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Abstract: Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe
cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination
of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show
downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum.
MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at
around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the
significant role of the SHH–MycN pathway in granule cell proliferation, our study suggests that a
broader molecular pathway and additional mechanisms regulating granule cell development during
the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate
that downregulation of the protein synthesis machinery may contribute to the reduced number of
granule cells in the nax cerebellum.

Keywords: granule cells; SHH; MYCN; cerebellum; mice; nax

1. Introduction

The cerebellum fulfills important roles in motor control, language, attention, and
mental imagery [1–3]. This brain region has a three-layered cortex that consists of the
molecular layer (ML), Purkinje cell (PC) layer, and granule cell (GC) layer [4,5]. Out of the
several types of neurons found in these layers, GCs are the most prominent, comprising
approximately 80% of neurons in the central nervous system (CNS) [6,7].

During cerebellar development, GC precursors arise from the cerebellar rhombic
lip and migrate rostrolaterally in a subpial stream to form the external germinal zone
(EGZ) from embryonic day (E) 12.5 to 17 [4,8–10]. GC precursors rapidly proliferate in
the EGZ and, after 7–8 divisions (~128–144 h), move radially to their final destination and
differentiate into mature GCs [11–14]. During this process, sonic hedgehog (SHH), secreted
by PCs, promotes proliferation of GC precursors [15–18]. It has been suggested that SHH
signaling pathway effectors may be involved in GC differentiation as well [19,20]. The
SHH receptor Patched 1 (PTCH1), together with the co-receptors CDON (Codon), BOC
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(Brother of Codon), and GAS1, functions as a control switch that turns on SHH signal
transduction [20–22]. Upon SHH binding to its receptors, PTCH1-mediated inhibition of
SMO (Smoothened; a G-coupled transmembrane receptor) is lifted, allowing constitutive
SMO activity and associated downstream signaling [23].

The Gli (glioma-associated oncogene homolog) family of proteins plays an important
role in downstream SHH signaling [24,25]. The Gli transcription factors include three
proteins encoded by the genes Gli1, -2, and -3 [26]. The zinc finger domains in GLI proteins
bind to DNA to initiate or inhibit transcription. Activation of the SHH pathway facilitates
the accumulation of GLI1 in the nucleus, leading to the activation of target genes [27]. GLI2
and -3 have been shown to act as activators or inhibitors of transcription, depending on
whether or not they have been converted into their repressor (Gli2-R, Gli3-R) forms [28].

Among other GLI target genes, Mycn, located on chromosome 12 in the mouse and
encoding the MYCN protein, promotes proliferation of cerebellar GC precursors [5,29,30].
In addition to regulating the proliferative cycle of GC precursors, a decrease in MYCN has
been reported to act as a switch from proliferation to differentiation [5,30]. Furthermore,
GLI factors target cyclins D and E, which together are thought to promote the proliferation
of GC precursors in the EGZ [31–34].

Lysosomal acid phosphatase (Acp2), one of many soluble luminal hydrolases, hy-
drolyzes orthophosphoric monoesters into alcohol and phosphate and removes the mannose-
6-phosphate recognition marker from lysosomal proteins [35,36]. An Acp2 mutant mouse
called nax (naked and ataxia), resulting from a spontaneous point mutation in the Acp2
gene, exhibits an overall impairment of cerebellar cortex development and severe defects in
cerebellar function [37]. We have shown that ACP2 expression marks the caudal midbrain
and cerebellum [38], and the anterior cerebellum is the most severely affected in the nax
mice [39], which indicate critical and specific roles in cerebellar development. In this mu-
tant, the highly organized three-layered cerebellar cortex is disrupted and the number of
cerebellar GCs is significantly reduced [37,39]. In addition, it has recently been shown that
dysregulation of the SHH signaling pathway in animal models with lysosomal disorders
are implicated in the proliferation of cerebellar GC precursors [40,41].

Based on our current study, we report that the SHH–MycN pathway is impaired in
the nax cerebellum, but only after the peak of GC proliferation, between postnatal days P4
and P8 [42,43]. In the nax cerebellum, defective GC proliferation may be associated with
downregulation of the protein synthesis machinery.

2. Results
2.1. The Number of Cerebellar GCs Is Significantly Decreased in the nax Cerebellum

Previously, we reported that the nax mouse is smaller in size than the wt and shows
an overall impairment of the cerebellar cortex and nuclei. The orderly arrangement of
the three-layered cerebellar cortex is disrupted in the nax cerebellum with a significant
decrease in GCs and excessive migration of PCs [38,39].

In order to assess the differences in the number of cerebellar GCs between the wt
and nax cerebella, the neural nuclei (NeuN) antibody was used to label mature GCs. At
P13, NeuN immunostaining shows a large number of GCs densely packed in the GC layer
of the wt cerebellum (Figure 1A–C), which could not be observed in the nax cerebellum
(Figure 1D–F). Further analysis revealed that the number of cerebellar GCs in nax mice is
significantly reduced to roughly 20% of that scored in wt littermates (Figure 1G).

This dramatic drop in GCs could be due to a defect in proliferation and/or defective
migration from the EGZ (aka external GC layer (EGL)) to the definitive GC layer [44].
To explore whether the proliferative activity of GC precursors is impaired in the EGZ,
immunostaining for paired box protein 6 (PAX6) was used to label GC precursors in wt
and nax cerebella at P6, corresponding to the peak of GC precursor clonal expansion. Our
results revealed that the number of GC precursors is dramatically decreased in the nax
EGZ (Figure 2A,B) and is only about 20% of that in wt littermates (Figure 2C). In order
to further confirm this observation and identify GC precursors in the EGZ in relation to
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PC development, we applied double staining for PAX6 and the calcium-binding protein
calbindin (CALB), a marker for PCs, in cerebellar sections. At P8, the wt cerebellum shows
a thick EGZ containing GC precursors in the medial and lateral cerebellum (Figure 2D,F,G;
~10–12 layers of the PAX6+ cells). In contrast, the nax mutant cerebellum displays a
reduced number of GC precursors in the EGZ, which is hardly detectable near the midline
(putative vermis) and very thin in the lateral cerebellum (Figure 2E,H,I; ~ 1–4 layers of the
PAX6+ cells).

