated the two-photon absorption

cross section by fitting the equation to the inward current obtained

from patch-clamp as shown in Fig. S2 (a–b). The inward

increasing current was fitted with following equation,

I�(T)~I�( max )f t2

tg{t2
(e

{T
tg{e

{T
t2 )

{
t1

tg{t1
(e

{T
tg{e

{T
t1 )g

ð1Þ

Where tg is the ground state life time, defined (2/s2 I2) for two

photon excitation and (1/s1 I) for single photon excitation.

I = intensity, s2 = two-photon absorption cross-section, t1 = acti-

vation time-constant, and t2 = current decay time-constant.

From the fitted parameters the two photon absorption cross-

section at l= 870 nm and 900 nm was found to be

226.4865.034 GM and 186.32633.03 GM respectively. This

estimated two-photon absorption cross-section is higher than

many known fluorophores and is comparable to earlier report

[19]. This is one of the reasons why fiber optics could produce

two-photon activation of ChR2 at low average intensities.

Peak of in-vivo fiber-optic two-photon stimulation
wavelength is also blue-shifted

In order to achieve in-vivo two-photon stimulation of different

brain regions of transgenic mice (Thy1-ChR2-YFP), fiber-optic

delivery (Fig. S1c) of the fs laser beam was employed instead of

microscope objective. The fiber tip was placed in the cortical

layer-1 of the transgenic mice and the electrode was translated

stereotactically to 1 mm beneath the fiber tip. In case of fiber-optic

two-photon stimulation, the laser beam irradiates the entire cell(s).

In order to compare the relative efficiencies of various NIR

wavelengths in fiber-optic two-photon optogenetic stimulation

(FO-TPOS) in in-vivo, the (Ti: Sapphire) laser wavelength was

tuned from 800 to 900 nm, maintaining same power levels. Fig.

S3a shows spiking activity recorded in cortical regions by in-vivo
electrophysiology subsequent to fiber-optic two-photon optoge-

netic stimulation at three selected wavelengths (average incident

laser power density: 0.013 mW/mm2, pulse width: 50 ms;

frequency of shutter: 5 Hz). Fig. S3b shows variation of peak

voltage as a function of in-vivo FO-TPOS wavelength. Though

the in-vivo two-photon activation spectrum is of similar nature to

that of the in-vitro patch-clamp experiments (Fig. 1), the slope was

less steep towards higher activation wavelengths. At these NIR

three wavelengths, the average power density of the fiber-optic

beam was increased to 0.023 mW/mm2, and spikes were recorded

from the same site (n = 5). Fig. S3b shows an increase in peak

amplitude of the recorded spikes at all the three wavelengths of in-
vivo FO-TPOS for higher laser power density (p,0.02, n = 5).

In order to further evaluate the efficacy of wavelength-

dependent fiber-optic in-vivo two-photon activation, the firing

rate (spikes per second) was measured and normalized (after

subtracting number of background spikes, if any). Fig. S3c shows

the normalized firing rate as a function of wavelength of in-vivo
FO-TPOS. In the case of two-photon firing-rate based activation

spectrum, the wavelength-dependency is more favorable towards

longer wavelengths as compared to the peak-amplitude (Fig. S3b)

and current based activation spectrum (Fig. 1 h). This may be

attributed to differential absorption and scattering properties of

neural tissue and water in the near-infrared region. While at

longer wavelengths, the single-photon water absorption increases,

the two-photon absorption of cellular chromophores and ChR2 is

higher towards lower wavelengths. The fact that at higher

wavelength (1000 nm), no significant stimulation was observed

led us to conclude that contribution of direct (photothermal or

photomechanical) stimulation is minimal. Further, these direct

effects have earlier been found to occur at significantly higher

pulse energies [33] and power densities [34] than that used in our

current experiments.

