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A fresh strategy based on two-step electrochemical reduction for the fabrication of palladium nanoparticles/reduced oxide
nanocomposite-modified glass carbon electrode (PdNPs/rGO/GCE) was established in this study. Field emission scanning electron
microscopy (FESEM) images showed that spherical PdNPs were evenly distributed on the surface of rGO-modified electrode (rGO/
GCE), and the introduction of PdNPs has no effect on the morphology of rGO. Electrochemical impedance spectroscopy (EIS)
studies revealed that the conductivity of PdNPs/rGO/GCE was higher than that of rGO/GCE and bare GCE. 1e electrochemical
performances of PdNPs/rGO/GCE sensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and
chronoamperometry using ascorbic acid (AA), dopamine (DA), and uric acid (UA) as analytes. At the optimized conditions, wide
linear ranges of 0.5–3.5mM (R2 � 0.99), 3–15 μM(R2� 0.99) and 15–42 μM(R2� 0.99), and 0.3–1.4mM (R2� 0.99) towards AA, DA,
and UA in ternary mixture were observed, respectively. In addition to superior anti-interference capability, fast response (≤5 s),
excellent reproducibility, and good long-term stability were also given by this sensor.1ese results suggested that PdNPs/rGO/GCE is
promising for the simultaneous detection of AA, DA, and UA in practical application.

1. Introduction

Noble metal nanoparticles, a kind of metal nanomaterial, are
often used as enhancement elements in electrochemical
sensors due to their excellent electrocatalytic activity, rapid
electron transfer ability, strong stability, and good bio-
compatibility [1–4]. Several noble metal nanoparticles, such
as gold, silver, and platinum, are not suitable for com-
mercialization due to their high cost and low availability. In
contrast, palladium nanoparticles (PdNPs), an emerging
noble metal nanoparticle, have been favored by researchers
in recent years because of their higher abundance, lower
cost, and well-resisted toxic intermediates [5–7]. However,

the aggregation of PdNPs needs to be well addressed before
mass application.

Researches showed that carbon nanomaterials including
carbon nanotubes, carbon dots, and graphene are beneficial
to the dispersion of nanoparticles due to their unique
structure, large specific surface area, and high catalytic ac-
tivity [3, 8]. Among them, carbon dots are more suitable for
fluorescent sensors due to their unique optical properties,
while carbon nanotubes are prone to serious entanglement
due to their inherent strong van der Waals interaction that
requires additional dispersants. Neither of them can meet
people’s demand for low-cost and high-performance bio-
sensing platforms [9]. In practical application, high-quality
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graphene (reduced graphene oxide, rGO) is often prepared
by electrochemical reduction of graphene oxide (GO), which
is simple and cost-effective. 1e residual oxygen functional
groups and the recovery of the conjugated network make
rGO possess hydrophilicity and high conductivity [10–12].
Hence, rGO is considered to be the most promising carbon
nanomaterials for dispersing PdNPs [13–15].

As biological molecules of great significance to human
health, the abnormal changes in ascorbic acid (AA),
dopamine (DA), and uric acid (UA) in human body can
bring serious threats including cancer, Parkinson’s dis-
ease, and leukemia [16–18]. 1erefore, the development of
a rapid and effective electrochemical senor for simulta-
neous detection of these three substances is in urgent
need.

Herein, PdNPs/rGO/GCE was fabricated by facile two-
step electrodeposition to detect AA, DA, and UA simul-
taneously. Although the preparation of PdNPs/rGO
nanocomposites has been reported [19–21], most of them
are prepared through a multistep complex process, which
not only involves chemicals that may cause health and
environmental risks but also contains long-time con-
sumption. In addition to good catalytic activity and rapid
response (≤5 s), the sensor prepared in this work also
exhibited high reproducibility and stability.

2. Experimental

2.1. Reagents. AA (99.7%) was obtained from Lianxing
Biotechnology (Tianjin); dopamine hydrochloride (DA,
98%) was purchased from Sigma-Aldrich (Shanghai); UA
(59.0%–60.0%) and palladium chloride were provided by
Ron Chemical Reagent Company (Tianjin); potassium
chloride (KCl, 99.0%), potassium ferricyanide, sodium
dihydrogen phosphate (NaH2PO4, 99.0%), and disodium
hydrogen phosphate (Na2HPO4, ≥99.0%) were obtained
from Chemical Reagent Supply and Marketing company
(Tianjin); GO (99.8%) was provided by Xianfeng Nano
Materials Technology (Nanjing). Phosphate buffer (PB)
solution with different pH values was prepared with the
mixed solution of NaH2PO4 and Na2HPO4 in a certain
proportion. Ultrapure water was used throughout all
measurements.