Figure 1. The number of cerebellar granule cells (GCs) is significantly decreased in nax compared to
wt littermate mice. (A–C) Frontal section of P13 wt mouse cerebellum immunostained with neuro
nuclei (NeuN) reveals a large number of mature GCs in the GC layer (GCL). The higher magnification
shows medial (B) and lateral (C) views of the wt cerebellum (A). (D–F) Frontal section of P13 nax
mouse cerebellum immunostained with NeuN shows that the cerebellum size is smaller and the
lobules are underdeveloped. Evidently, the number of cerebellar GCs is much lower (E,F) than in the
wt cerebellum ((B,C) for direct comparison). The higher magnification shows medial (E) and lateral
(F) views of nax cerebellum (D). (G) Cell counting of the frontal sections of P13 samples shows a
significant difference in the number of GCs between wt and nax cerebella (G). The graph represents
the average cell counts at P13 in sections from wt and nax littermates (wt; n = 3 and nax; n = 3) and
shows that the number of GCs amounts to only ~20% of that scored in wt cerebella. The data in the
graph are presented as the mean ± SEM. Statistical analysis was performed using unpaired t-test
(*** p < 0.001). Abbreviations: GCL, GC layer; PCL, PC layer; ML, Molecular layer; h, hemisphere; v,
vermis. Scale bars: 500 µm in (A) applies to (A,D), and 100 µm in (B) applies to (B,C,E,F).
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Figure 2. The number of cerebellar GC precursors is decreased in the nax mouse. (A) Sagittal section
of P6 wt mouse cerebellum immunostained with PAX6 shows GC precursors in the external germinal
zone (EGZ); higher magnification provided in (a). (B) Sagittal section of P6 nax mouse cerebellum
immunostained with PAX6 reveals that the number of GC precursors is markedly lower than in
the wt cerebellum; higher magnification provided in (b). (C) Cell counting of sagittal sections of P6
cerebellum shows a significant difference in the number of GC precursors during early postnatal age
between wt and nax. The bars represent the average cell counts of cerebellar sections obtained at P6
from wt and nax littermates (wt; n = 3 and nax; n = 3) and show that the number of GC precursors in
nax is only about 20% of that scored in wt. The data in the graph are presented as the mean ± SEM,
and statistical analysis was performed using unpaired t-test (*** p < 0.001. (D–I) Frontal sections
of wt (D) and nax (E) cerebellum at P8 immunostained with PAX6 (green) and CALB (red). (D) In
the wt cerebellum, a thick external germinal zone (EGZ) could clearly be observed medially (F) and
laterally (G). (E) In the nax mutant, the number of proliferating GCs was strongly reduced in the
EGZ as compared to the wt; GCs appeared completely absent medially (H), and only a thin EGZ
could be identified laterally (I). Abbreviations: EGZ, external germinal zone; ML, molecular layer;
PCL, Purkinje cell layer. Scale bars: 500 µm in (A,B), 100 µm in (a,b), 1000 µm in (D,E), 20 µm in (G)
applies to (F–G), and 20 µm in (I) applies to (H,I).

Bergmann glial cells are involved in GC migration, the original concept of glial-
guided neuronal migration [45]. Glial fibrillary acidic protein (GFAP) immunostaining
in wt (Supplementary Figure S1A–C) and nax (Supplementary Figure S1D–F) cerebella
showed that Bergmann glial cell bodies are present in both groups but are scattered
in the PC/molecular layer in the nax cerebellum. This can likely be explained by the
observation that the multilayer PCs stomata in the molecular layer and Bergmann glial
fibers at different lengths are still extending toward the pia mater. To examine whether the
proliferating GC precursors migrate to the GC layer, BrdU incorporation was studied. BrdU
administration at E18 and subsequent immunostaining at P5 revealed that GCs migrated
from the EGZ to the granular layer in the nax cerebellum (Figure 3B; arrows in inset),
comparable to wt littermates (Figure 3A; arrows in inset). NeuN immunostaining of serial
sections confirmed the presence of mature GCs in the granular layer of the wt (Figure 3C)
and nax cerebellum (Figure 3D). To determine whether GC precursor proliferation is
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decreased in the nax cerebellum, the mice were injected with BrdU at P6 and studied
45 min after injection (Figure 4). BrdU immunostaining revealed that GC proliferation
is dramatically decreased in the cerebella of nax mice to roughly 30% (Figure 4B,D,G)
when compared with wt littermates (Figure 4A,C,G). To further confirm, we performed
Ki67 immunohistochemistry on cerebellar sections at P6, demonstrating the abundant
presence of Ki67 immunopositive cells in the EGZ of wt mice, indicative of a proliferative
environment (Figure 4E,H). Supporting our BrdU results, the number of proliferating (Ki67
positive) cells was markedly lower (to ~ 25%) in the nax cerebellum (Figure 4F,H).

Figure 3. Visualization of BrdU incorporation in frontal sections at P5, following BrdU injection at
E18 in timed pregnant mice. (A,B) BrdU staining shows that immunopositive cells migrate from
EGZ to the GC layer (gl) in the wt (A) and nax (B) cerebellum, which is indicated by arrows in the
inset. (C,D) NeuN immunostaining of serial sections of wt (C) and nax (D) cerebella confirming
migration of mature GCs to the gl. Abbreviations: egz, external germinal zone; gl, granule cell layer;
h, hemisphere; pcl, Purkinje cell layer; v, vemis. Scale bars: 200 µm in (D) applies to (A–D).

