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Abstract: Little information about biofilm microbial communities on the surface of livestock buildings
is available yet. While these spatially organized communities proliferate in close contact with animals
and can harbor undesirable microorganisms, no standardized methods have been described to sample
them non-destructively. We propose a reproducible coupon-based capture method associated with a
set of complementary ex-situ analysis tools to describe the major features of those communities. To
demonstrate the biofilm dynamics in a pig farm building, we analyzed the coupons on polymeric and
metallic materials, as representative of these environments, over 4 weeks. Confocal laser scanning
microscopy (CLSM) revealed a rapid coverage of the coupons with a thick layer of biological material
and the existence of dispersed clusters of active metabolic microorganisms. After detaching the
cells from the coupons, counts to quantify the CFU/cm2 were done with high reproducibility.
High-throughput sequencing of the 16S rRNA V3-V4 region shows bacterial diversity profiles in
accordance with reported bacteria diversity in pig intestinal ecosystems and reveals differences
between materials. The coupon-based methodology allows us to deepen our knowledge on biofilm
structure and composition on the surface of a pig farm and opens the door for application in different
types of livestock buildings.

Keywords: biofilm; sampling; livestock building; surfaces; diversity

1. Introduction

In intensive breeding farms, animals live in a confined environment directly on in-
organic floors (slatted floors, cages, aviary) or organic litter (straw, sawdust). In these
environments, animal density can be very high, and the running parameters of farms
(animal nutrition, temperature, humidity, light) are modulated to obtain their maximal
growth rate. Concrete, metals, and polymers composed the majority of housing equipment
materials in direct contact with animals in the livestock buildings, such as water and feed
distribution systems, fences, pens, cages, walls, or gratings [1]. To reduce organic matter
and microbial development on these surfaces, cleaning and disinfection (C&D) procedures
are performed between two batches of animals, as well as regular removal of manure
during the batch. However, these procedures are far from eradicating sessile microflora
that can harbor pathogenic subpopulations [2–4]. Indeed, it is estimated that between 40
and 80% of living microorganisms are associated with a surface in so-called biofilms, which
are present in all biotopes on earth [5]. Biofilms are three-dimensional biological structures
composed of microbial communities embedded in cohesive self-produced extracellular
polymeric substances (EPS) [6]. EPS can drastically vary between biofilms but is generally
composed of water and a complex mixture of polysaccharides, extracellular DNA (eDNA),
proteins, and amyloid fibers. The presence of EPS, along with spatial organization and
specific signaling systems, triggers a diversification of cell types and emerging community
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functions, including a fantastic adaptation to environmental fluctuations and the action of
antimicrobials, in comparison to their free planktonic homologs [7–12].

Because of spatial proximity and high cell density, biofilms are considered as hot spots
for the spreading of antibiotic resistance genes and virulence factors by horizontal gene
transfer [13–15].

Current knowledge about surface-associated microbial communities in livestock build-
ings is still very limited, while of prime importance to decipher microbial pathogens
dynamics in these environments and their interactions with animals. These questions enter
in the One Health context by pinpointing the flow of pathogens between the environment,
animals, and humans. Furthermore, national and international regulations are evolving
to limit the use of antimicrobials such as antibiotics (to prevent antibiotic resistance) and
disinfectants (to prevent environmental pollution) [16]. The development of innovative
and alternative strategies are hence explored and are needed to create scientific knowledge
and methodologies to analyze complex multispecies biofilms on livestock building surfaces
and their dynamics under perturbations [17,18].

In farms, most pathogenic microorganisms responsible for zoonosis can be associated
and protected within environmental biofilms. Holobiont of animals is in constant interplay
with the biofilms from the farm environment. These biofilms may constitute an environmen-
tal route for animal and human contamination [19]. Quantification of undesirable species
such as bacterial pathogens is hence carried out in livestock buildings regularly to monitor
its hygienic status and to comply with eventual national or international regulations. The
sampling methodologies used are principally swabs, sponges, and contact plates with spe-
cific media [20,21]. Nowadays, there is no chemical or physical methodology able to extract
all surface-associated communities from a surface to study it [22,23], and the extracted
fraction may not be representative of the initial sessile community [24]. Another strong
limitation of these sampling methods is the definitive loss of the biofilm spatial organization
that is, as mentioned previously, a major factor of microbial persistence on surfaces.

