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Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) are increasing worldwide and seriously threaten human life and
health. Fibroblast growth factor 21 (FGF21), a metabolic regulator, regulates glucose and lipid metabolism and may exert beneficial
effects on the cardiovascular system. In recent years, FGF21 has been found to act directly on the cardiovascular system and may be
used as an early biomarker of CVDs. The present review highlights the recent progress in understanding the relationship between
FGF21 and CVDs including coronary heart disease, myocardial ischemia, cardiomyopathy, and heart failure and also explores the
related mechanism of the cardioprotective effect of FGF21. FGF21 plays an important role in the prediction, treatment, and
improvement of prognosis in CVDs. This cardioprotective effect of FGF21 may be achieved by preventing endothelial dysfunction
and lipid accumulating, inhibiting cardiomyocyte apoptosis and regulating the associated oxidative stress, inflammation and
autophagy. In conclusion, FGF21 is a promising target for the treatment of CVDs, however, its clinical application requires further
clarification of the precise role of FGF21 in CVDs.
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Introduction

Cardiovascular diseases (CVDs) including coronary heart
disease (CHD), atherosclerosis, myocardial infarction
(MI), cardiomyopathy (CMP), and heart failure (HF)
have the highest mortality rates worldwide.[1] In 2019,
CVD caused an estimated 18.6 million deaths worldwide
and another 39.3 million people lived with disabilities.[2]

With the continuous development of pathology, some
cytokines have proven to be significantly related to the
occurrence and development of CVDs and are expected to
become new targets for the early diagnosis and treatment
of CVDs.[3]

The fibroblast growth factor (FGF) superfamily consists of
23 polypeptides. Members of the FGF superfamily usually
act in an autocrine or paracrine manner. But FGF15/19,
FGF21, and FGF23, which lack heparin-binding domains,
are released into the bloodstream to act in an endocrine
manner.[4] FGF21 was first identified as a member of
FGFs in 2000[5] and has attracted global attention because
of its excellent ability to regulate glucose and lipid
metabolism. FGF21 is a polypeptide that contains 209
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or 210 (human or rodent) amino acid residues comprising
approximately 13 N-terminal and 40 C-terminal residues
and extended random coil regions flanking a converged
non-canonical b-trefoil fold core domain.[6] The FGF21
gene is located on chromosome 19. Its expression is
primarily regulated by peroxisome proliferator-activated
receptor a (PPARa) in the liver and PPARg in the adipose
tissue.[7] Other transcription factors are also involved in
regulating the expression of FGF21, such as activating
transcription factor 4 (ATF4),[8] Kruppel-like factor 15,[9]

retinoic acid receptor-related orphan receptor a,[10]

Jumonji-D3,[11] and carbohydrate-responsive element
binding protein.[12] FGF21 can activate only homologous
FGF receptors (FGFRs) in the target tissues in the presence
of coreceptor b-klotho. b-Klotho is a cell surface protein
that mediates the targeting signal of FGF21, whereas
FGFR mediates intracellular signal transmission. The N-
terminal and C-terminal of FGF21 bind to FGFR and
b-klotho, respectively.[13] Klotho protein is not universally
expressed and is expressed at high levels in the liver, gall
bladder, colon, pancreas, and adipose tissues,[14] which
may determine the selective metabolic effects of FGF21.
Under physiological conditions, FGF21 is primarily
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secreted by the liver but is also expressed and secreted by
other tissues (including adipose, muscle, and pancreatic)
under stressed or pathological conditions.[15] The physio-
logical functions of FGFs have been widely studied. FGFs
have therapeutic potential in a wide array of human
diseases, including diabetes mellitus (DM),[16] cancer,[17]

alopecia,[18] and kidney disease.[19] FGF21 improves
hyperglycemia, dyslipidemia, and obesity, providing a
therapeutic effect onmetabolic diseases.[20] In obese rodent
models, FGF21 increased energy consumption, improved
insulin sensitivity, and decreased bodyweight, blood
glucose, and lipid levels.[21,22] Similar results were
observed in experiments involving obese monkeys and
patients with DM.[23,24]Moreover, FGF21 has a protective
effect on non-alcoholic fatty liver disease.[25]

Early studies on FGF21 primarily focused on expression
and metabolic regulation in the liver, whereas the
relationship between FGF21 and the heart has become
the most popular research topic in the past decade. Several
studies have reported the relationship between FGF21 and
CVDs, such as CHD,[26] CMP,[27] and HF.[28] FGF21
exerts cardioprotective effects partly by regulating oxida-
tive stress,[29] lipid metabolism,[30] autophagy,[31] and
apoptosis[32] and may be a new target for the prediction
and treatment of CVDs. In this study, we attempted to shed
light on the recent progress in understanding the
relationship between FGF21 and CVDs [Figure 1]. We
also explored the cardioprotective mechanisms of FGF21
in CVDs to provide a reference for the prediction,
treatment, and prognosis of CVDs. The literature was
obtained by searching the PubMed database and covering
relevant research articles published up to June 2021 using
the keywords “FGF21”, “cardiovascular disease”,
“coronary heart disease”, “atherosclerosis”, “myocardial
Figure 1: Pathophysiological changes of cardiovascular diseases and the role of FGF21 in th
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infarction”, “cardiomyopathy”, “heart failure”, and
combinations of these terms. There was no restriction
on the type of article.
Effect of FGF21 on CHD