2.2. Is the SHH Signaling Pathway Impaired in the nax Cerebellum?

The SHH signaling pathway is an important regulator of GC precursor prolifera-
tion during cerebellar development [16,23,24]. To determine whether the SHH pathway
is impaired in nax mice and if this could underpin disrupted GC proliferation, section
immunostaining and Western blotting were performed using wt and nax cerebella. PCs
represent the primary source from which SHH is secreted. Immunostaining of P12 cere-
bellar sections revealed that nax PCs express SHH at levels comparable to those of wt PCs
(Figure 5A,B; Supplementary Figure S2 (the secondary antibody control)). To precisely
assess the dynamics of SHH protein expression over time, Western blotting was performed
using samples harvested at P5, -7, -10, -15 and -19 from wt and nax cerebella. SHH protein
levels peaked at P10-P15 in the wt mouse and declined thereafter (Figure 5C,D). Inter-
estingly, in the nax cerebellum, SHH expression appears to increase beyond P10 and is
maintained at high levels through P19 (Figure 5C,D).
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Figure 4. Using BrdU and ki67 to assess GC proliferative activity in wt and nax cerebella at P6.
(A–D,G) Visualization of BrdU incorporation in nax and wt cerebellar sagittal sections, 45 min after
BrdU injection at P6. BrdU staining revealed a higher number of proliferating (immunopositive) cells
in the EGZ in wt ((A), higher magnification in (C)) as compared to nax cerebellum ((B) and higher
magnification in (D)). Number of proliferating cells in the EGZ that are BrdU immunopositive is
significantly higher in wt than in nax littermates (wt; n = 3 and nax; n = 3). Quantitative analysis
shows that the BrdU+ index is about 30% in nax compared to wt. (E,F,H) Ki67 immunostaining of
cerebellar sections confirmed that the number of proliferating cells in the EGZ is higher in wt (E) than
in nax mice (D). Similar to the BrdU results, cell counting of sagittal sections at P6 shows a significant
reduction in the number of Ki67 positive cells in the EGZ in the nax cerebellum than in wt littermates
(wt; n = 3 and nax; n = 3). The data in the graph are presented as the mean ± SEM, and statistical
analysis was performed using unpaired t-test (**** p < 0.0001). Abbreviation: m, mesencephalon.
Scale bars: 500 µm in (B) applies to (A,B), 100 µm in (D) applies to (C,D), 100 µm in (F) applies
to (E,F).
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Figure 5. SHH is expressed to a similar extent by cerebellar PCs in wt and nax mutant mice.
(A,B) Sagittal sections of P12 wt and nax mouse cerebella immunostained with SHH show that
the expression of SHH is localized in PCs in both groups. (C,D) Western blot analysis of SHH
expression at P5, -7, -10, -15 and -19 reveals a modest increase over time and similar expression levels
in wt and nax cerebella at all time-points (wt: n = 3 and nax: n = 3). The actin shows consistent and
equal loading of all cerebellar samples. The data in the graph are presented as the mean ± SEM,
and statistical analysis was performed using one-way ANOVA. Abbreviations: gl, GC layer; ML,
molecular layer; PCL, PC layer; wm, white matter. Scale bars: 100 µm in (A) applies to (A,B).

SHH signaling is regulated by multiple mechanisms and interactions with various
proteins [46]. Extracellularly, the SHH signaling response and distribution are regulated by
HHIP, CDON (Codon), BOC (Brother of Codon), and GAS1, which dynamically interact
with the Patched 1 (receptor), leading to the controlled release of SMO inhibition [46]. RT-
qPCR showed that Hhip gene expression in the nax cerebellum was comparable to control
levels at P5 and P10 (Figure 6A). At P15, however, an increase in Hhip gene expression
was observed in wt, whereas levels remained low and comparable to P5 and 10 in the nax
cerebellum (Figure 6A). Ptch1 gene expression did not differ significantly from controls at
any time-point (Figure 6B).
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Figure 6. mRNA transcription levels of Hhip, Ptch1, and Gli1–3 in wt and nax cerebella. (A) Based on
RT-qPCR, Hhip gene expression in wt and nax cerebella was comparable at P5 and P10, which are
the most critical days for GC proliferation. In wt mice, expression appears to be increased at P15,
whereas it remained at the same level in nax animals (* p < 0.05 compared to wt). (B) No differences in
Ptch1 expression were observed between wt and nax cerebella; expression levels did not significantly
change over time (P5–15). (C) As compared to P5, Gli1 gene expression decreased over time at P10
and 15; no significant differences were observed between the nax and wt cerebellum at any time
point. (D) Gli2 mRNA expression decreased over time in a similar fashion as for Gli1; no significant
differences in Gli2 expression were observed between the nax and wt cerebellum. (E) Gli3 mRNA
expression decreased over time in the wt cerebellum, in a similar fashion as for Gli1 and -2, but
was maintained high (same level as on P5) at P10 and 15 in the nax cerebella. Expression levels
were significantly different between wt and nax at P10 (** p < 0.01) and 15 (** p < 0.01). The data
in the graph are presented as the mean ± SEM, and statistical analysis was performed using an
unpaired t-test.