Indeed, protocols with coupons, defined here as a small surface of a specific material
where the biofilm can develop, have been designed and used to capture in-situ and non-
invasively the microbial community of interest in other systems [25]. These types of
sampling methods were in particular successively applied to describe biofilms in aquatic
conditions (biocorrosion in the sea, drinking water distribution system, and wastewater
treatment) [26–29]. Coupons have also been recently used to detect the pathogenic bacteria
Listeria monocytogenes in the food processing industry [30]. The coupon-based method
allows structural analysis of the microbial community using microscopy techniques that
can be combined with microbial diversity and bacterial counts. Moreover, it has been shown
that biofilms growing on coupons are representative of the surface of the surroundings and
that this method is more robust than classical environmental swabbing with less variability
in bacterial counting [31].

In this study, we implemented a coupon-based methodology to capture native biofilms
on livestock building surfaces (here a pig farm) along with a set of ex-situ analyses to
describe the structural dynamics of these communities over one month. CLSM analysis
was put in use to decipher non-invasively the three-dimensional structure of the biofilm,
with a special interest in contrasting metabolically active cells. Bacterial plate counting was
performed on non-selective media to allow quantification of viable and cultivable species,
while an analysis of the bacterial diversity was performed by high-throughput sequencing
of the 16S rRNA V3-V4 regions.

2. Materials and Methods
2.1. Livestock Building, Coupons Disposition, and Sampling

The coupons were placed in a French commercial pig farm during the post-weaning
stage of piglets over 31 days (Blan, France). The livestock building was a slatted floor pen
system. The temperature was 27 ◦C at animals’ entry with a decrease of 1 ◦C every week
to reach 24 ◦C until the end of breeding. Representative coupons of livestock building



Microorganisms 2022, 10, 2 3 of 12

surface materials were composed of polyvinyl chloride (PVC) or galvanized steel (steel)
with dimensions: 2.5 cm × 6 cm × 3 mm (Leroy-Merlin, Colomiers, France). Coupons were
sterilized in an autoclave (HMC EUROPE, Tuslin, Germany) and dried in a dry oven (FD
115 model, Binder, Tuttlingen, Germany) for 15 min at 120 ◦C.

In this work, 60 coupons of each material were analyzed (120 coupons in total) side by
side on pen dividers using double-sided tape under the water lines close to animals in five
pens of 3.73 m per 2.5 m of 25 piglets each (Figure 1).
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Figure 1. Arrangement of coupons on the wall. Steel and PVC coupons were placed on the walls
under the water lines using double-sided tape in a staggered arrangement.

Per sampling day and in the same way for the 5 pens, 2 coupons of each material
were extracted, one for microscopy study and the second one to perform the bacterial
counts and DNA extraction for high-throughput sequencing analysis. The beginning of the
experiment (day 0) corresponds to coupons implantation on pen dividers, after cleaning
using the DECABAZ (HYDRACHIM, Étrelles, France) detergent and the VIROCID (CID
lines, Ypres, Belgium) for the disinfection step, following manufacturer recommendations.
A sampling of the coupons was made from the outside to the inside of the coupon line
on days 2, 6, 7, 14, 21, and 31. The first sampling point on day 2 is just before the entry of
animals. During sampling, coupons were aseptically removed with gloves from the pen
dividers and placed in Petri dishes containing a sterile compress soaked in sterile water to
avoid sample dehydration until analysis (<24 h after sampling).