The relationship between FGF21 and CHD

CHD is characterized by cardiac ischemia, hypoxia, or
necrosis caused by coronary artery stenosis or occlusion.
The principal pathological change observed in CHD is the
formation of atherosclerotic plaque in the coronary
arteries.[33] Atherosclerosis is the accumulation of lipids
and fibrous components in the arterial endothelium to form
atherosclerotic plaques that invade the arterial lumen and
hinder blood flow.[34] Previous studies have found that
FGF21 is associated with DM, dyslipidemia, and metabolic
syndrome, which are potential precursors of cardiovascular
disease, suggesting that the cytokinemay be associated with
atherosclerosis.[35] In support of this notion, subsequent
animal and clinical studies provided evidence for the
association of FGF21with atherosclerosis. In atherosclerot-
ic mice, treatment with exogenous FGF21 significantly
reduced lipid deposition and plaque area in the aortic root
and decreased the severity of the lesion.[36] In clinical trials,
serum FGF21 levels were lower in patients with subclinical
atherosclerosis and peripheral artery disease.[37,38] Similar-
ly, serum FGF21 levels were associated with carotid
atherosclerosis.[39] Therefore, the expression and secretion
of FGF21 generally decrease in patients with CHD.[26] A
recent study reportedapositive relationship betweenFGF21
and subclinical carotid atherosclerosis in women but not in
men.[40] The Guangdong Coronary Artery Disease Cohort
study followed 1668 patients with CHD for an average of
4.9 years and revealed a U-shaped relationship between
ese processes.
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serum FGF21 levels and risks for all-cause and cardiovas-
cularmortality. This suggests that lowor high serumFGF21
levels increase the risk of mortality.[41] Multiple epidemio-
logical investigations show that high levels of FGF21 could
predict CHD development.[42,43] Similarly, higher plasma
FGF21 levels were associated with a higher risk of CHD
events in patients using statins.[44]Moreover, Cheng et al[45]

found that the concentration of serum FGF21 in patients
withunstable anginapectoris (UAP)was significantly higher
than that in patients with stable angina pectoris and healthy
controls. This indicates that FGF21 is a potential predictor
of UAP. The increased FGF21 levels in these pathophysio-
logical situations may be due to the compensatory response
caused by FGF21 deficiency or resistance.[46] In contrast,
some researchers report that FGF21 could not predict
cardiovascular events in healthy individuals.[38,47] A study
recently indicated that FGF21 could be used to predict the
incidence or prognosis of CHD in specific patients rather
than the general population.[48]

The relationship between FGF21 and cardiovascular
complications in DM has also attracted much attention.
FGF21 can improve endothelial dysfunction in diabetic
mice, thus delaying the occurrence of atherosclerosis.[49]

The administration of the long-acting FGF21 analog (PF-
05231023) to obese cynomolgus monkeys and patients
with type 2 diabetes (T2DM) significantly reduced body
weight, increased adiponectin levels, and reduced circulat-
ing atherogenic lipids.[23] In patients with multivessel
coronary artery disease and DM, the expression of FGF21
in pericardial fat and epicardial fat was significantly
decreased.[50] The level of serum FGF21 in patients with
T2DM positively correlated with markers of early vascular
injury and endothelial dysfunction, such as C-reactive
protein and high-density lipoprotein cholesterol (HDL-
C).[51] Furthermore, serum FGF21 levels were also
observed to be significantly increased in patients with
T2DM and CHD. A cross-sectional study conducted in
504 patients with T2DM reported that serum FGF21 levels
in women with lower extremity atherosclerotic disease
were significantly higher than those in healthy women.[52]

Patients with T2DM with newly diagnosed subclinical
atherosclerosis had significantly higher serum FGF21
levels than those without subclinical atherosclerosis.[53]

Moreover, a study that followed Chinese diabetic
participants without CVD (at baseline) for 4 years found
that baseline serum FGF21 levels in patients with new-
onset CHD were significantly higher than those without
CHD.[54] These results indicated that the serum FGF21
level is an independent predictor of cardiovascular
complications in patients with DM. However, because
of the instability and short half-life of natural FGF21
molecules, the independent application of FGF21 as a drug
in clinical treatment remains to be investigated.[55] Recent
studies have reported that the combination of FGF21 and
glucagon-like peptide-1 is more effective for treating
metabolic diseases.[56]
Mechanism of action of FGF21 in atherosclerosis

The protective effect of FGF21 on the cardiovascular
system has been demonstrated in vivo and in vitro.
Mechanistic studies have reported that FGF21 enhances the
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activity of the antioxidant system and suppresses oxidative
stress and endoplasmic reticulum stress (ERS). In addition,
FGF21 further reduces endothelial cell injury and apoptosis,
thereby inhibiting the development of atherosclerosis.[29]

FGF21 intervention increased the levels of superoxide
dismutase (SOD) and glutathione and decreased malon-
dialdehyde levels in atherosclerotic rats.[57,58] The tran-
scription factor E2-related factor 2 (Nrf2) and antioxidant
responsive element (ARE) signaling pathways have an anti-
atherosclerotic effect by activating cellular antioxidant
defense.[59] In atherosclerotic rats, the upregulation of
FGF21 increased the expression of Nrf2/ARE pathway-
related proteins and antioxidant system-related molecules
and reduced endothelial dysfunction, whereas downregu-
lation of FGF21 reversed these changes.[57] ERS induced the
expression and secretion of FGF21 through ATF4 and
CCAAT enhancer-binding protein homologous protein
(CHOP).[60] FGF21 decreased the expression levels of ERS-
specific proteins, including glucose-regulated protein-94,
caspase-12, and CHOP. FGF21 further alleviated athero-
sclerosis in apolipoprotein E�/� (ApoE�/�) mice by
inhibiting ERS-induced apoptosis.[61]