The GLI family of zinc finger transcription factors is a downstream nuclear effector of
the SHH signaling pathway. GLI proteins participate in cell fate determination, proliferation
and patterning of many cell types during embryonic development [25]. Gli1–3 expression
was assessed by RT-qPCR in nax and wt littermate cerebella (Figure 6C–E). As compared to
P5, Gli1 and -2 gene expression decreased over time at P10 and 15; no differences in Gli1
and Gli2 gene expression were observed between the nax and wt cerebella (Figure 6C,D).
Gli3 mRNA expression also decreased in the wt, in a similar fashion as for Gli1 and -2, but
remained at the same level as on P5 at P10 and 15 in nax cerebella (i.e., Gli3 expression was
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maintained, Figure 6E). As a result, expression levels were significantly different between
wt and nax at P10 and 15. In addition, a heat map graphical analysis using RNAseq
data sets from nax and wt cerebella at P5/P7 revealed that Shh signaling molecules are
dysregulated in the nax cerebellum (Figure 7). For instance, Shh and its cofactors such as
Scube are upregulated and Smo and Grk2 appear downregulated in nax mice.

Figure 7. Heat map analysis of SHH pathway in the nax cerebellum at P5/P7. The rows of the heat
map represent the genes of interest and the columns represent the experimental samples. Each cell is
colored based on the level of expression of that gene in that sample. This heat map analysis shows
color-coded expression levels of up (red)- and down (blue)-regulated genes. The data show that SHH
signaling pathways are dysregulated in the nax cerebellum.
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2.3. MYCN Expression Patterns Are Altered in the nax Cerebellum

MYCN, a downstream target of the SHH pathway, is highly expressed in the em-
bryonic brain and plays a vital role in development, especially regarding cerebellar GC
precursor proliferation [29–31]. Nax and wt cerebellar sections were immunostained with
an MYCN antibody at P5 and P12. Our results show that the protein localizes to GC
precursors of the EGZ in both the wt (Figure 8A,C) and mutant (Figure 8B,D) and suggest
a decreased immunoreactivity for MYCN in the nax cerebellum at P12 (Figure 8c,c’ vs.
Figure 8d,d’). MYCN protein levels (Figure 8E) typically increase from P5 to P10, as shown
for the wt, and subside towards the end of clonal expansion (P15). In the nax cerebellum,
MYCN protein expression was comparable to wt at P5 but peaked earlier at P7 and then
progressively decreased (Figure 8E). Importantly, MYCN protein expression was signifi-
cantly lower in the nax mutant at P10 and 15. Both immunohistochemistry and Western
blotting results suggest that MYCN protein expression is markedly decreased after cere-
bellar GC precursor proliferation peaked in the nax cerebellum and is virtually absent at
P15. Next, we asked if protein downregulation in the nax cerebellum was due to decreased
Mycn gene expression. Based on RT-qPCR results, no differences were observed in Mycn
gene expression between nax and wt cerebella. RNA expression gradually decreased at
P10 and 15 as compared to P5 to a similar extent in both groups (Figure 8F).

The observed reduced MYCN protein abundance could be due to an increased protein
degradation or decreased synthesis. MYCN is degraded via the ubiquitin-proteasome
system, which is regulated by catalyzing the polyubiquitination and degradation of MYCN
to balance the proliferation and differentiation in GCs [47,48]. The proteasome expression
was explored by immunostaining wt and nax MEF cells (MEFwt and MEFnax) with anti-
proteasome antibody. The proteasome immunoreactivity in both the nucleus and cytoplasm
was apparently similar in MEFnax compared to MEFwt cells. However, the proteasome
activity assay demonstrated that the proteasome activity in MEFnax is significantly higher
than in MEFwt, which may imply the potential for accelerated clearance of proteins such as
MYCN (Supplementary Figure S3). Further studies will be required to address this point.

It has been shown in MYCN-amplified neuroblastoma that the protein synthesis
machinery is significantly upregulated [49]. A heat map graphical analysis using RNAseq
data sets from nax and wt cerebella revealed that gene expression of both large (Figure 9A)
and small (Figure 9B) subunits of the ribosomal proteins are strongly downregulated in the
nax cerebellum. Of note, this observation might be associated with the strongly reduced
number of GCs in the nax cerebellum.
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Figure 8. MYCN is expressed by GC precursors in wt and nax cerebella, but cerebellar MYCN protein
levels are lower in the nax mutant mouse at P10 and P15. (A,B) Sagittal sections of P5 wt and nax
mutant mouse cerebella immunostained with MYCN show expression in GC precursors. Higher
magnifications of the wt (A) and nax (B) anterior (a,b) and posterior (a’,b’) lobes are shown in the
inserted panels. (C,D) Sagittal section of P12 nax mutant mouse cerebellum (D) immunostained
with MYCN shows lower expression in GC precursors compared with wt littermates (C). Higher
magnifications of the wt (C) and nax (D) anterior (c,d) and posterior (c’,d’) lobes are shown in the
inserts. (E) Western blot analysis of MYCN expression in wt and nax cerebellar lysates at P5, -7, -10,
-15 and -19 (wt: n = 3 and nax: n = 3). In the wt samples, MYCN protein levels increased from P5 to
P10 and subsided towards the end of clonal expansion (P15). In the nax cerebellum, MYCN protein
expression was comparable to wt at P5, but peaked earlier at P7 and then progressively decreased.
Importantly, expression was significantly lower in the nax mutant at P10 and P15. The actin shows
consistent and equal loading of all cerebellar samples. The scatter plots show individual data points
and statistical analysis was performed using one-way ANOVA (** p < 0.01 and *** p < 0.001). (F)
Cerebellar Mycn mRNA expression gradually decreased at P10 and 15 as compared to P5 to a similar
extent in both nax and wt mice. No significant differences in Mycn expression were observed between
the groups at any time point. β-actin gene expression was used to normalize the qRT-PCR data. The
data in the graph are presented as the mean ± SEM, and statistical analysis was performed using an
unpaired t-test. Scale bars: 500 µm in (A applies to (A,B) and 500 µm in (C applies to (C,D).
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Figure 9. Heat map analysis of ribosomal protein gene expression in the nax cerebellum at P5/P7.
The rows of the heat map represent the genes of interest and the columns represent the experimental
samples. Each cell is colored based on the level of expression of that gene in that sample. This heat
map analysis shows color-coded expression levels of up (red)- and down (blue)-regulated genes.
The data show that major clusters of genes coding for large (RPL), (A) and small ribosomal subunits
(RPS), (B) are markedly downregulated in the nax cerebellum.
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3. Discussion