In-vivo fiber-optic two-photon optogenetic stimulation is
intensity dependent

To determine the variation of in-vivo two-photon activation

efficacy as a function of average laser power density (intensity), the

ChR2-expressing cortical regions of the transgenic mice were

stimulated using the setup shown in Fig. 2a. Further, to compare

the intensity-dependency of in-vivo two-photon stimulation with

that of single-photon, a blue diode laser (473 nm) was combined

with the two-photon laser beam using a dichroic mirror (DM), co-

aligned by a folding mirror (M), expanded by beam expander (BE)

and coupled to a single fiber using a lens (FL). A computer-

controlled shutter (S) was used (Fig. 2a) to control the stimulation

pulse duration and the frequency of both the single and two-

photon activation beams. In order to rule out photoactivation of

the recording electrodes, which would lead to spurious signals, the

optical fiber was affixed (shown by white line in right inset in

Fig. 2a) to a glass micro-pipette with the fiber-tip positioned

,1 mm ahead of the pipette tip. A tungsten electrode was inserted

into the pipette containing extracellular recording solution ,2 cm

away from the fiber tip. Loss of some near-infrared light from the

fiber can be seen near the shank of the pipette tip due to bending

of the fiber (inset in Fig. 2a). Fig. S4a & b show recordings from

the micropipette-electrode during ON and OFF cycles of ultrafast

near-infrared irradiation in absence and presence of phosphate

buffer saline respectively. The recording using the micropipette-

electrode during in-vivo fiber-optic two-photon illumination of

cortical region of deceased transgenic mouse brain is shown in Fig.

S4c. The stimulation pulses (shutter opening and closing) are

shown below all recordings in Fig. S4. Thus, the use of

micropipette-electrode in combination with the light-delivery fiber

being at fixed distance (1 mm) from the tip allowed us to remove

the artifact (if any). In Fig. 2b, we show in-vivo raw spiking of

locally stimulated ChR2-expressing cortical neurons (upper

panel) of transgenic mouse in synchronization with two-photon
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stimulation (shutter opening: lower panel) at 870 nm. FO-TPOS

experiments performed in ChR2 negative mice (n = 3, C57BL/6J)

did not lead to any light-evoked electrical activity at depth of

1 mm for incident average intensity up to 0.02 mW/mm2

(870 nm, 80 MHz, shutter pulse width: 100 ms).

The micropipette-electrode-fiber carrying both blue and near-

infrared laser beam was used to conduct an intensity-dependent

comparison between single and two-photon in-vivo stimulation.

Average incident laser power density was varied from ,0.006 to

0.026 mW/mm2 for two-photon stimulation and that of single-

photon stimulation was varied from ,0.0001 to 0.0008 mW/mm2.

The selection of power levels for comparison of two-photon with

single-photon stimulation is based on previous in-vitro patch

clamp measurements [20] which shows that two-photon (820 nm)

intensity of ,100 times higher than that of single-photon (488 nm)

is required to elicit similar photocurrent (,500 pA) in ChR2+ve

HEK cells. Though the selected power-density range for two-

photon activation is higher (,40 times) than that of single-photon,

the phototoxicity data in cells shows that threshold average power

density of near-infrared fs laser (810 nm) is ,1000 times higher

than that due to cw blue (458 nm) laser beam [35]. Two-photon

activation at such low intensities is believed to be possible due to

the large two-photon cross section of ChR2 [19]. The highest

average power density value (,2600 W/cm2) for mode-locked

near-infrared fiber-optic laser beam, used in the experiments

reported here, is comparable to the reported [35] damage-

threshold value of 1900 W/cm2 for more-absorbing pigmented

cells (with 250 ms exposure time). To further minimize damage in

our intensity-dependent fiber-optic two-photon activation exper-

iments, the pulse width of the shutter was set at 1 ms, thus

resulting in a much lower dose than the damage threshold. Fig. 2c

shows the peak-amplitude variation of recorded local electrical

activity as a function of incident intensity of in-vivo FO-TPOS at

two different wavelengths (870 nm and 900 nm) for same

stimulation-detection sites (n = 4). The peak amplitude can be

seen to increase with incident intensity for both wavelengths, but

with a larger slope for 870 nm than 900 nm. This intensity-

dependent trend is not quadratic and the peak amplitudes are

significantly different only at power densities $ 0.02 mW/mm2.

Besides the fact that conformational change of ChR2 upon two-

photon irradiation is unlike excitation of fluorescent molecules,

other parameters such as the kinetics of the opening of the ChR2-

channel and two-photon absorption of all-trans-retinal [36,37] will

significantly modulate the nature of intensity-dependent current

variations. Further, the in-vivo non-quadratic intensity-dependent

behavior can also be attributed to higher number of neurons being

recruited during increase in intensity. Therefore, the measured

intensity-dependent peak-amplitude in case of in-vivo FO-TPOS

is not perfectly linear as observed in the intensity range studied for

in-vitro [25].

The peak amplitude of single photon (473 nm)-activated

neuronal firing as a function of power density is shown in Fig. 2d.