Vascular endothelial cell injury and apoptosis are the basic
pathological features of atherosclerosis. Clinical studies
have found that increased FGF21 levels are related to a
deteriorated endothelial function.[62] FGF21 may improve
endothelial function in the early stages of atherosclero-
sis.[63] Intravenous injection of adenoviral vectors express-
ing FGF21 (Ad-FGF21) in mice significantly promoted
blood flow recovery and endothelial nitric oxide synthase
(eNOS) phosphorylation in ischemic limbs. This suggested
that FGF21 promoted endothelial cell function and
ischemia-induced vascular remodeling through an
eNOS-dependent mechanism.[64] FGF21 attenuates the
aggravation of aortic endothelial cell injury caused by
hyperglycemia. The binding of FGF21 to FGFR activates
the calcium/calmodulin-dependent protein kinase kinase
2 and AMP-activated protein kinase (AMPK) signaling
pathway, inhibits oxidative stress, and increases levels of
eNOS phosphorylation and nitric oxide production in
endothelial cells. This subsequently inhibits the decrease in
endothelial cell activity and migration induced by high
glucose (HG) and alleviates endothelial dysfunction.[49,65]

This mechanism does not depend on the hypoglycemic or
insulin-sensitizing effects of FGF21. In addition, pretreat-
ing human umbilical vein endothelial cells (HUVECs) with
FGF21 before exposure to HG downregulated the
expression of Bim and upregulated the expression of
eNOS via the phosphatidylinositol-3-kinase (PI3K)/
protein kinase B (Akt)/FoxO3a signaling pathway, thus
reducing the production of reactive oxygen species (ROS)
and inhibiting apoptosis.[66,67] FGF21 inhibited the
apoptosis of HUVECs induced by H2O2 or oxidized
low-density lipoprotein (Ox-LDL) and decreased the
degree of DNA fragmentation and increased the survival
rate of HUVECs.[32,68] B-cell lymphoma 2 (BCL-2) protein
protects cells from apoptosis, whereas BCL2-associated X
protein (BAX) protein can induce apoptosis.[69] Therefore,
the Bax/Bcl-2 ratio is an important regulator of apoptosis
pathway activity. Caspase-3 is also an important factor in
apoptosis activation. In vitro, the cleavage of caspase-3
and the ratio of Bax/Bcl-2 increased in H2O2-treated
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HUVECs but decreased after pretreatment with FGF21.[70]

Further studies found that FGF21 antagonized apoptosis
induced by oxidative stress by blocking the mitogen-
activated protein kinase (MAPK) signaling pathway.[68]

Early studies have found that Ox-LDL promotes Fas-
mediated endothelial cell apoptosis and atherosclerosis.[71]

FGF21 can block this process by inhibiting the expression
of the Fas and Fas-associated death domain (FADD)
proteins independent of ERK1/2.[32] Therefore, the
protective effect of FGF21 on atherosclerosis may be
partly related to the inhibition of caspase-3 cleavage,
BAX protein levels, MAPK pathway signaling, and Fas/
FADD-mediated endothelial cell apoptosis.

Endovascular homeostasis imbalance and compensatory
angiogenesis disorders are early manifestations of
atherosclerosis. FGF21 significantly promotes the forma-
tion of neointima and enhances endothelium-dependent
relaxation of injured carotid arteries in atherosclerotic
rats.[58] Previous studies show that FGF21 promotes
endothelial angiogenesis through the dynamin-2-and
Rab5-dependent pathways.[72] A recent study reported
that FGF21 promoted angiogenesis and blood perfusion
after hind limb ischemia surgery in diabetic mice. FGF21
can directly act on endothelial progenitor cells (EPCs),
which are progenitors of the vascular endothelial cells,
and increase the level of NAD+ in an AMPK-dependent
manner. The protective effect of NAD+ on the angiogen-
esis of EPCs may be regulated by sirtuin 1 (SIRT1).[73]

Vascular endothelial cell aging is an independent risk
factor of age-related CVDs,[74] and SIRT1 is considered
an anti-aging molecule. Downregulation of SIRT1
expression can lead to oxidative stress, inflammation,
foam cell formation, autophagy inhibition, and nitric
oxide production, thus promoting vascular aging and
atherosclerosis.[75] FGF21 reportedly delays the aging of
HUVECs in an SIRT1-dependent manner and protects
the integrity of endothelial cells, suggesting that FGF21
might prevent age-related vascular diseases, such as
atherosclerosis.[76]

Dyslipidemia, which includes lipid accumulation and
hypercholesterolemia, is an important risk factor for the
formation of atherosclerotic plaques.[34] A decade ago,
researchers discovered the beneficial effect of FGF21 on
dyslipidemia in mice.[77] In studies using models of
atherosclerotic mouse and rat, researchers found that
exogenous FGF21 treatment reduced the body weight and
improved the blood lipid profile and lipid metabolism
which included reduced levels of serum triglyceride (TG),
total cholesterol, and low-density lipoprotein cholesterol
and increased levels of HDL-C, which were negatively
correlated with plaque size.[68,78] Therefore, FGF21 can
prevent the development of atherosclerosis by reducing
hypercholesterolemia. Previous studies have found that
FGF21 deficiency leads to further aggravation of hyper-
cholesterolemia in ApoE�/� mice, accompanied with an
increasing expression of cholesterol-producing genes and
the transformation from HDL to LDL. Supplementation
with FGF21 can inhibit the expression of hepatic sterol
regulatory element-binding protein-2, thereby reducing
cholesterol production and relieving atherosclerosis.[79]