GCs constitute the largest neuronal population of the CNS. These neurons are sig-
nificantly decreased in number in the nax cerebellar cortex (around 20% of that in wt
controls). SHH signaling is important in the development of the GC precursors in the EGZ.
SHH releases the inhibition of SMO by inducing a conformational change in the PTCH1.
Derepressed SMO then activates the GLI factors and targets MYCN as well as cyclins,
which drive GC clonal expansion in the EGZ [31].

In the present study, we describe the effects of the Acp2 gene mutation on GC prolif-
eration observed in the nax cerebellum. The total number of GCs is strongly reduced in
the nax cerebellum, and PAX6 immunopositive GC precursors of the EGZ are dramatically
decreased in number as well—particularly in the vermis—at P6, corresponding to the
peak of GC precursor proliferation (Figure 2E,H,I). Because GCs rely on SHH signaling
for their clonal expansion, we examined the expression levels of SHH as well as various
other molecules involved in its signaling cascade as effectors or modulators during GC
precursor proliferation in the EGZ. Our results indicate that SHH protein levels moderately
increase over time (P5–19) and are comparable between PCs from nax and wt littermates.
An increase in Hhip gene expression was observed in wt at P15, whereas levels remained
low and comparable to P5 and 10 in the nax cerebellum. No relevant changes in comparison
to wt controls were observed in the expression of mRNAs encoding the SHH receptor Ptch1
and the nuclear transducer Gli1. Interestingly, however, while no differential expression is
detected in the levels of the Mycn transcript, the abundance of MYCN protein in whole
cerebellar lysates is significantly lower in nax mice at P10 and, expectedly, remains much
lower than in the wt animals at later stages (P15–19), given the low number of GCs in the
nax cerebellum.

Despite abundant neuronal degeneration in the nax cerebellum [39], it seems that the
reduced number of GCs is due to the decreased proliferative activity of GC precursors
during development (Figure 4). Numerous in vitro and in vivo studies have indicated
that SHH is the primary mitogen that regulates the proliferation of GC precursors in the
EGZ [16,18,21,50,51], and that SHH malfunction leads to reduced proliferative activity of
the GC precursors [18,51,52]. After secretion by PCs, the effects of SHH on transcription
factor GLIs in the target cells, in this case GCs, are co-regulated by Hhip, Ptch1, and
Smo. A significantly lower cerebellar Hhip (HHIP is an SHH inhibitor) mRNA expression
was observed in nax mice at P15, a stage where there is a decline in GC proliferation
and clonal expansion is almost complete. How this paradoxical finding translates to
HHIP protein expression and function needs to be further elucidated. It could be that
because proliferation is already suppressed in the nax mouse, and fine-tuning inhibitory
mechanisms that would result in an even larger reduction in proliferation, like those
mediated by Hhip, are not being employed. Alternatively, HHIP expression has been
suggested to be a readout of Shh signal transduction, like Ptc1 [53], and lower HHIP
expression might therefore simply reflect decreased signaling, which is congruent with
increased expression of the negative transducer in the pathway (i.e., Gli3) at these stages.

One of the readouts of SHH signaling pathway activity is transcription factor GLI1/2;
from P5 to P15, Gli1 and -2 mRNA levels decreased and expression was comparable in
the nax and wt cerebellar cortex at all time-points. Since the proportion of GCs is much
smaller in the mutant, it is conceivable that individual GCs in the nax cerebellum express
higher levels of Gli1/2, which would “compensate” for reduced cell number. Alternatively,
Gli1/2 expression in Bergmann glial cells may also compensate for reduced expression in
GCs, or it could be postulated that even though the number of total GCs is decreased in the
nax cerebellum, this is proportionate to the size of the tissue, and that the consistent Gli1/2
expression indicates that GCs present in the nax cerebellum go through a relatively normal
life. GLI1 belongs to the GLI family and participates in many cellular activities, such as cell
proliferation and cell fate determination [24,25]. In the cerebellum, GLI1 is an important
protein in GC precursor proliferation; as indicated, expression of Gli1 and 2 was similar
in the nax and wt cerebellum. Whereas Gli3 mRNA levels decrease from P5 to P15 in the
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wt cerebellum, in a similar fashion as for Gli1 and -2, Gli3 expression (likely reflecting the
PC layer) remains constant and is significantly higher at P10 and 15 in the nax cerebellum.
It has been shown that in the absence of SHH signal, GLI3 converts to a repressor form
and acts as a major negative transducer of the pathway [54]. Moreover, Gli3 expression is
required for the Wnt-dependent negative regulation of SHH and control of cell proliferation
and differentiation postnatally [55–57], and Wnt3 inhibits cerebellar GC proliferation [58],
probably through Gli3. Importantly, ablation of GLI3 in Shh knockout mice restored the
expression of several genes, including Mycn [59]. The sustained postnatal expression of
Gli3 after clonal expansion might represent a potential mechanism contributing to the
reduced number of GCs in the nax cerebellum other than the SHH pathway.