2.2. Apparatus. High-resolution transmission electron
microscopy (HRTEM) and energy-dispersive spectroscopy
(EDS) were finished on a FEI-Talos-F200X equipped with
an energy-dispersive spectrometer analyzer. Field emission
scanning electron microscope (FESEM) images were ob-
tained with a Nova NanoSEM 430 (FEI, USA). Cyclic
voltammetry (CV), differential pulse voltammetry (DPV),
and chronoamperometry measurements were performed
using a AMETEK PARSTAT 4000 electrochemical work-
station (AMETEK Commercial Enterprise (Shanghai) Co.,
Ltd. Beijing Branch.) with a three-electrode system, while
PdNPs/rGO/GCE, platinum electrode, and saturated cal-
omel electrode (SCE) were used as a working electrode,
counterelectrode, and reference electrode, respectively.

KQ-600KDE high-power CNC ultrasonic cleaner was
purchased fromUltrasonic Instrument Co., Ltd (Kunshan).
Magnetic stirrer was provided by Ronghua Instrument
Manufacturing Co., Ltd (Changzhou).

2.3. Fabrication of PdNPs/rGO/GCE. Before modification,
the bare GCE was successively polished with 1 μm,
0.3 μm, and 0.05 μm Al2O3 slurry and then washed ul-
trasonically in ultrapure water and ethanol to get a clean
surface.

40mg of GO powder was completely dissolved in 40mL
of ultrapure water under sonification for 60min to obtain
GO solution. 1e rGO/GCE was fabricated in GO solution
by using the CV method between +1 and −1.5V with a scan
rate of 50mV · s−1 for 19 cycles; after that, the modified
electrode was washed with ultrapure water and dried at
room temperature.

1en, 0.0035 g palladium chloride was directly added in
20mL of ultrapure water to obtain 1mM palladium chloride
solution, and 6 μL of the solution was cast on the surface of
rGO/GCE. After the solution was totally dried, the electrode
was immersed in 0.1M KCl solution and then treated by
applying −0.7V for 1800 s for electrodeposition of PdNPs,
and then, PdNPs/rGO/GCE was fabricated. 1en, the ob-
tained sensor was washed with ultrapure water and dried for
later use (Scheme 1).

2.4. Electrochemical Measurements. 1e EIS measurements
were performed from 10−2 to 105Hz with an amplitude of
+5V and a bias voltage of +0.24V. DPV curves were ob-
tained from −1.5V to +1.5V at an amplitude of 50mV and a
pulse width of 0.2 s. In addition, since CV technology and
chronoamperometry have been used many times in this
paper and the parameter settings of the same method were
different, the corresponding parameter settings were in-
troduced in the related experiments.

3. Results and Discussion

3.1. Characterization of PdNPs/rGO Nanocomposite. 1e
results of FESEM and HRTEM of PdNPs/rGO nano-
composite are demonstrated in Figures 1(a)–1(c). It is ev-
ident that the synthesized rGO has a typical folded structure
[22, 23]; furthermore, the PdNPs synthesized on the surface
of the rGO were spherical and highly uniform in size, which
not only has no effect on the morphology of the rGO but also
helps to increase the surface area of the electrode
(Figures 1(a) and 1(b)). From the HRTEM image
(Figure 1(c)), it was obtained that the PdNPs with an average
diameter less than 50 nm [24] were uniformly dispersed on
the surface of rGO, which coincides with the result of
Figure 1(b) and literature [25]. EDS characterization results
(Figure S1) further confirm that the PdNPs/rGO nano-
composite was successfully prepared.

CV and EIS were used to examine the electrochemical
behavior of PdNPs/rGO/GCE in 20mM potassium ferri-
cyanide solution containing 0.1M KCl. CV curves were
obtained from −0.6V to +0.8V with scan rate of 50mV s−1
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for 3 weeks. 1e active area of different electrodes was
calculated by following Randle Sevick’s equation [26]:

A �
Ipa

2.69 × 105􏼐 􏼑
Cn

3/2
v
1/2

D
1/2

, (1)

where Ipa is the anode peak current of different electrodes in
CV experiments (Figure S2), C is the concentration of
potassium ferricyanide solution (i.e., 20mM), n is the
number of electrons, v is the scan rate, and D is the diffusion
coefficient. 1e active surface ratio of bare GCE, rGO/GCE,
and PdNPs/rGO/GCE was calculated as 1 :1.2 : 1.3, sug-
gesting that the modification of rGO and PdNPs/rGO
nanocomposite on the surface of bare GCE helps to increase
the active area of the electrode that can improve the catalytic
ability of bare GCE.