Several researchers recently postulated a different point of
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view suggesting that FGF21 treatment can increase the
expression of genes related to cholesterol synthesis.
However, this may only be a compensatory response. In
fact, FGF21 reduces hypercholesterolemia by reducing
non-HDL cholesterol levels. Specifically, researchers
selected APOE∗3-Leiden CETP mice, which are sensitive
to cholesterol-lowering substances. They found that
exogenous recombinant FGF21 promoted the hydrolysis
of TG-rich lipoproteins and the absorption of released
fatty acids in both white and brown adipose tissue while
accelerating cholesterol clearance in the liver. This reduced
hypercholesterolemia and effectively prevented the devel-
opment of atherosclerosis.[36] The imbalance of cholesterol
homeostasis in macrophages induces the formation of
foam cells, which is a sign of early atherosclerosis.
Increasing cholesterol outflow from macrophages prevents
the progression of atherosclerosis. Researchers observed
inhibited foam cell formation after co-culturing THP-1
macrophages with Ox-LDL and FGF21.[80,81] Further,
studies show that FGF21 increases the expression of liver X
receptor (LXR) a-dependent ATP-binding cassette trans-
porter A1 (ABCA1) and ATP-binding cassette transporter
G1 (ABCG1) through the AMPK-ERK1/2-PPARg-LXRa
signaling pathway.[82] ABCA1 and ABCG1 promote
cholesterol efflux from macrophages and reduce intracel-
lular cholesterol accumulation, thus inhibiting the forma-
tion of foam cells.[81,82] Moreover, some researchers
believed that FGF21 mediates the effects of the above-
mentioned pathways on macrophages via an adiponectin-
dependent mechanism.[79,83] In addition, FGF21 might
induce autophagy through activated kinase C receptor 1 to
promote the degradation of lipid droplets and to increase
cholesterol outflow from foam cells.[31] Therefore, FGF21
inhibits the formation of foam cells by regulating lipid
metabolism, cholesterol efflux, and autophagy and
protecting against atherosclerosis.

Inflammation is also an independent risk factor of coronary
artery disease. Macrophages are the principal target cells of
FGF21 that exert anti-inflammatory effects. The number of
macrophages in the atherosclerotic plaques decreased
significantly after FGF21 treatment.[58] FGF21 regulates
inflammation in macrophages by inhibiting the nuclear
factor (NF)-kB signaling pathway.[81] FGF21 significantly
reduces the expression of circulatory inflammatory factors
including interleukin (IL)-1b, IL-6, and tumor necrosis
factor (TNF)-a in the liver tissue and aortic arch endothelial
cells.[36,58] In addition, several studies have found that the
Nrf2/ARE signaling pathway may also be involved in the
anti-inflammatory and anti-atherosclerotic effects of
FGF21.[57] The NOD-like receptor protein 3 (NLRP3)
inflammasome is composed of NLRP3, ASC, and procas-
pase-1. NLRP3 activation promotes the transformation of
procaspase-1 into active caspase-1 leading to the processing
and release of IL-1b and triggering a series of downstream
inflammatory reactions.[84] The NLRP3 inflammasome is
closely related to the occurrence, development, and severity
of atherosclerosis.[85] Studies have found that FGF21 can
inhibit vascular neointima hyperplasia and improve vascu-
lar dysfunction. Mechanistic studies have demonstrated
that FGF21 significantly inhibits the HG-induced release
of activated caspase-1 and IL-1b in mouse VSMCs.
This process may be attributed to the inhibition of
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FGF21onHG-inducedSykphosphorylation,which leads to
the suppression of NLRP3 inflammasome activation in
VSMCs and ultimately reduces the occurrence of vascular
remodeling.[83] FGF21 reduces the proliferation and
migration of VSMCs partly through the above-mentioned
pathways.[83] Recently, FGF21 was reported to prevent
atherosclerosis by inhibiting the pyrolysis of vascular
endothelial cells. Pyrolysis (also known as cell inflammatory
necrosis) is a typeofprogrammedcell death characterizedby
cell swelling and membrane rupture followed by the release
of cellular contents and the activation of inflammatory
responses.[86] FGF21 significantly reduced the expression of
pyrolysis-related proteins, including NLRP3, caspase1, and
IL-1b, in the aorta ofApoE�/�micewhowere fed a high-fat
diet.[78] Therefore, FGF21 is speculated to mitigate
atherosclerosis by inhibiting vascular endothelial cell
pyrolysis mediated by the NLRP3 inflammasome.[78]

Mitochondrial dysfunction and oxidative stress may also
play roles in this process. To exert an anti-atherosclerotic
effect, FGF21 reduced ROS production by ameliorating
mitochondrial dysfunction, oxidative stress, and ERS.[78]

The deficiency of ubiquinol cytochrome c reductase core
protein I (UQCRC1), a member of the respiratory chain
complex III, can lead to an increase in ROS production.[87]

Tetmethylcytosine dioxygenase 2 (TET2) participates in the
regulation of UQCRC1 expression. Chen et al[88] confirmed
that FGF21 inhibited Ox-LDL-induced pyrolysis of
HUVECs through the TET2–UQCRC1–ROS pathway.
In summary, FGF21 can inhibit almost all pathogenic
events of atherosclerosis, including oxidative stress, endo-
thelial cell injury and apoptosis, lipid accumulation, and
inflammation.
Effect of FGF21 on MI

The relationship between FGF21 and MI

Further deterioration of coronary atherosclerosis may lead
to coronary artery occlusion and myocardial ischemia and
eventually result in MI. Coronary artery spasms may also
lead to MI.[89] In animal models, plasma and cardiac
FGF21 levels increased significantly after myocardial
ischemia.[90] Sunaga et al[91] found that FGF21 levels in
serum and myocardial tissue increased rapidly 1 h after
coronary artery ligation and remained elevated after 24 h
and 1 week. Moreover, liver-specific FGF21 deficiency in
experimentalMI-model mice led to further deterioration of
cardiac dysfunction.[92] After treatment with Ad-FGF21
for 2 weeks, the left ventricular systolic and diastolic
functions of these mice improved significantly.[93] Li
et al[94] found that the scar size, cardiac ejection fraction,
and fractional shortening of mice with MI decreased
significantly after 1 and 4 weeks of FGF21 treatment.
Increased FGF21 levels after MI may be a spontaneous
in vivo cardioprotective mechanism.