2.2. Confocal Laser Scanning Microscopy

Biofilm structures on coupons were observed using a high-content screening confocal
laser scanning microscope (LEICA, HCS-SP8, Wetzlar, Germany) at the INRAE MIMA2
microscopic platform (www6.jouy.inrae.fr/mima2_eng, accessed on 10 December 2021).
Then, 50 µL of a 54 µM calcein acetoxymethyl (CAM), a metabolic fluorescent dye reporting
esterase activity in green, was poured on the coupons and incubated in the dark for 30 min
at 37 ◦C (Invitrogen, Carlsbad, CA, USA). The non-ionic molecules can enter passively
into cells and be cleaved by intracellular esterase, releasing a fluorescent non-permeant
ionic residue. Biofilms on the coupons were also counter labeled in red with 50 µL of a
3 µL/mL of SYTO 61 (Invitrogen, Carlsbad, CA, USA), a cell permanent red dye that labels
nucleic acid.

A 600 Hz frequency was used to acquire images with the CLSM. SYTO 61 was excited
with the HeNe laser at 633 nm, and the emitted fluorescence was collected with a hybrid
detector in the range from 650 to 700 nm. CAM was excited with an argon laser set at
488 nm, and the emitted fluorescence was collected with a hybrid detector in the range
from 500 to 550 nm. The surface topography was also captured using the reflection mode
of the CLSM with the 488 nm laser line. A series of 512 × 512 pixels images was acquired
using a 63× water lens (numerical aperture = 1.2) for the first samples (day 2) and a 40× air
lens (numerical aperture = 0.8) for the other thick samples by taking one image per µm in

www6.jouy.inrae.fr/mima2_eng
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the z-axis to capture the full height of the biofilm. 2D projections and image analysis were
performed using IMARIS 9.3.1 software (Bitplane, AG—Zurich, Switzerland).

Quantification of fluorescence signals was performed with the two labels to determine
the evolution of each compartment (biovolume in µm3/µm2) over time for the two materials.

2.3. Enumeration of Bacteria Detached from Coupons

Coupons were placed in individual tubes containing 30 mL of a saline solution (NaCl
9 g/L) to cover halfway. With a sterile pipette tip, the biofilm was mechanically disrupted
by successive round trips corresponding to 20 vertical and horizontal passages on the
immersed side of the coupon, and then, the latter was turned over to do the same on the
other side. Then, removing the coupon and suspending the bacteria by vortexing for 5 s
the liquid, successive dilutions in saline solution were carried out in duplicate using 1mL
of the resuspended biofilm solution. Counts into agar were made from 1 mL of the desired
dilution. Trypticase soy broth with agar (TSA (w/v); 1% tryptone, 0.5% yeast extract, 0.5%
NaCl, 1.5% agar; BioMérieux, Marcy-l’Étoile, France) was used as non-selective media
under aerobic conditions for 24 h at 30 ◦C. To select the spores, 1mL of the biofilm solution
was placed in a glass tube, in a water bath for 10 min at 80 ◦C, in duplicate for each coupon
before enumeration by TSA. The Petri dishes in a CFU range between 30 and 300 were
counted. The remaining 26 mL of the detached biofilm solution was centrifuged for 10 min
at 6000× g, the supernatant was gently removed, and the pellets were placed at −20 ◦C to
extract after the DNA.

2.4. High-Throughput Sequencing of the 16S rRNA and Diversity Analysis
2.4.1. DNA Extraction, PCR, and Sequencing

DNA from 60 bacterial pellets were extracted and purified using DNeasy Power-
Lyzer PowerSoil Kit manufacturer instructions (Qiagen, Hilden, Germany). PCR of
V3–V4 regions of 16S rRNA marker genes was carried out on a thermocycler (Ge-
neamp PCR system 9700, Applied Biosystems, USA) with universal primers F343
(5-CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG-3) and R784
(5-GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT-3) with an
annealing temperature of 66 ◦C using Phusion High-Fidelity PCR kit (New England Bio-
labs, Ipswich, MA, USA) [32]. DNA was quantified on a NanoDrop Spectrophotometer
ND-1000 (Thermo Fisher, Waltham, MA, USA). PCR products, including negative con-
trols, were checked on 1% agarose gel electrophoresis to ensure PCR products. Illumina
Miseq technology was used to sequence the amplicons (GeT-PlaGe INRAE platform,
Toulouse, France).