Mycn gene expression was not significantly different in the nax cerebellum compared to
wt littermate controls at any of the time-points studied. MYCN is an essential downstream
effector of SHH signaling mediated by GLI during both normal and neoplastic cerebellar
growth and is associated with GC precursor proliferation [31]. The Mycn gene is found
amplified repeatedly in metastatic human neuroblastomas and serves as a transcription
factor that participates in many cellular processes, including proliferation, differentiation,
and apoptosis [31,60–63]. Impaired Mycn expression has been shown to disturb cerebellar
development in mice as evidenced by a small size, disorganized and damaged foliation, and
an 8-fold reduction of GC precursors compared with the control group [30]. In addition,
in vitro and in vivo studies have demonstrated that Mycn is directly induced by SHH
and that MYCN is required for GC precursor proliferation and plays a central role in
SHH-mediated proliferation and tumorigenesis [31,64].

In contrast to Mycn gene expression, Western blot analysis showed that MYCN protein
abundance is significantly decreased in the nax cerebellum; of note, this reflects protein
expression after the clonal expansion peak. Proteasomal degradation of polyubiquiti-
nated MYCN protein has been described [47,65]. Endogenous MYCN binds to ligases,
such as HUWE1, prior to degradation by the proteasome [47]. Due to this degradation,
MYCN is a short-lived protein with a half-life of only 30 min [5,31,61]. Degradation of
MYCN withdraws the cells from proliferation and initiates their differentiation [47,65]. We
observed preliminary evidence of increased proteasome activity in MEFnax cells. These
findings suggest that in these fibroblasts grown from nax embryos, proteasome activity is
increased, leading to augmented degradation of MYCN, which possibly explains reduced
(GC) proliferation at a later stage of postnatal development. It is important to mention that
in addition to proteasome impairment, it is conceivable that disruptions in processes such
as cell recycling, autophagy, and responses to cellular stress contribute to our observations.
Recently, we showed that the defect of lysosomal protein degradation in nax animals may
be due to a malfunction in lysosomal activity. Thus, it is possible that our observed mis-
match between gene and protein expression is associated with defect(s) of the proteasome
system, autophagy, and/or lysosomal protein degradation in the nax model [66].

The observed alterations in the SHH-MYCN pathway in nax mice are preceded by a
significant reduction in GCs during clonal expansion. At the peak of the clonal expansion,
we observed Shh signaling pathway dysregulation. For instance, ligands (Shh and co-
factors) are upregulated. and Smo and Grk2, key substrates and modulators of Shh signaling,
are downregulated, in keeping with observations made by Zhao et al. [67]. Therefore, this
evidence may suggest a likely upregulation of extracellular ligands due to disrupted Shh
signals transduction, and a possible consequence is decreased MYCN expression.

In addition, we have observed a downregulation of ribosomal protein gene expres-
sion in the nax cerebellum. MYCN is known to enhance the expression of a large set
of genes functioning in ribosome biogenesis and protein synthesis [49]. While the GC
proliferation defect may stem from downregulation of ribosomal protein expression, fur-
ther investigation is required to assess the causal relationships between the two events in
purified GCs.

Cerebellar developmental tumors such as medulloblastoma are among the most com-
mon malignant pediatric brain tumors that originate from cerebellar GC precursor cells due
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to impairment of several molecular pathways, including SHH and MycN [48,68–70]. Our
observations may pave the way for pharmacologic manipulation of Acp2 as an approach
of cerebellar developmental disorders such as the SHH group of medulloblastomas and
Group 3 tumors and MYC signaling.

4. Materials and Methods
4.1. Animal Model

All animal procedures described in this study were performed in accordance with
institutional regulations and the Guide to the Care and Use of Experimental Animals from
the Canadian Council for Animal Care and have been approved by local authorities
“the Bannatyne Campus Animal Care Committee”, University of Manitoba (approved
protocol # 15066).

A nax mutant colony was established in the Genetic Modeling Center at the Faculty of
Health Sciences, University of Manitoba, after the embryos were obtained from the Institute
of Human Genetics at the University Medical Center, Georg-August University, Göttingen,
Germany. The line was backcrossed with C57BL/6 breeders to maintain the nax mutation
on a pure genetic background. The animals were kept at room temperature and relative
humidity (18–20 ◦C, 50–60%) on a 12 hrs light–dark cycle. In this study, a total of 78 mice
were used. After anesthesia (40% isoflurane, USP (Baxter Co., Mississauga, ON, Canada)),
brains were removed and fixed in 4% paraformaldehyde (PFA) for immunohistochemistry
(IHC) or prepared for Western blotting and real-time quantitative PCR.

4.2. Genotyping

The nax mouse can be phenotypically distinguished from wild type (wt) littermates
by appearance (small size, lack of body hair, and ataxia). In order to confirm the genotypes,
we performed PCR using the following primers: Acp4F (5′ GCACTCTGTGCCTTCTCCAT-
3′) and Acp4R (5′-CTGGGAGATTTGGGCAACTA-3′). After cleaving with the BamHI
restriction enzyme type II at 37 ◦C for 2 hrs, the DNA samples were loaded on a 2.5%
agarose gel prepared in 0.5× TBE buffer with 1µg/mL ethidium bromide. A single 525 bp
band identified the homozygous genotype; two bands (320 and 200 bp) identified the wild
type genotype; three bands of 525, 320, and 200 bp identified the heterozygous genotype.

4.3. Cryosection

Whole brains were obtained from wt and nax mice and fixed overnight in 4%
paraformaldehyde (PFA) at 4 ◦C. Next, PFA was replaced by sequential 10, 20, and 30%
sucrose and kept overnight at 4 ◦C. The cerebellum was embedded in OCT compound
and cryostat sectioned at 20 µm and processed for immunohistochemistry according to
our laboratory SOPs (e.g., [71]).