Consistent with the findings in MI-model mice, circulating
FGF21 levels also increased in patients with acute
myocardial infarction (AMI), and the expression of
FGF21 may be a key response against cardiac ischemic
injury.[91] Serum FGF21 levels reached a maximum within
24 h after onset, remained at high levels for 7 days, and
decreased slightly thereafter. Moreover, the level of FGF21
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on day seven was related to the incidence of re-infarction
and death within 1 month in patients with AMI.[95]

These studies suggest that circulating FGF21 levels could
be used as a predictor of clinical prognosis in patients
with AMI.
The mechanism of action of FGF21 in MI

Some studies show that myocardial ischemia induces
activation of the sympathetic nervous system and resultant
lipolysis of adipose tissue,[96] which increased levels of
catecholamines and saturated fatty acids (SFAs). Subse-
quently, in vitro experiments showed that catecholamines
and SFAs induced the activation of AMPK, thereby
increasing the production and release of FGF21 in
cardiomyocytes and forming a cardiac AMPK-FGF21
feed-forward loop. This is an effective and long-lasting
protective signaling pathway against ischemic stress.[91]

FGF21 can further induce its own expression and activate
the expression of AMPK in downstream targets, such
as the AMPK/SIRT1/peroxisome proliferator-activated
receptor-g coactivator 1 a (PGC-1a) signaling path-
way,[97,98] to regulate the myocardial metabolic dynamic
balance and mitochondrial function, thereby protecting
against cardiac ischemic injury.[99]

The liver contributes to cardioprotective effects in MI by
upregulating and releasing protective secretory proteins,
such as FGF21.[100] Circulating FGF21 interacted with
FGFR1 in cardiomyocytes, which then partly inhibited
apoptosis by activating the PI3K/Akt1/Bcl-2-associated
death promoter (BAD) signal network.[101] Moreover,
FGF21 inhibited cardiomyocyte apoptosis by reducing
caspase-3 activity and modulating galectin-3 in cardio-
myocytes.[92,101] Furthermore, intramuscular injection of
exogenous FGF21 in mice increased the level of plasma
adiponectin, a cardioprotective adipokine. Simultaneous
inhibition of apoptosis in cardiomyocytes and the
improvement of capillary formation in the marginal zone
of infarction were also observed. This suggests that muscle-
derived FGF21 at least partially improves myocardial
pathological remodeling post-MI through an adiponectin-
dependent mechanism.[93] In addition, the administration
of FGF21 could reduce the expression of proinflammatory
cytokines such as TNF-a and IL6 during MI, indicating
that FGF21 might attenuate pathological myocardial
remodeling through anti-inflammatory effects.[93]

Patients with AMI are at a high risk of arrhythmias and
sudden cardiac death.[102,103] Cardiac electrical remodel-
ing, including abnormal cardiac conduction and abnormal
action potential duration, is the principal reason for the
increase in arrhythmia after MI. Improving cardiac
electrical remodeling can increase cardiac performance
and reduce MI and cardiac fibrosis.[104] In a recent study,
Li et al[94] demonstrated for the first time that FGF21
attenuated ischemia-induced dysfunction of voltage-gated
Na+ channels and K+ channels in cardiomyocytes by
targeting the miR-143/early growth response protein 1
signaling pathway. Therefore, FGF21 effectively improved
cardiac electrical conduction and reduced the incidence of
ventricular arrhythmias after MI. This discovery provides
a new approach for the treatment of ischemic arrhythmia.

http://www.cmj.org


Chinese Medical Journal 2021;134(24) www.cmj.org
The mechanism of action of FGF21 in ischemia-reperfusion
(I/R) injury

The restoration of coronary artery perfusion is an essential
step in the treatmentofAMI.However, the rapid recoveryof
blood supply to the ischemic tissues or organs can aggravate
cell death and tissue injury, leading to I/R injury.[105]

Autophagy is involved in protection against myocardial
injury during I/R.[106] Studies have confirmed that FGF21
plays a cardioprotective role in I/R injury by promoting
autophagic flux.[107] After co-incubating reoxygenated
H9c2 cardiomyocytes with FGF21, the H/R-induced
injury of H9c2 cardiomyocytes was alleviated, and the
survival rate of myocardial cells increased. These changes
may be caused by FGF21-induced upregulation of
autophagy flux through the Beclin-1/vacuolar protein
sorting 34 pathway.[107]

Apoptosis is the primary form of cell death following I/R
injury. Some studies have shown that FGF21 can scavenge
ROS, eliminate lipid peroxidation, and protect cell
membranes from oxidative stress caused by I/R injury
through the Akt/glycogen synthase kinase 3 b/caspase-3
signaling pathway.[108] FGF21 can also alleviate cell injury
by improving the energy supply through activating ATP
synthase, pyruvate kinase M1, and protein kinase C.[108]

Furthermore, in the I/R injury model, FGF21 inhibited the
expression of angiotensin II (Ang II) and increased the
levels of miR-145 and glucose transporter-1. This may
improve glucose transport and energy supply, thereby
increasing cell migration and decreasing the rate of
apoptosis.[109] Taken together, FGF21 inhibits cell apo-
ptosis caused by I/R through a variety of pathways to
alleviate cardiac dysfunction.
Effect of FGF21 on CMP