In contrast to in-vivo two-photon stimulation, the single-photon

stimulation led to a saturation of peak amplitude at a threshold

average power density of 361024 mW/mm2. This may be

attributed to the fact that unlike two-photon activation, most of

the units near the vicinity of the recording electrode, contributing

to the signal amplitude, are already stimulated within the excitable

volume (limited depth) of the single photon beam. The red-shifted,

one-photon stimulation is also expected to cause similar saturation

behavior as a single-photon blue laser beam. The larger dynamic-

range (Fig. 2c) observed in the case of two-photon stimulation is

advantageous in controlling the stimulation volume. This is owing

to the non-linear nature of the two-photon activation process.

When the stimulation power density increased from 0.0065 to

0.013 mW/mm2, the firing rate of neurons also increased

significantly (p,0.01, n = 6). In order to further ascertain that

two-photon stimulation using such small pulse-width (1 ms) is

sufficient to generate spiking, the peak amplitude values were

compared at three different pulse widths (1, 10, 50 ms). Fig. 2e

shows the variation of peak-amplitude as a function of pulse width

for in-vivo FO-TPOS (870 nm) at two different average power

densities (0.013 and 0.017 mW/mm2). While larger average power

density led to higher peak amplitudes at same site of stimulation

and recording (p,0.02, n = 5), the variation of peak-amplitude

with pulse-width was not significant (n = 4).

Comparison between two-photon and single-photon for
in-depth stimulation

In order to compare the efficacy of two-photon laser beam in

stimulating in-depth brain regions in-vivo, with that of single-

photon, we first theoretically evaluated light propagation in the

brain. Fig. 3a shows results of Monte Carlo simulations of two-

photon (870 nm) light propagation in the two-layered cortex for

beam (diameter: 60 mm; laser power: 5 mW) emanating from a

fiber having numerical aperture (NA) of 0.15. Propagation of a

single-photon (470 nm) fiber-optic beam for the same parameters

(beam diameter, NA and laser power) is shown in Fig. 3b. While it

is evident that the near-infrared two-photon beam has a higher

penetration depth (even at same power levels), this effect is more

profound when (damage-threshold) normalized power levels are

compared. For in-vivo two-photon stimulation, besides the input

beam characteristics (mode profile, beam size, divergence), the

forward scattering nature of the medium (brain) further modulates

the beam propagation and thus, impact both axial and transverse

stimulation-resolution. Fig. S5 shows MC simulation results

depicting the effects of different parameters (power, NA, and

wavelength) on light propagation in the two-layered cortex. For

both FO-TPOS (870 nm) and FO-SPOS (470 nm), higher

penetration depth was observed with increasing laser beam power

(1 to 50 mW) as shown in the XZ-distribution of power density

(W/cm2) in Fig. S5. In our experiments, ,50 times higher average

power density was used in the case of FO-TPOS as compared to

that of FO-SPOS. Therefore, when results of FO-TPOS with

average laser beam power of 50 mW is compared with 1 mW of

FO-SPOS, ,3 times higher penetration depth was observed in

case of FO-TPOS for same fiber delivery geometry.

Next, in order to experimentally evaluate the in-depth

activation efficacy of FO-TPOS in in-vivo transgenic mouse

models, we employed the set-up shown in Fig. 2a, with the

electrode tip at varying axial distances from the stimulating fiber-

tip. The fiber tip was placed in cortical layer-1 of the transgenic

mice with the electrode being translated stereotaxically to different

depths of the brain. To evaluate the ChR2-YFP expression in the

targeted deep-brain regions of Thy1-ChR2-YFP transgenic mice,

confocal immunofluorescence imaging of these regions was

conducted. Fig. 3c shows expression of reporter-molecule (YFP)

at a depth of ,3 mm in the ventral tegmental area (VTA). Co-

immunostaining for tyrosine hydroxylase (TH) and the composite

images are shown in Fig. 3d & e respectively. The colocalization of

tyrosine hydroxylase (TH) and ChR2-YFP in neurons are marked

by arrows. These results demonstrate that greater than 90% of

YFP positive neurons in the VTA of Thy1-ChR2-YFP transgenic

mice were also positive for tyrosine hydroxylase (TH; Fig. 3e). In

Fig. 3f, we show fiber-optically stimulated raw spiking activity

from excitatory neurons at three different axial distances (1, 2 and

3 mm) from the fiber-tip carrying the two-photon stimulation

beam (870 nm). Though with increasing depths, the peak
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amplitude decreased, spiking signal could still be detected at large

depths (3 mm).