4.4. Immunohistochemistry

For immunohistochemistry (IHC), we used our standard lab protocol, as previously
published [38,39]. Briefly, the sections were washed with PBS and treated with 0.3% H2O2 to
stop the endogenous peroxidase activity, followed by another wash. Sections were kept in
blocking solution (10% normal goat serum and 0.05% Triton x-100 in PBS) for 1 h and subse-
quently incubated overnight at room temperature with primary antibody (anti-NeuN rabbit
polyclonal, Millipore Sigma, Oakville, ON, Canada, 1:1000 [72]; anti-PAX6 mouse mono-
clonal, Developmental Studies Hybridoma Bank [73], 1:25; anti-calbindin D-28K mouse
monoclonal, Swant, 1:1000 [39]; anti-sonic hedgehog rabbit polyclonal, Millipore Sigma,
1:200 [19]; anti-MYCN mouse monoclonal, Millipore Sigma, 1:25 [74], anti-proteasome
20S alpha + beta rabbit polyclonal, Abcam, Toronto, ON, Canada, 1:400, and anti-GFAP
rabbit polyclonal (Millipore Sigma, 1:1000). After thorough washing with PBS, sections
were treated for 2 h with the appropriate secondary antibody (goat anti mouse IgG, HRP
conjugate, Millipore Sigma, 1:500; goat anti rabbit IgG, HRP conjugate, Millipore Sigma,
1:500). Diaminobenzidine (DAB) was used as a chromogen. For immunofluorescence
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staining, the secondary antibodies were Alexa Fluor 488 goat anti-mouse or anti-rabbit
IgG and Alexa Fluor 594 goat anti-rabbit or anti-mouse IgG (Thermo Fisher, Ottawa, ON,
Canada, 1:1000). For autofluorescence control, the primary antibody was omitted.

4.5. Bromodeoxyuridine (BrdU) Incorporation Assay

BrdU (Sigma, Aldrich, Oakville, ON, Canada, Cat# 59-14-3) was dissolved in 0.007 N
NaOH + 0.9% NaCl. At a dosage of 50 mg/kg body weight (~100 µL), BrdU solution was
injected intraperitoneally to timed pregnant mice at E18 and pups were perfused at P5, or
pups were injected postnatally at P6 and perfused after 45 min. The brain was removed
and cryostat cerebellar sections were subjected to IHC using mouse monoclonal anti-BrdU
(Sigma, Cat# B8434, 1:500).

4.6. Western Blotting

Cerebellum samples were collected from nax mutants and wt littermates at differ-
ent ages (P5, -7, -10, -15, and -19). The samples were placed in lysis buffer containing
a protease inhibitor cocktail (Life Science, Peterborough, ON, Canada, Cat# M250) and
phosphatase inhibitor (Sigma Aldrich, Oakville, ON, Canada, Cat# P5726). After sonication
of the samples, protein concentrations were determined using a BCA protein assay kit
(Bio-Rad, Mississauga, ON, Canada, Cat# 5000121). Protein samples were suspended in
loading buffer (Tris-HCl 60 mM, glycerol 25%, SDS 2%, mercaptoethanol (ME) 14.4 mM,
bromophenol blue 0.1%, H2O), and equal amounts of total protein (12 µL of each sample
was loaded, 5 µL precision plus protein was used as marker standard (Thermo Fischer
Scientific, ON, Canada)) were separated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis; based on the molecular weight of the protein of interest, 6–15% polyacry-
lamide gels were used. After separation, proteins were transferred to a polyvinylidene
fluoride membrane. The membrane was blocked with 5% milk and incubated with primary
antibody (Anti-Sonic hedgehog Rabbit Polyclonal, Millipore Sigma, 1:400; Anti-MYCN
Mouse Monoclonal, Millipore Sigma, 1:200; in 1× TBST (Tris-buffered saline/0.01% tween
20) overnight at 4 ◦C, then washed 3 times with 1× TBST for 20 min each time and incu-
bated with secondary antibody (goat anti mouse IgG, HRP conjugate, Millipore Sigma,
1:5000; goat anti rabbit IgG, HRP conjugate, Millipore Sigma, 1:5000) in 1× TBST for 2 h.
Membranes were washed 3 times for 20 min with 1× TBST, and the immunoreactive bands
were visualized by electrochemiluminescence (ECL) (Pierce, ON, Canada). The data were
analyzed by AlphaEase software, and bands were normalized to β-actin expression.

4.7. RNA Isolation and Analyses

The cerebella of nax (P5; n = 2 and P7; n = 3) and wt littermates (P5; n = 3 and P7;
n = 3) were isolated and total RNA was extracted with the RNeasy Plus Mini Kit (Cat#
74134, QIAGEN, Toronto, ON, Canada). RNA product concentration was measured by
Nano-Drop ND-1000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The samples were kept at −80 ◦C and sent to the McGill University and Genome
Quebec Innovation Centre (MUGQIC). Raw RNAseq data were analyzed with FASTQ,
and files were filtered and trimmed using the fastp package [75]. Next, cleaned data were
aligned with the mouse reference genome (GRCm38.97) using Subjunc Aligner (v. 1.3.1) [76];
low-quality alignments, duplicates, and non-aligned sequences were removed from the
aligned files using Samtools [77]. Finally, reads associated with each gene on the reference
genome were extracted and counted using FeatureCounts software [78] and the “Reads Per
Kilobase of transcript, per Million mapped reads” (RPKM) was calculated for each gene.