The relationship between FGF21 and CMP

Cardiomyopathy is also a common cardiovascular disease
that is divided into primary (genetic, non-genetic, and
acquired) and secondary cardiomyopathy (including dia-
betic, alcoholic, and infectious cardiomyopathy).[110,111]

Diabetic cardiomyopathy (DCM) is defined as a DM-
induced chronic myocardial necrotic disease characterized
byabnormal cardiac structure and function in theabsenceof
other cardiac diseases.[112] Circulating FGF21 levels were
significantly lower in DCM model mice.[113] FGF21-
knockout (FGF21-KO) mice were more sensitive to DM-
induced myocardial injury, cardiac fibrosis, collagen and
lipid accumulation, and systolic and diastolic dysfunction.
Both exogenous and endogenous supplementation with
FGF21 could reverse these changes and prevent the
progression of DCM.[114,115] These results suggest that
FGF21 may have a protective effect against cardiomyopa-
thy. However, most studies on DCM have been conducted
on animals. Therefore, clinical trials are needed to confirm
the relationship between FGF21 and DCM.

Other types of cardiomyopathies have also been explored
by many researchers. A clinical study demonstrated that
serum FGF21 levels were associated with the risk, severity,
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and prognosis of dilated cardiomyopathy.[116] Moreover,
cardiac biopsy in patients with hypertension revealed that
FGF21 levels in cardiomyocytes were significantly in-
creased, especially in the patients who further developed
cardiomyopathy and were positively correlated with the
degree of cardiac hypertrophy and fibrosis.[117] Animal
experiments further confirmed that FGF21 treatment
could significantly reduce cardiac hypertrophy and
dysfunction induced by Ang II.[118] Researchers recently
proposed that FGF21 might be a promising diagnostic
marker and therapeutic target for alcoholic cardiomyopa-
thy (ACM).[119] Studies have found that chronic alcohol
consumption induces FGF21 levels in the plasma and
cardiomyocytes.[120] The deficiency of FGF21 exacerbated
cardiac mitochondrial dysfunction and oxidative stress in
response to alcohol exposure, suggesting that FGF21 may
protect the heart from ACM by activating the antioxidant
defense system in the myocardium.[120,121] However, more
evidence is needed to support this notion.
The mechanism of action of FGF21 in DCM

DCM and other cardiovascular complications related to
increasingly prevalent DM are attracting augmented
attention. Researchers have found a close relationship
between FGF21 and DCM and conducted further research
on its internal mechanism.

Efficient suppression of oxidative stress and cardiomyocyte
apoptosis is important for preventing DCM. Previous
studies have demonstrated that FGF21 inhibits oxidative
stress through various pathways. FGF21 treatment pre-
vented oxidative stress in cardiomyocytes by reducing
ROSproduction and inducing the expression of antioxidant
genes, including mitochondrial uncoupling protein 2,
mitochondrial uncoupling protein 3 (UCP3), and
SOD2.[29]Moreover, FGF21 increased the phosphorylation
of AMPK through ERK1/2 and LKB1, leading to the
activation of SIRT1 and the deacetylation of its downstream
target genes, including PGC-1a and histone 3.[97,122]

Furthermore, both exogenous and endogenous FGF21
could protect the heart from oxidative stress via the AMPK/
Akt2/Nrf2-mediated antioxidative pathway.[123,124] In
addition, paraoxonase 1 (PON1) is considered a potential
target against CVDs.[125] The protective effect of FGF21
against DM-induced cardiac damage is at least partly
mediated by activation of the AMPK/PON1 signaling
pathway. This inhibits oxidative stress and reduces local
inflammation, fibrosis, and cardiomyocyte apoptosis,
thereby preventing the occurrence of DCM.[115]

The cardioprotective effect of FGF21 on DCM is primarily
attributed to lipotoxicity rather than glucose toxicity.
Researchers have shown that inhibition of fatty acid b
oxidation partially blocks the protective effect of FGF21
on cardiomyocytes[123] and that the AMPK/acetyl-
CoA carboxylase (ACC)/carnitine palmitoyltransferase I-
mediated lipid metabolic pathway is involved in this
process.[124] Moreover, PGC-1a serves as a key transcrip-
tional energy balance regulator and plays an important
role in regulating fatty acid oxidation.[126] The expression
of cardiac PGC-1a was downregulated in FGF21-KO
diabetic mice,[123] and inhibition of FGF21 resulted in
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excess lipid uptake and increased lipid accumulation. This
promoted cardiac remodeling—including cardiac hyper-
trophy, fibrosis, and dysfunction—and further accelerated
DCM development.[113] Notably, FGF21 can inhibit
cardiac lipid absorption. CD36 and fatty acid transport
protein (FATP) are regulators of lipid absorption. Nrf2
mediates the upregulation of CD36 expression and has
been reported to play a key role in lipid metabolism in
macrophages and within the aorta.[127,128] FGF21 defi-
ciency upregulated Nrf2, CD36, and FATP expression in
cardiomyocytes, whereas FGF21 supplementation strong-
ly suppressed their expression levels.[113,123,124] Addition-
ally, cardiac dysfunction in patients with DM is partly
attributed to the accumulation of lipid droplets in
cardiomyocytes. Autophagy involves the decomposition
of intracellular lipid droplets.[129] The upregulation of
cardiac FGF21 expression increases SIRT1-mediated
autophagy, thus reducing cardiomyocyte injury caused
by lipotoxicity.[130] Further studies are needed to explore
the mechanism of the effects of FGF21 on DCM and other
types of cardiomyopathies.
Effect of FGF21 on HF