2.4.2. Diversity Analysis Using Bioinformatics

Paired-end Fastq files were denoised with DADA2 [33] by default parameters, includ-
ing consensus chimeras removal, as well removing primers and truncation by Demux with
a final length of 411 ± 26 bp. Multiple alignment using fast Fourier transform (MAFFT)
was used to perform de novo multiple sequence alignments [34], and mask as gap filtering
Phylogeny was constructed with FastTree [35,36]. Data were rarefied to 10,120 sequences
per sample; then low abundance amplicon sequence variants (ASVs) per pen were filtered
out (<100 seqs in 2 samples, to improve accuracy on diversity estimates [37]). Rarefaction
curves as observed AVSs and good coverage were studied to ensure a full sampling of
the community was taken. Alpha diversity parameters (Shannon) and richness (Observed
ASVs) were compared across materials per sampling point, as well as weighted UniFrac
distances for Beta diversity. All bioinformatics results and graphs were obtained in QIIME2,
using the Python-based microbiome data-science platform [38].

2.5. Statistical Analysis

Results are represented by the average and standard deviation (SD) or confidence
interval (CI) of 5 coupons per day, and day was considered the experimental unit. Two-
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way ANOVA using the uncorrected Fisher’s least was used for the count and biovolume
analysis with PRISM software (GraphPad, San Diego, California, USA). Taxonomy data
were analyzed with Lefse [39] with default parameters, alpha diversity with Kruskal–Wallis,
and beta diversity PERMANOVA in QIIME2 [38]. Data were considered significant when a
p-value were smaller than 0.05.

3. Results
3.1. Coupons Are Colonized by a Densely Clustered Biofilm with Only a Minor Fraction of Cells
Metabolically Active

Before being placed in the farm, coupons surface topography was analyzed with the
reflection mode of a CLSM (Figure 2). The surface of steel was rougher than PVC with the
presence of streaks and holes in abundance, while the PVC was very smooth. To estimate
the hydrophilicity of the coupons, contact angles with water were measured [40]. The
two side contact angles of 15 drops of 100 µL were measured with the image analysis
software ImageJ (1.53 version). The water contact angles show that steel coupons (angle of
51.1◦ ± 7.4) were more hydrophilic (p < 0.05) than PVC coupons (angle of 84.8◦ ± 3.2).
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Figure 2. Characterization of the surface of coupons using confocal laser scanning microscopy.
A detail of the surface topography of the steel and the PVC coupons by CLSM are shown (scale
bar = 30 µm).

Coupons harvested in the building were labeled with SYTO 61 (red) to mark intra-
and extracellular nucleic acids in the biofilms and CAM (green) to highlight metabolically
active microorganisms inside the community (Figure 3a).

Images of the first sampling day after the cleaning and disinfection process and before
the entry of animals in the farm (day 2) showed only a few sessile scattered microorganisms
with the size around the micrometer compatible with bacteria. After animals entered,
biovolumes in both channels sharply and significantly increased (p < 0.05) (Figure 3b).
From sampling day 6 until the end of the experiment, material contrasted with SYTO 61
was covering all the coupons surfaces. An organization with clusters or compact structures
with holes in both materials was visualized. The biovolume of SYTO 61-labeled material
was significantly higher on steel than PVC from day 14, and a decrease of the signal was
observed from day 7 in PVC (p < 0.05).