In contrast to two-photon activation, no spiking signal was

observed at large depths (3 mm) when single-photon beam was

used for stimulating the same sites as used for two-photon.

Comparison of single and two-photon activated depth-dependent

spike-amplitude is shown in Fig. 3 g. In Fig. 3 h, we show the

significant variation of peak amplitude of two-photon (850 nm)

activated local electrical activity as a function of depth at different

power densities (p,0.001, n = 5). Similar depth-dependent vari-

ation of peak amplitude was observed for 870 nm (Fig. S6a) and

900 nm (Fig. S6b) at different power densities. Fig. 3i shows

comparison of peak-amplitude at different depths due to in-vivo
FO-TPOS for two different wavelengths (850 and 870 nm) at

same average power density (0.024 mW/mm2). For all the power

densities, while there is no significant decrease in peak amplitude

from 1 to 2 mm, significant (p,0.001, n = 5) decrease in signal

amplitude was observed when moving from 2 to 3 mm depth. This

is true for all the near-infrared wavelengths reported here. Fig. S6c

& d respectively shows the histogram of peak-amplitude as a

function of power densities of in-vivo FO-TPOS at different

depths for 850 nm and 870 nm.

Fiber-optic two-photon optogenetic stimulation is direct
stimulation

To verify whether fiber-optic two-photon beam can directly

stimulate neurons in-vivo at large depth, analysis of FO-TPOS

evoked spike latency (from the onset of light) at different depths

from fiber-tip was carried out. The experimental setup in Fig. 2a

was used to compare the latency values for two-photon with that of

single-photon. Figs. 4a and b show schematics of in-depth

stimulation limit of fiber-optic single-photon and two-photon

beam respectively. In single and two-photon stimulation modal-

ities, both direct and indirect (post-synaptic) stimulations of

neurons at different cortical layers (marked by blue line in Fig. 4

a & b) is possible. For single-photon stimulation, since the blue

light is attenuated within 1 mm of propagation in cortical tissue

(Fig. S5), it is suspected that the spikes from larger depths are

mostly due to indirect stimulation. However, at depth of 3 mm

from the fiber-tip, no detectable signal was observed (Fig. 4c) in

case of blue-light stimulation (473 nm, 4 mW). In contrast to this,

two-photon near-infrared beam has penetration depth of ,3 mm

and therefore can directly elicit action potentials in neurons at

larger depths (2–3 mm) along with the indirect post-synaptic

spikes. Raw electrical recording at 3 mm depth for two-photon

(870 nm, 80 mW) stimulation is shown in Fig. 4d. In order to

estimate the latency of the spikes evoked by FO-SPOS and FO-

TPOS at different depths, very short (1 ms) stimulation pulses

were used for these experiments and the raw spikes were overlaid

with the shutter-synchronization pulses.

Fig. 4e shows the overlay of raw spikes (red profiles) with shutter

(FO-TPOS ON) opening (black profiles) at different depths for two

different wavelengths (850 and 870 nm). The representative single

photon signals (blue profiles) at different depths are also shown.

The comparison of values for spike latencies at different depths

stimulated by single photon (473 nm) and two-photon (870 nm)

fiber-optic beams is shown in Fig. 4f. Though the mean value of

spike latency increased with increasing depth for FO-TPOS, it was

not statistically significant and therefore should have primarily

originated from direct stimulation. The slight increase can be

attributed to the contribution from spikes generated by indirect

stimulation. However, the statistically significant (p,0.001, n = 5)

increase in latency values of spikes from 2 mm depth as compared

to 1 mm depth in case of FO-SPOS (Fig. 4f) indicates that most of

the spikes are generated by post-synaptic cortical circuitry rather

than direct stimulation by the blue laser beam. At higher NIR

wavelengths, direct photothermal stimulation of neurons may

occur due to absorption by water. To check if latency is

wavelength-dependent (owing to the contribution from photo-

thermal stimulation, if any), we carried out comparative studies

using three different FO-TPOS wavelengths (850, 870 and

900 nm). Fig. 4 g shows the histogram of latency of spikes at

different two-photon wavelengths for three depths (1, 2 and

3 mm). The latency at 900 nm was slightly higher that that due to

other two wavelengths, but statistically insignificant. We further

studied the effect of average power density on the latency of two-

photon (870 nm) evoked spikes. The variation of latency values as

a function of depth for three different two-photon average power

densities is shown in Fig. 4 h. All the mean latency values are

found to be below 6 ms, implying major contribution from direct

stimulation. The increase in latency values at 3 mm depth was

found to be statistically significant and may be attributed to some

contribution from post-synaptic spiking.