The relationship between FGF21 and HF

HF is a clinical syndrome characterized by abnormal
cardiac structure, function, rhythm, or conduction and is
primarily attributed to cardiac diastolic and systolic
dysfunction caused by MI, hypertension, and CMP.
According to the level of ejection fraction, HF can be
divided into HF with preserved ejection fraction (HFpEF)
and HF with reduced ejection fraction (HFrEF).[131]

Current epidemiological studies show that more than half
of patients with HF have a preserved ejection fraction.[132]

Presently, only a few studies focus on the relationship
between FGF21 and HF. Chou et al[28] found that
circulating FGF21 levels increased significantly in patients
with HFpEF compared with those in the control group;
additionally, plasma FGF21 had good predictive values for
adverse cardiac events within 1 year in HFpEF patients.
In another study on cardiac cachexia, the researchers
reported that serum FGF21 levels were significantly higher
in patients with HFrEF and cardiac cachexia than in those
without cachexia.[133] In addition, a study of 1132 patients
with both DM and coronary artery calcification confirmed
that lower baseline serum FGF21 levels indicated a lower
incidence of major adverse cardiovascular events, includ-
ing acute coronary syndrome, HF, malignant arrhythmia,
and sudden cardiac death.[48] These results suggest that
FGF21 may be a potential target for the prediction and
treatment of HF.
FGF21 mechanism in HF

Few studies have investigated the underlying mechanism of
FGF21 in HF focusing on the effects of antioxidation and
autophagy promotion. Some studies have shown that the
expressions of FGF21 and antioxidant genes (e.g., UCP3
and SOD2) were upregulated in failing human hearts.[29]

HF triggers the excess intracellular energy signal, weakens
the anabolic system, and enhances the catabolic system.
The regulation of energy metabolism may be mediated by
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the SIRT1 signaling pathway and its downstream
molecules, PGC-1a and FGF21.[98,134] Researchers found
that sodium-glucose cotransporter 2 (SGLT2) inhibitors
activated the SIRT1/PGC-1a/FGF21 signaling pathway,
reduced oxidative stress, and promoted autophagy in
cardiomyocytes, thereby reducing the risk of severe HF
failure events.[98] Additionally, PGC-1a reportedly inter-
acts with NF-kB in cardiomyocytes of both humans and
mice, indicating that the regulation of inflammation may
also play a role in HF prevention.[135] Therefore, the
activation of FGF21 and enhancement of the cardiac
antioxidant systemmay play a cardioprotective role in HF.
Hypertension is also an important risk factor for HF.
FGF21 may play a role in regulating blood pressure.[136]

Studies have shown that the levels of circulating FGF21
and FGF21 expression in the myocardium increased in
mice and humans.[117] Moreover, Pan et al[137] found
that FGF21 deficiency led to a significant deterioration
of hypertension and increased vascular damage in Ang
II-treated mice, whereas FGF21 supplementation signifi-
cantly reversed these negative effects. Its underlying
mechanism may be the activation of angiotensin-convert-
ing enzyme 2/angiotensin-(1–7) axis. Furthermore, adeno-
sine A2 receptor, a Gs protein-coupled receptor in brown
adipose tissue, can mediate the release of brown adipose
tissue-derived FGF21, which has a protective effect on
cardiac remodeling induced by hypertension in an
endocrine manner.[138,139]
Conclusion and future prospective

This review summarizes the role of FGF21 in cardiovas-
cular pathology. FGF21 is an important regulator of
glucose and lipid metabolism and has clear regulatory
effects on a variety of metabolic pathways. However, the
molecular mechanisms underlying these effects have not
been fully elucidated. Herein, we summarize recent studies
on the relationship between FGF21 and CVDs (including
CHD, MI, CMP, and HF) and provide evidence that
FGF21 plays an important role in the prediction,
treatment, and improvement of prognosis in CVDs
[Table 1]. We also summarize the related mechanism of
the cardioprotective effect of FGF21 [Figure 2]. However,
many controversies remain among different studies
regarding the exact relationship, and the internal mecha-
nisms between FGF21 and CVDs remain unclear. Further
studies with stricter designs and larger sample sizes are
needed to clarify this inconsistency.

Although many preclinical studies have confirmed that
FGF21 has multiple protective effects on metabolic
disorders and cardiovascular diseases, the clinical applica-
tion of FGF21 remains a challenge. First, some studies
suggest that FGF21 may have negative effects on bone
homeostasis, including bone loss and excessive osteoclasts
in rodents,[140,141] whereas such effects were not observed
in others.[24,142] Second, the results obtained in animal
experiments cannot be directly applied to humans because
of interspecific differences in the pharmacological effects of
FGF21.[143] Moreover, the pharmacokinetics of natural
FGF21 is poor and not suitable for clinical application. In
recent years, FGF21 analogs and simulants have been
continuously developed,[20] and some have been used in
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Table 1: Clinical evidence on the relationship between FGF21 and cardiovascular diseases.

Diseases Populations Samples Results Interpretations References

CHD CHD (n = 33)
CHD with DM (n= 33)

Serum
EF
PF

DM patients:
EF volume↑
RAGE (EF)↑
ADM (EF and PF)↑
FGF21 (EF and PF)↓

The expression of FGF21 in
epicardial and cardial fat
decreased in patients with CHD
and diabetes.

[50]

Subclinical atherosclerosis
(n= 75)

Healthy control (n= 65)

Serum Subclinical atherosclerosis
patients:

MCP-1↑
FGF21↓

Serum FGF21 was associated with
subclinical atherosclerosis disease
severity in postmenopausal
women without CVD.

[37]

CHD (n = 224; PAD, n= 38)
Healthy control (n= 193)

Plasma CHD patients and healthy
control:

FGF21 (no significant
difference)

PAD patients: FGF21↓

Circulating FGF21 was lower in
patients with PAD than in those
without PAD.