Green CAM-labeled clusters corresponding to metabolically active microorganisms
were observed in all samples after animal entry. Biovolume of CAM was higher on steel in
comparison to PVC on day 31 (p < 0.05), and a decrease of biovolume appeared for days 21
and 31 on PVC (p < 0.05) (Figure 3c).
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Figure 3. Confocal laser scanning microscopy visualization of biofilms settled on the steel and PVC
coupons. Microorganisms and eDNA were labeled in red with SYTO61 and metabolically active cells
in green with CAM. The easy 3D representative projections for each time point for steel and PVC
coupons are shown (a). Day 2 corresponds to the first sampling, two days after the deposit of the
coupons without animals in the farm; the scale bar represents 30 µm for day 2 and 40 µm for the
other time points. The biovolume of SYTO 61 (b) and CAM (c) signals were extracted over time on
PVC (grey lines) and steel (black lines). The dotted line indicates the animal’s entry into the building.
Results represent average ±CI 95% (* p < 0.05).

3.2. Enumeration of Aerobic Cultivable Bacteria from Coupons

Enumeration with TSA plates as a non-selective media to quantify total aerobic bacteria
on coupons was performed. In addition, heat treatment of 10 min at 80 ◦C was carried out
before TSA plating to select spores from the same samples (Figure 4).

Before the entry of animals and 2 days after coupon placement (day 2), 4 logs
(CFU/cm2) of total bacteria were enumerated in both materials. After animals entered, a
significant increase of total aerobic cultivable bacteria was obtained on PVC in comparison
to steel (p < 0.05) for all days, except at day 21. A stabilization of non-selective counting
was obtained after animals entered with a value around 6 logs (CFU/cm2) for PVC and
5 logs (CFU/cm2) for steel. A peak was observed in both materials on day 21. With heat
treatment, less than 1 log (CFU/cm2) of spores were enumerated on both materials on the
first sampling. Values increased on PVC and steel after day 2 to reach more than 2 logs
(CFU/cm2) of spores on day 21; no significant differences were observed on both materials
for each time point. A higher number of total aerobic cultivable bacteria were counted
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significantly on PVC compared to steel (p < 0.05), however, with a tendency to have fewer
spores counted.
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Figure 4. Enumeration profiles (Log CFU/cm2) of the total aerobic bacteria (TSA) and spores
(TSA, 80ºC, 10min) on steel and PVC coupons during the trial. Biofilms on coupons were removed
mechanically by pipetting and by a round trip with saline solution. After successive dilutions,
bacteria inside samples were enumerated on TSA (grey lines) and on TSA after a 10 min at 80 ◦C
treatment to select spores (black lines). Results are average ±CI 95% of 2 enumeration profiles for
PVC (a) and Steel (b) coupons. The dotted line indicates the animal’s entry into the building.

3.3. 16S rRNA High-Throughput Sequencing Analysis to Decipher the Dynamic of Biofilm
Bacterial Diversity

A total of 60 samples from PCR targeting the 16S rRNA coding gene were success-
fully sequenced. After error filtering, alignment, and chimera removal, 1,146,915 reads
were generated, corresponding to 19,115 ± 6505 sequences per sample. Taxonomic anal-
ysis shows that Firmicutes phylum was the most represented in all samples, followed by
Proteobacteria, Actinobacteria, and Bacteroidetes. Lactobacillales, Clostridiales, Bacillales, Acti-
nomycetales, Pseudomonadales, Bacteroidales, and Enterobacteriales were the most dominant
orders (Figure 5).
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line indicates the animal’s entry into the building.
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Lactobacillales was the most represented order in both materials when samples were
compiled for days with significantly more relative frequency on PVC (40%) compared to
steel (31%). The trends are reversed with Clostridiales that is the second most represented
significantly on steel (25%) compared to PVC (14%) (p < 0.05). Other orders were also
significantly different per material: Bacillales, Actinomycetales, and Pseudomonadales on PVC
and Bacteroidales, Rhodocyclales, Enterobacteriales, Coriobacteriales, and Flavobacteriales on steel
(p < 0.05). The trends stated above are true for each time point except for day 2 (Figure 4).
On day 2, after C&D procedures and before the animals enter the building, taxonomic
profiles are different, with the larger abundance corresponding to Bacillales order on both
materials (28–32%). Just after animals enter at day 6, Pseudomonadales order proportion
increases to reach 25% of relative frequency on the PVC in comparison to a less increase
on the steel of 9%. Bacteroidales are more detectable on steel than PVC for every time point
except for day 2, which is at the same level. The level of Enterobacteriales decreased from
day 2 to the end of the experiment (Figure 5).