Immunohistochemistry confirms in-depth fiber-optic
two-photon optogenetic stimulation

To further confirm whether FO-TPOS was modulating the

activity of dopaminergic cells in VTA, we assessed the expression

of c-Fos in the VTA using immunohistochemistry (IHC). One

hour after fiber-optic two-photon stimulation, the mice were

sacrificed and perfused intracardially. The brains were extracted

and processed for IHC for c-Fos using procedures described in

literature [38,39]. Equally-spaced sections spanning the entire

region of interest were analyzed. We used separate groups of non-

ChR2 expressing mice to run through the stimulation procedure

as a control comparison group for the IHC. Fig. 5a shows confocal

YFP-immunostained images of VTA of Thy1-ChR2-YFP trans-

genic mice. Co-immunostaining for tyrosine hydroxylase (TH,

Fig. 5b) showed co-localization (marked by arrows) of YFP in

dopaminergic cells (Fig. 5c). Fig. 5d and e shows zoomed

immunostained images for TH and c-Fos respectively. The

increased activity of the dopaminergic neurons of VTA due to

fiber-optic two-photon optogenetic stimulation (FO-TPOS) is

evidenced by an increase in c-Fos expression (Fig. 5e) in these

cells (Fig. 5f). In Fig. 5 d to f, few cells have been marked by the

envelope of the FO-TPOS beam profile (as predicted by MC

simulation, Fig. S5).

Discussion

The two-photon activation method reported here enabled in-
vivo optogenetic stimulation at depth of 3 mm in the brain. Thus,

the fiber delivering the FO-TPOS beam could be positioned in

superficial cortical layer, leading to minimal invasion into the

brain. Though from the in-vitro studies, we ruled out the

contribution of direct (photothermal or photomechanical) stimu-

lation, we are intrigued by the ability of the NIR ultrafast

multimode beam in stimulating deep brain regions. We hypoth-

esize that two possibilities can enhance the stimulation efficacy of

the NIR fiber-optic beam. First, the ChR2 may have non-zero (but

small) absorption in NIR spectrum. Though single-photon ChR2

activation spectrum has been characterized in visible region,

further studies are required to measure single-photon NIR

activation of ChR2. This would certainly require intense cw light

source (average power higher than used in studies reported here)

owing to the low activation efficiency in the NIR. Secondly, other

molecules such as the cofactor (ATR) can absorb NIR light and
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transfer energy to the opsin by the process of resonance energy

transfer (RET).

This non-linear optogenetic approach, combined with electro-

physiology and behavioral readout(s) will provide a unique

opportunity to dissect the functional neuronal circuitry of deep

brain regions. The efficacy of the two-photon beam can be further

improved by controlling the divergence of the beam emanating

from the fiber. Since the two-photon process is non-linear in

nature, focused near infrared activation can lead to highly

localized activation of the specific region of interest, which may

be located deep in the ventral portion of the midbrain. Our

previous studies (both experimental and Monte Carlo simulation

[40,41,42]) show that a non-diffracting optogenetic Bessel beam is

more effective for in-depth stimulation than a classical (Gaussian)

beam [43]. Fig. S7 shows the comparison of microscopic two-

photon setup with defocused and focused fiber-optic two-photon

optogenetic stimulation. For in-vivo two-photon activation, use of

an axicon tipped fiber [44] will allow generation of Bessel beam for

even better penetration. The propagation distance of the

stimulating Bessel beam and the stimulation volume can be

controlled by the cone angle of the fiber tip. The use the non-

diffracting ultrafast Bessel beam for FO-TPOS of excitable cells

will allow minimally invasive stimulation with improved spatial

resolution. This can significantly enhance previous work using

single-photon technology for mapping neural circuitry. Further,

this method can be easily integrated with the fiber-optic non-linear

endoscopy techniques [45] to allow both two-photon stimulation

and optical imaging of neural activity in-vivo.