From Figure 1(d), the results of EIS were given in the
form of Nyquist plot, in which the diameter of high-
frequency semicircle part represents the resistance of
charge transfer (Rct) of the electrode surface [27] and
low-frequency linear part represents the diffusion
process [28]. Randle’s circuit (inset of Figure 1(d)) was

chosen to fit the impedance data obtained. 1e semi-
circle diameter at PdNPs/rGO/GCE and rGO/GCE was
much smaller than that of bare GCE (200Ω, 400Ω, and
3000Ω, respectively), indicating that the modification of
rGO and PdNPs/rGO nanocomposites can all help to
promote the electron transfer of bare GCE. And the
enhancement effect of PdNPs/rGO/GCE was greater
than that of rGO/GCE, which can be attributed to the
increase in the contact area between the electrode
surface and the analytes after electrodeposition of
PdNPs. 1e result of EIS was consistent with CV
characterization (Figure S2).

3.2. Effect of pH. 1e effect of pH of the supporting elec-
trolyte (i.e., 0.1MPB) on the electrochemical behavior of
AA, DA, and UA was studied by DPV. As shown in
Figure 2(a), with the pH values varied from 6.4 to 7.6, the
peak current of AA and UA reaches the maximum at pH 7.2
(blue line), while DA reaches at pH 6.8 (red line). To clearly
observe the influence of pH values on the peak potential of
these three substances, the method of translation was used to
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separate the four curves. As can be seen from Figure 2(b), the
peak potentials of AA, DA, and UA shift negatively with
increasing pH values, and the peak potential differences of
AA-DA and DA-UA reach the maximum at pH 7.2, sug-
gesting that protons were involved in the oxidation reaction
of AA, DA, and UA [29].

Based on above, 0.1M PB with pH value of 7.2 was
selected as the measurement medium in subsequent
experiments.

3.3. Effect of Scan Rate. 1e influence of scan rate on the
redox behavior of 1mMAA, 80 μMDA, and 500 μMUAwas
studied in 0.1MPB using CV from −0.6V to +0.6V for 3
weeks (Figure 3). It can be seen that the oxidation peak
currents of AA, DA, and UA and the reduction peak current
of DA were proportional to increasing scan rate from 50
mv · s−1 to 250 mv · s−1, and the linear regression equations
were summarized as follows:

AA: Ipa � 10.64 + 0.039v R
2

� 0.99􏼐 􏼑;

DA: Ipa � 4.397 + 0.036v R
2

� 0.99􏼐 􏼑,

Ipc � −1.969 − 0.024v R
2

� 0.99􏼐 􏼑;

UA: Ipa � 5.124 + 0.028v R
2

� 0.99􏼐 􏼑,

(2)

where v is the scan rate and R2 is the correlation coefficient.
1e results proved that the electrochemical reaction of AA,
DA, and UA was adsorption-controlled process [30, 31].

In addition, there was no obvious reduction peak in AA
and UA, which may be related to the selection of detection
concentration.

3.4. Electrochemical Detection of AA, DA, and UA. 1e an-
alytical performances of PdNPs/rGO/GCE for AA, DA, and
UA in 0.1MPB (pH 7.2) were examined by DPV at the
optimized conditions.
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Figure 1: (a) FESEM characterization of rGO; (b) FESEM characterization of PdNPs/rGO nanocomposites; (c) HRETM characterization of
PdNPs/rGO nanocomposites; (d) EIS characterization of bare GCE (A), rGO/GCE (B), and PdNPs/rGO/GCE (C) in 20mM potassium
ferricyanide solution containing 0.1M KCl.
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Figure 3: Continued.
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As can be seen fromFigure 4, at PdNPs/rGO/GCE, the peak
current signals of AA, DA, and UA were all gradually increased
with their rising levels and achieve a good linear relationship in
the concentration ranges of 0.3–7mM and 8–20mM, 3–50μM
and 60–170μM, and 0.05–1mM and 1.5–4.5mM with detec-
tion limits of 0.1mM, 1μM, and 16.67μM (S/N� 3), respec-
tively. In addition, from Figure 4(a), it is worth noting that, with
the increase in AA concentration, the peak potential of AA
shifts to the right, indicating that protons have participated in
the electrode reaction process of AA [32]. Meanwhile, the peak
shape of AA gradually widens, which is consistent with previous
studies [33–35] that may be related to the excessive concen-
tration of AA. At low AA levels, the local AA on the electrode
surface was rapidly catalyzed, and the response was fast. At high
AA concentrations, a large amount of AA was adsorbed on the
electrode surface, leading to the reduction of the active sites on
the surface of electrode prolonging the catalytic time of PdNPs/
rGO/GCE for AA, thus slowing down the catalytic process and
widening the peak shape [36]. 1e oxidation mechanisms of
AA, DA, and UA may be inferred as follows: (1) electrostatic
interaction between positive DA and negative functional groups
on PdNPs/rGO/GCE surface; (2) the hydrogen bond interac-
tion between the hydroxyl groups of AA, DA, and UA and the
oxygen-containing functional groups on the surface of PdNPs/
rGO/GCE.