Shannon indexes were used to compare α-diversity between steel and PVC materials
during the experiment (Figure 6). On day 2, before animal entry, the diversity was the same
on both materials (6.3 and 6.2). The Shannon index on PVC decreased on day 6 until day 21,
in comparison to a significantly higher and stable diversity level on steel for all the breeding
duration. Except for the first sampling on day 2, a significantly lower level of diversity
is observed on PVC compared to steel (p < 0.05), corresponding to a decrease of richness
and evenness in the bacterial population. Similar results were found for observed ASVs
from 285 at day 2 to a peak on day 6 with 341–431, reaching 170–290 ASVs at the end of the
trial, for PVC and steel, respectively. Weighted UniFrac distances of beta diversity showed
significant differences between the compositional 16S of both materials per day (p < 0.05).
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4. Discussion

Knowledge of the microbial communities living on surfaces of livestock buildings is
still very limited in the literature. These communities, in close contact with animals, should
be better characterized for their control. As mentioned previously, no standard or robust
methodology is described to sample or analyze these spatially organized communities.
Here, we propose a sampling and analyzing method of the biofilms by collecting them
from coupons installed on site.

To apply and validate this methodology in the context of pig farms, coupons were
placed after C&D protocol under the water lines, an area with frequent contact with animals.
Coupons were sampled before animal entry that corresponds to 2 days of incubation (day 2),



Microorganisms 2022, 10, 2 9 of 12

and around 4 logs (CFU/cm2) of bacteria were counted on TSA with both materials. After
several days, the number of counts did not reach more than 7 logs (CFU/cm2), showing low
effectiveness of C&D protocol or rapid growth of bacteria after C&D. Analysis of coupons
incubated throughout the breeding period exposed or not to a C&D process would allow
answering this question.

The spatial organization of metabolically active bacteria inside the total biofilm was
observed. By compiling the biovolume of both channels over time and by the ratio of CAM
versus SYTO61, it was possible to estimate that for the two materials, around 30% of the
biofilm was composed of metabolically active cells. The bacteria counted on TSA medium
may be those detected by CAM without the viable but non-cultivable part. Metabolically
active bacteria in the biofilm can have a commensal origin or can be those detected on
surfaces before entry of animals which have developed, representing in our study around
4 logs (CFU/cm2) for day 2, and which are by diversity analysis principally Bacillales and
Lactobacillales. While CAM allowed the visualization of localized pockets of metabolically
active cells, a limitation of such esterase activity markers is that some bacterial species can
expulse the dye with efflux pumps, resulting in loss of intracellular fluorescence [41].

Here, coupons were contaminated with feces splashes from the arrival of the animals
in the building (day 6). Fecal bacteria can hence be recruited in the preexisting biofilm and
be integrated into the CFU counts. It has been shown that the bacterial quantity that lives
in the gut achieves among the highest cell densities recorded for any ecosystem, with more
than 1011 cells per gram of wet material in the colon [42]. The intestinal contents of pig
harbor a fraction of strict microbial anaerobes that do not tolerate the presence of oxygen.
Their release into open air can cause cell death and lysis and the release of eDNA [43]. In
this study, the SYTO 61 can label live and dead microorganisms but also the abundant
eDNA fraction in the matrix. Previous studies have shown that polysaccharides, proteins,
and eDNA can play a role in the spatial structure of the biofilm [6,44]. The very compacted
structure of biofilms may here be linked to the large amount of eDNA resulting from
bacterial lysis.