4.8. Gene Expression Analyses

Total RNA was extracted using a TRIzol® Plus RNA Purification kit (Life Technologies,
Grand Island, NY, USA) according to manufacturer’s instructions. RNA quality and
quantity were assessed by measuring the absorbance at 260 and 280 nm using a NanoDrop
ND-1000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). All
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samples had an absorption ratio A260/A280 between 1.8 and 2.2. One microgram of
RNA from each sample was treated with RQ1 RNase-Free DNase® (Promega Corporation,
Madison, WI, USA) to remove genomic DNA contamination, and reverse transcription was
performed using SuperScript VILO cDNA Synthesis Master Mix (Invitrogen, Grand Island,
NY, USA) according to manufacturer’s recommendations. Real-time quantitative PCR
(RT-qPCR) reactions were performed in a Roche LightCycler 96 Real-Time System using
Power SYBR green master mix (Life Technologies) in a final reaction volume of 20 µL; all
samples were tested in triplicate. The stability of the housekeeping gene TATA Box binding
protein (Tbp) was assessed as described previously [79,80]. Differences in the threshold
cycle (∆Ct) number between the target genes and TATA Box binding protein (Tbp) were
used to calculate differences in expression.

4.9. Mouse Embryonic Fibroblast (MEF) Culture

Embryos were obtained from a heterozygous pregnant mouse. The tail was used
for PCR to distinguish the genotype. The body was first minced and then digested with
0.25% Trypsin/EDTA (Gibco, Burlington, ON, Canada, Cat# 15090-046). After centrifuging
the sample, the supernatant was discarded. The pellet was resuspended and added to a
coated plate (0.1% Gelatin solution) and incubated with MEF medium (10% fetal bovine
serum, 1% 200 mM L-glutamine, and 1% Penicillin-streptomycin in high glucose DMEM)
at 37 ◦C and 5% CO2 until cells reached 100% confluency. The cells were immortalized
with SV40 T antigen and then frozen and stored in liquid nitrogen. The MEF cells from wt
(MEFwt) and nax (MEFnax) were collected, experimentally treated (if so required), and used
for immunostaining, Western blotting, and proteasome activity assays.

4.10. Proteasome Activity Assay

To analyze 26S proteasome activity in MEF cells, we measured the proteolytic activity
of 20S and the deubiquitinating activity of 19S using fluorescent substrates. For more de-
tailed information, refer to recent publications by Abu-El-Rub et al., 2019 and 2020 [81,82].
Briefly, 100 µL of the Proteasome Lysis Buffer (Cayman chemical, Ann Arbor, Michigan,
USA, Item No. 10011097) was added to MEF cells, followed by incubation with gentle
shaking for 30 min at room temperature. After centrifugation, 90 µL of supernatant from
each sample was transferred to a black 96-well plate, followed by the addition of 10 µL of
SUC-LLVY-AMC proteasome substrate (Cayman chemical Item No. 10011095) and 10 µL
26S assay buffer. The fluorescent intensity was assessed to determine 20S subunit prote-
olytic activity, after 1 h of incubation in the dark (excitation = 360 nm; emission = 480 nm).
The deubiquitinating activity of 19S was measured by transferring 90 µL of each sample to
a 96-well black plate, and 0.5 µL of the Ubiquitin-Rhodamine 110 (Boston Biochem Item,
Toronto, ON, Canada, Cat# U-555) proteasome substrate solution and 10 µL of 26S assay
buffer was added to each sample; the fluorescent intensity for 19S subunit activity was
measured immediately after 1 h (excitation = 485 nm; emission = 535 nm).

4.11. Imaging

A Zeiss Axio Imager M2 microscope (Zeiss, Toronto, ON, Canada) was used to capture
bright field images, which were analyzed with Zeiss Microscope Software (Zen Image
Analysis software; Zeiss, Toronto, ON, Canada). Fluorescent images were captured by Zeiss
Z1 and Z2 Imagers and a Zeiss LSM 700 confocal microscope (Zeiss, Toronto, ON, Canada).
Adobe Photoshop CS5 was used to edit, crop, and finalize the images for presentation.

4.12. Cell Counting

Cerebellar GCs in the granular layer and GC precursors in the external germinal
zone were counted using ImageJ software. Three slides were counted for each wt and nax
cerebellum. Three sections were counted on each slide based on the standard size field
(950 µm × 715 µm).
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4.13. Statistical Analysis

GraphPad Prism 6 was used to evaluate the statistical significance of differences by
analysis of variance (ANOVA) for more than two groups and student t-test for comparison
of two groups. Differences were considered to be statistically significant when p < 0.05
(level of significance is indicated in the figures (* p < 0. 05, ** p < 0.01)).

5. Conclusions

SHH-MYCN signaling has been shown to promote the proliferation of GC precursors
in the cerebellum. In the cerebella of nax mice, the number of GCs and GC precursors
amount to only ~20% of that in the wt littermates. In this study, we showed that cerebellar
MYCN protein expression is markedly reduced in nax mice at around P10, while Mycn gene
expression remains unchanged. Upstream, the observed sustained postnatal expression
of Gli3 in nax cerebella might affect SHH signaling, as it is also almost aligned with the
temporal pattern of changes in MYCN expression. At the peak of GC proliferative activity,
Shh signaling pathway is dysregulated and the ribosomal protein gene expression is
reduced in the nax cerebellum, suggesting an impairment in other molecules associated
with GC proliferation. Additional mechanisms regulating GC development during the
clonal expansion period are likely impaired and warrant further investigation.
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GCL granule cell layer
GFAP glial fibrillary acidic protein
Gli glioma-associated oncogene homolog
IHC immunohistochemistry
MEF Mouse Embryonic Fibroblast
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nax naked and ataxia
PAX6 paired box protein 6
PCL Purkinje cell layer
PFA paraformaldehyde
PTCH1 Patched 1
SHH sonic hedgehog
SMO smoothened
WB Western blotting
wt wild type
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