[38]

SAP (n= 66)
UAP (n= 76)
Healthy control (n= 55)

Serum UAP: FGF21↑
Positive correlation: FGF21
with cTnI and CK-MB

Serum FGF21 was significantly
higher in UAP patients than in
SAP patients and healthy
controls.

[45]

CHD (n = 1668) Serum U-shaped correlation: FGF21
with mortality

Serum FGF21 levels and mortality
in CHD patients showed a
U-shaped correlation.

[41]

T2DM (n= 504)
LEAD (n= 294)
non-LEAD (n= 210)

Serum LEAD: FGF21↑
Positive correlation: FGF21
with systolic blood
pressure and femoral
intima-media thickness

Serum FGF21 was significantly
higher in LEAD women than in
healthy women.

[52]

AMI AMI (n = 50)
SAP (n= 43)

Serum AMI patients: FGF21↑
Positive correlation: FGF21
with peak FABP4 and
saturated fatty acids.

Serum FGF21 was higher in AMI
patients than in SAP patients.

[91]

AMI (n = 55)
Healthy control (n= 45)

Serum AMI patients: FGF21↑
Maximum: 24 h after AMI
Remained: 7 days

Serum FGF21 was significantly
higher in AMI patients than
controls.

[95]

CMP Dilated cardiomyopathy
(n= 241)

Healthy control (n= 80)

Serum Dilated cardiomyopathy
patients: FGF21↑

Negative correlation: FGF21
and NT-proBNP with a
survival rate

Serum FGF21 was associated with
the risk factors, severity, and
prognosis of dilated
cardiomyopathy.

[116]

Hearts from alcoholic
donors (n= 30)

Healthy control (n= 11)

Hearts Alcoholic patients:
Circulating and cardiac
FGF21↑

b-Klotho↑
Oxidative stress↑

Circulating and cardiac FGF21 was
increased in subjects with chronic
alcohol consumption.

[120]

HF Diastolic dysfunction
(n= 95)

Healthy control (n= 143)

Plasma Positive correlation:
FGF21 with diastolic
dysfunction;

FGF21 and NT-proBNP
with the rate of CVD

Circulating FGF21 showed good
predictive power to the 1-year
adverse cardiac events.

[28]

DM and CAC (n= 1132) Serum Correlation:
FGF21 with better 1-year
prognosis

Lower baseline serum FGF21 was
a prediction for a better long-
term prognosis.

[48]

HFrEF with cardiac cachexia
(n= 19)

HFrEF without cachexia
(n= 19)

Ischaemic heart disease and
preserved ejection fraction
(n= 19)

Plasma HFrEF with cardiac cachexia
patients:FGF21↑

Correlation: FGF21 with
lower muscle mass

Non-correlation: FGF21
with NT-proBNP

Serum FGF21 was significantly
higher in patients with HFrEF
and cardiac cachexia than in
those without cachexia.

[133]

AMI: Acute myocardial infarction; CAC: Coronary artery calcification; CHD: Coronary heart disease; CK-MB: Creatine kinase-MB; CMP:
Cardiomyopathy; cTnI: Cardiac troponin I; CVD: Cardiovascular disease; T2DM: Type 2 diabetes mellitus; EF: Epicardial fat; FABP4: Fatty acid
binding protein 4; FGF21: Fibroblast growth factor 21; HF: Heart failure; HFrEF: Heart failure with reduced ejection fraction; LEAD: Lower extremity
atherosclerotic disease; MCP-1: Monocyte chemoattractant protein-1; NT-proBNP: N-terminal pro-B-type natriuretic peptide; PAD: Peripheral artery
disease; PF: Paracardial fat; SAP: Stable angina pectoris; UAP: Unstable angina pectoris.

Chinese Medical Journal 2021;134(24) www.cmj.org

2938

http://www.cmj.org


Figure 2: FGF21 induces protective effect on cardiovascular diseases through multiple signaling pathways. ABCA1: ATP-binding cassette transporter A1; ABCG1: ATP-binding cassette
transporter G1; ACC: Acetyl-CoA carboxylase; Akt: Protein kinase B; AMPK: AMP-activated protein kinase; ARE: Antioxidant responsive element; BAD: B-cell lymphoma 2-associated death
promoter; Bax: B-cell lymphoma 2-associated X protein; Bcl: B-cell lymphoma; CPT: Carnitine palmitoyltransferase; DCM: Diabetic cardiomyopathy; eNOS: Endothelial nitric oxide synthase;
FATP: Fatty acid transport protein; GSK: Glycogen synthase kinase; HDL-C: High-density lipoprotein cholesterol; IL: Interleukin; LDL-C: Low-density lipoprotein cholesterol; MI: Myocardial
infarction; NF: Nuclear factor; NLRP3: NOD-like receptor protein 3; NO: Nitric oxide; Nrf2: Transcription factor-E2-related factor 2; PGC: Peroxisome proliferator-activated receptor-g
coactivator; PI3K: Phosphatidylinositol-3-kinase; SIRT1: Sirtuin 1; SOD: Superoxide dismutase; TC: Total cholesterol; TG: Triglyceride; TNF: Tumor necrosis factor; UCP: Uncoupling protein;
Vps34: Vacuolar protein sorting 34.
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early clinical trials in patients with obesity,[144] T2DM,[145]

and non-alcoholic steatohepatitis.[146] However, clinical
application in the field of CVDs has not been reported. In
conclusion, FGF21 is a promising target for the treatment
of CVDs; nevertheless, its clinical application requires
further clarification of the precise role of FGF21 in CVDs.
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