A decrease in SYTO 61 signal on PVC is observed from day 6 to the end of the
experiment. Biofilms on PVC could be less cohesive than on steel. The steel coupons
showed high hydrophilic properties and harbored holes and cracks on their surface that
could permit a better fixation of organic materials in comparison to PVC. The structure of
the biofilm changed with a decrease of the biomass level during the experiment, but this was
not correlated with a decrease in bacterial number. Biovolumes on steel were higher than on
PVC, and this could also be explained by the properties of steel surface (hydrophobicity and
rugosity). However, the number of bacteria counted on PVC was higher than on steel, which
suggests that steel carries a greater matrix with fewer bacteria. Microscopic visualization
of extracellular matrix compounds may be considered in future experiments. Alternative
labeling methods can be used in future experiments to distinguish other components of the
biofilm, such as fluorescent lectins that bind specifically to exopolysaccharides, thioflavin
T for amyloid fiber labeling, or fluorescence in situ hybridization (FISH) technique by
detecting specific species having access to their spatial organization [45,46].

The bacterial diversity was studied by 16S high-throughput sequencing analysis.
Overall, in the absence of additional biological replicates, the insights brought by 16S
sequencing were limited to the description of the microbial community. The results showed
more richness and evenness in steel than PVC, and this was in line with the taxonomy
results, with the presence of a large proportion of bacteria on coupons, such as Lactobacillales,
Clostridiales, Bacillales, Actinomycetales, Pseudomonadales, Bacteroidales, and Enterobacteriales,
already found in other pig studies [47–49]. A bias in this community profiling arises from
the high quantities of bacterial eDNA from feces on the surface that can be sequenced
in addition to the living bacteria that multiply in such biofilms. DNA of bacteria that
can grow on the surface was amplified, but because of the eDNA release, dead bacteria
are also detected with this approach. V3–V4 regions of the gene encoding the 16S RNA
were chosen for DNA amplification to discriminate better the species as bringing higher
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variability of the amplified sequences, in comparison to other regions like V4–V5 region,
which can show as well the presence of archaea [50]. Internal transcribed spacer (ITS)
regions from fungi that code for ribosomal RNA can also be used to study this diversity of
surface communities [51]. A probable correlation exists between the composition of the
animal microbiota and the microbial communities identified on the coupons. For future
experiments, animal microbiota has to be sampled, analyzed, and compared to the biofilms.

This method has been validated in a pig farming context, allowing a better under-
standing of the dynamics of microbial communities over time in this production system.
In the future, we could envision that a farmer could use this coupon method without the
intervention of specialized technician and send them to the laboratory with a dedicated
procedure for monitoring the building surface microbiological profile. Interesting trends
such as the effect of the material stand out significantly and should be extended by other
complementary studies in other farms to standardize the results. The method also makes it
possible to isolate strains of interest from these surfaces. New high-throughput culturomic
techniques compatible with our sampling methodology allow us to isolate and cultivate vi-
able bacteria inside the community and could help to avoid the bias surface contamination
by dead bacteria from feces that are detected by DNA sequencing [52–54]. In perspective, a
study where coupons are placed at different heights to also study the formation of biofilm
on these surfaces without splashes of feces could be considered. Other coupons composed
of representative materials of the livestock building as concrete or stainless steel could also
be analyzed.

Antimicrobial tolerance and resistance of such compact 3D communities will be also
interesting to investigate. These microbial communities are also frequently exposed to
antibiotic residues and can become reservoirs of antibiotic resistance genes.

5. Conclusions

A method to non-invasively capture biofilms of the surface of livestock buildings and
their ex-situ analysis was developed in this work to be implemented and validated in a
building of a pig farm. Bacterial density, diversity, and the three-dimensional structure
of the surface biofilms were analyzed, thus increasing our knowledge of these microbial
communities, poorly documented until now. In perspective, these results could contribute
to better understanding the contamination risks of animals by pathogens present on the
contact surfaces and directly associated with biofilms. In the future, this approach could be
used to study surface biofilms in a variety of agricultural environments, including other
types of livestock buildings.
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