Figures 5 and 6 exhibit the selective and simultaneous
detection results of AA, DA, and UA. It is worth mentioning
that the selective detection was carried out by changing the
concentrations of target species while keeping the other two
substances at constant in a mixture of AA, DA, and UA. As
can be observed, there exists three well-separated potential
peaks corresponding to AA, DA, and UA either in selective
or simultaneous detection, and the presence of the other two
species did not produce significant impact on the current
signal of the target analyte, suggesting that PdNPs/rGO/
GCE possesses good separation capacity toward AA, DA,
and UA. 1e detailed results are presented in Table 1.
Compared with individual detection, the linear range of AA,

DA, and UA under the same concentration range and the
sensitivity of PdNPs/rGO/GCE toward these three analytes
all produced a negligible change either in selective or si-
multaneous detection.

In addition, it can be observed from Figure 5(a) that,
with the increase in AA concentration, in addition to the
increasing AA current, the detection currents of DA and
UA were also increased, which is consistent with previous
literatures [28, 29, 37–41] that can be related to the ad-
sorption of DA and UA on the electrode surface [42]. 1e
higher concentration of AA on electrode surface contin-
uously reacts with the oxidation products of DA and UA,
resulting in the regeneration of DA and UA, thus in-
creasing the current [43, 44]. Moreover, from Figures 4(a),
5(a), and 6(a), it is worthy to note that the oxidation
voltages of AA in these three experiments were not the
same, which may be related to the concentration range of
AA and the interaction between AA and DA and UA
[43, 44].

As shown in Table 2, although most of previous works
showed higher sensitivity toward AA and UA than PdNPs/
rGO/GCE, from the perspective of sensitivity toward DA
and linear range, PdNPs/rGO/GCE still occupies a unique
advantage in the simultaneous detection of AA, DA, and
UA.

1e above results showed that the developed sensor has a
good application value in the detection of AA, DA, and UA.

3.5. Reproducibility and Stability of the Sensor.
Reproducibility and stability are also crucial indicators for
the evaluation of the electrochemical performances of the
developed sensor.

1e reproducibility of PdNPs/rGO/GCE was studied by
DPV using six sensors that were prepared under the same
conditions to detect 1mM AA, 10 μM DA, and 2.5mM UA
in 0.1MPB, respectively, and the results were exhibited in
the form of histogram (Figure 7(a)). 1e relative standard
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deviation (RSD) of the DPV responses of AA, DA, and UA
was calculated as 0.98%, 2.08%, and 0.6%, respectively, re-
vealing that the proposed sensor has high reproducibility.

Chronoamperometry was used to access the stability of
PdNPs/rGO/GCE toward 1mMAA, 20 μMDA, and 0.5mM

UA in 0.1MPB for 2000 s at +0.6V. From Figures 7(b)–7(d),
the current response of these three analytes reached a steady
state in a short time, and the changes over a long period were
negligible, which suggested that this sensor is suitable for
long-term detection of AA, DA, and UA.
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3.6. Study of Anti-Interference Ability. Lastly, to evaluate the
anti-interference ability of PdNPs/rGO/GCE, the interfer-
ence of Na+ (d), Cl− (e), Mg2+ (f), SO42− (g), and glucose (h)
with 100-fold concentration in the detection of 1mM AA
(a), 50 μM DA (b), and 0.1mM UA (c) in 0.1MPB was
conducted by chronoamperometry at a constant potential of
+0.6V for 800 s. As shown in Figure 8, with the addition of
AA, DA, and UA, the current signal of PdNPs/rGO/GCE
increased rapidly with response times of 5 s, 5 s, and 3 s,
respectively, and the interferents did not produce obvious

effects on the current signal of AA, DA, and UA. As a result,
this proposed sensor was of excellent anti-interference
ability and practical application value.