Conclusions

Though we characterized two-photon activation efficacy at

different near-infrared laser parameters, further studies are

required to optimize the fiber-optic two-photon stimulation

strategy. For example, the large two-photon cross-section of

ChR2 should allow use of nanosecond or even microsecond

compact near-infrared (NIR) sources for FO-TPOS. Further, by

selection of right wavelength of the two-photon light source for

other opsins such as NpHR (chloride channel), the in-vivo FO-

TPOS method can be useful for inhibiting neural activity. In

addition to the demonstrated in-depth stimulation capability of

FO-TPOS, high spatial precision in two-photon optogenetic

activation should be possible in-vivo, by virtue of non-linear

nature of ultrafast light-matter interaction. Modulation of deep

brain regions via FO-TPOS as demonstrated by us, will lead to

better understanding of neural circuitry because the technology

permits noninvasive and more precise anatomical delivery of

stimulation.

Supporting Information

Figure S1 Fiber-optic two-photon optogenetic stimula-
tion set up and characterization. (a) Patch clamp set up for

FO-TPOS. FSL: Tunable Ti: Sapphire Laser; BE: Beam

Expander; S: Shutter; NDF: Neutral density filter; L: Lens for

fiber coupling; FL: Fluorescence excitation source; Ex: Excitation

Filter; Em: Emission Filter; MO: Microscope Objective; CL:

Condenser lens; DM: Dichroic Mirror; M: Mirror; HL: Halogen

Lamp. (b) Variation of the width of the ultrafast pulse from the

multimode fiber as a function of laser power. (c) In-vivo
electrophysiology set up for FO-TPOS. (d) Typical transverse

beam profile emanating from the multimode fiber; (e) Time-lapse

(1 sec) intensity profiles (in different colors) along a line drawn

across the beam profile shown in d.

(DOCX)

Figure S2 Estimation of two photon absorption cross
section for ChR2. (a–b) Different traces of photocurrent in

ChR2-sensitized HEK cells induced by fiber-optic near-infrared

stimulation using 250 fs pulsed laser beam (870 nm, 80 MHz) at

average intensity of 0.02 mW/mm2. The fitted data (using Eq. 1) is

overlaid (red traces) over the measured photocurrent. The fitted

parameters t1 and t2 are used to calculate the two-photon

absorption cross section.

(DOCX)

Figure S3 Wavelength-dependent fiber-optic two-pho-
ton optogenetic stimulation in-vivo. (a) Raw spiking activity

during in-vivo electrophysiology subsequent to fiber-optic two-

photon optogenetic stimulation (FO-TPOS) at different wave-

lengths (average incident laser power: 80 mW, 5 Hz), (b) Peak

voltage vs. wavelength of in-vivo FO-TPOS at two different laser

power densities, (c) Firing rate (spikes per second) vs. wavelength of

in-vivo FO-TPOS.

(DOCX)

Figure S4 Fiber-optic two-photon optogenetic stimula-
tion of negative control. Direct two-photon illumination of

micropipette-electrode separated by 1 mm (a) no media and (b) in

phosphate buffer saline. (c) Recording from micropipette-electrode

during two-photon illumination in dead brain.

(DOCX)

Figure S5 Monte Carlo simulation of light propagation
in two-layered cortex for comparison of fiber-optic two-
photon optogenetic stimulation vs fiber-optic single-
photon optogenetic stimulation. Effects of numerical aper-

ture (NA) of optical fiber (0.15, 0.22, and 0.3) and laser beam

power (1, 5, and 50 mW) on XZ-distribution of power density (W/

cm2) shown for near-infrared (870 nm) as well as blue (470 nm).

Parameters for the MC simulation are listed in Table S1.

(DOCX)

Figure S6 Intensity and depth-dependent fiber-optic
two-photon optogenetic stimulation. Variation of peak

amplitude of two-photon activated electrical recording as a

function of depth at different power densities (a) 870 nm, (b)

900 nm. Histogram of peak-amplitude as a function of power

densities of in-vivo fiber-optic TPOS at different depths. (c)

850 nm, (d) 870 nm.

(DOCX)

Figure S7 Comparison of microscopic two-photon setup
with defocused and focused fiber-optic two-photon
optogenetic stimulation.

(DOCX)

Table S1 Parameters for Monte Carlo simulation. Beam

power is 5 mW, diameter is 60 mm and NA is 0.15. Where,

ma = Absorption coefficient; ms = Scattering coefficient; g = anisot-

ropy factor; n = refractive index, and d = thickness of cortical

layers.

(DOCX)

Movie S1 Fiber-optic multimode two-photon excitation
beam profile over a period of time.

(AVI)

Movie S2 Green fluorescence emitted from polystyrene
particles upon excitation by a moving multimode fiber-
optic beam.

(AVI)
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