3.7. Real Samples Detection. In order to demonstrate the
applicability of the proposedmethod, different concentrations of
AA, DA, and UA are doped into the human serum samples by
the standard addition method. 1e DPV experimental results
are shown in Table S1.1e recoveries of the spiked samples were

0.00000

–0.00001

–0.00002

–0.00003

–0.00004

–0.00005

–0.00006

–0.00007

D
elt

a I
 (F

-R
) (

A
)

0.60.2 0.4–0.4 –0.2 0.0
Potential (V)

AA DA UA

0.25 mM

3.5 mM 0.1 mM

1.4 mM

3 μM

42 μM

(a)

–5

–10

–15

–20

–25

–30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Concentration (mmol/L)

AA

Cu
rr

en
t (
μA

)

R2 = 0.99187

(b)

Concentration (μmol/L)

–5

–10

–15

–20

–25

–30

0 10 20 30 40 50

Cu
rr

en
t (
μA

)

R2 = 0.99598

R2 = 0.99248

DA

(c)

Concentration (mmol/L)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

–10

–20

–30

–40

–50

–60

–70

Cu
rr

en
t (
μA

)

R2 = 0.98765

UA

(d)

Figure 6: DPV curves of different concentrations of AA, DA, and UA (a); calibration plots for (b) AA, (c) DA, and (d) UA.

Table 1: Analytical parameters for individual, selective, and simultaneous detection of AA, DA, and UA at PdNPs/rGO/GCE.

Analytical parameter Analyte Individual detection Selective detection Simultaneous detection

Linear range (μM)
AA 300–7000, 8000–20000 750–5000 500–3500
DA 3–50, 60–170 13–61 3–15, 15–42
UA 50–1000, 1500–4500 500–4000, 4500–7500 300–1400

Sensitivity (μA · μM−1 · cm−2)
AA 0.069, 0.028 0.107 0.079
DA 4.300, 1.443 3.254 10.893, 6.083
UA 0.416, 0.118 0.194, 0.049 0.481
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Table 2: Comparison of different electrodes in the simultaneous detection of AA, DA, and UA.

Electrode pH
Linear range (μM);

Sensitivity (μA · μM−1 · cm−2) Ref.
AA DA UA

MgO nanobelts/GCE 5.0 2.5–15, 25–150;
0.198, 0.028

0.125–7.5
7.908

0.5–3, 5–30;
2.83, 0.962 [30]

SnO2/chitosan/GCE 7.0 20–220;
0.127

0.1–18;
2.773

1–100;
2.391 [45]

3DGHa-AuNPsb/GCE 7.0 1.0–700;
0.217

0.2–30;
3.897

1–60;
1.703 [46]

AuNPsb@MoS2 nanosheets/GCE 4.0 12–800;
0.481

10–300;
0.979

8–900;
0.465 [47]

Pd3Pt1c/PDDAd-rGO/GCE 7.4 40–1200;
0.359

4–200;
0.639

4–400;
0.498 [48]

CBe/GCE 7.0 1.91–37.8;
0.214

0.599–11.8;
1.570

1.01–14;
0.680 [49]

Pt@NP-AuSnf/CFPg 7.0 200–1200;
0.0004

0.5–10;
0.0017

25–500;
0.0003 [50]

PdNPs/rGO/GCE 7.2 500–3500;
0.079

3–15, 15–42;
10.893, 6.083

300–1400;
0.481 1is work

a: three dimensional graphene hydrogel; b: gold nanoparticles; c: Pd-Pt bimetallic nanoparticles; d: poly(diallyldimethylammonium chloride); e: nano-
structured carbon black; f: Pt nanoparticle-modified nanoporous AuSn; g: Ni-buffered flexible carbon fiber paper.
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Figure 7: (a) Reproducibility of CQDs-rGO/GCE; stability of (b) 1mM AA, (c) 20 μM DA, and (d) 0.5mM UA
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detected within the range of 96.6%–108.5%, suggesting the
applicability of the prepared sensor to real samples.

4. Conclusions

In summary, this paper has proposed a novel approach for
the synthesis of PdNPs/rGO nanocomposite by two-step CV
electrodeposition; the increased surface area of as-prepared
material has contributed to improve the contact probability
between electrode surface and analytes, thus elevating the
catalytic activity of the modified electrode, which was
confirmed using CV and EIS. After optimizing the experi-
mental conditions, the sensor showed excellent separation
ability and fast response for AA, DA, and UA and has strong
anti-interference ability for some common interfering
substances. Besides, good reproducibility and stability were
also obtained by this sensor. 1e above results revealed that
PdNPs/rGO/GCE can be a good candidate in the sensing
application of AA, DA, and UA in the future.
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