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A B S T R A C T   

Background: The role of Mast cells has not been thoroughly explored in the context of prostate 
cancer’s (PCA) unpredictable prognosis and mixed immunotherapy outcomes. Our research aims 
to employs a comprehensive computational methodology to evaluate Mast cell marker gene 
signatures (MCMGS) derived from a global cohort of 1091 PCA patients. This approach is 
designed to identify a robust biomarker to assist in prognosis and predicting responses to 
immunotherapy. 
Methods: This study initially identified mast cell-associated biomarkers from prostate adenocar-
cinoma (PRAD) patients across six international cohorts. We employed a variety of machine 
learning techniques, including Random Forest, Support Vector Machine (SVM), Lasso regression, 
and the Cox Proportional Hazards Model, to develop an effective MCMGS from candidate genes. 
Subsequently, an immunological assessment of MCMGS was conducted to provide new insights 
into the evaluation of immunotherapy responses and prognostic assessments. Additionally, we 
utilized Gene Set Enrichment Analysis (GSEA) and pathway analysis to explore the biological 
pathways and mechanisms associated with MCMGS. 
Results: MCMGS incorporated 13 marker genes and was successful in segregating patients into 
distinct high- and low-risk categories. Prognostic efficacy was confirmed by survival analysis 
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incorporating MCMGS scores, alongside clinical parameters such as age, T stage, and Gleason 
scores. High MCMGS scores were correlated with upregulated pathways in fatty acid metabolism 
and β-alanine metabolism, while low scores correlated with DNA repair mechanisms, homologous 
recombination, and cell cycle progression. Patients classified as low-risk displayed increased 
sensitivity to drugs, indicating the utility of MCMGS in forecasting responses to immune check-
point inhibitors. 
Conclusion: The combination of MCMGS with a robust machine learning methodology demon-
strates considerable promise in guiding personalized risk stratification and informing therapeutic 
decisions for patients with PCA.   

1. Introduction 

Prostate cancer has become one of the most common malignant tumors affecting men’s health worldwide and is also one of the 
main causes of high mortality from male cancers [1]. Data from GLOBOCAN 2022 shows that there are approximately 1.46 million new 
cases of prostate cancer diagnosed, and more than 390,000 deaths occur due to this disease, ranking sixth among male cancer mortality 
cases [2]. Recurrence is a common occurrence in nearly half of localized PCA patients, despite undergoing curative treatments like 
radical prostatectomy (RP) or radiation therapy [3]. The same holds for chemotherapy [4] and hormone therapy [5]. As a conse-
quence, a large proportion of individuals diagnosed with localized PCA will eventually develop castration-resistant prostate cancer 
(CRPC). Among them, patients experiencing biochemical recurrence (BCR) exhibit clinical manifestations characterized by tumor 
relapse and metastasis, ultimately leading to an incurable state and death [6]. Existing indicators, including Gleason score and 
prostate-specific antigen (PSA), have limitations in accurately predicting the time of biochemical recurrence (BCR) in PCA patients. 
The substantial heterogeneity of PCA undermines the predictive capability of conventional markers, leaving prognostic biomarkers 
largely unexplored. Consequently, there is an imperative to investigate novel biomarkers that can enhance predictive models and 
unveil new prognostic and treatment efficacy indicators. 

The tumor microenvironment (TME) is an intricate system consisting of immunological cells, stromal cells, extracellular matrix 
molecules, and cytokines that interact with tumor cells [7]. There is mounting evidence that the TME’s constituent parts are essential 
to the development and spread of tumors. In addition to affecting a patient’s prognosis, dysregulated TME alterations may also be used 
as immunotherapy biomarkers [8]. The involvement of non-immune cells has received less attention, despite the present emphasis on 
anti-tumor immunity, with a focus on adaptive T-cell responses. Nonetheless, PCA treatment with immunotherapy has lately gained 
popularity [9]. FDA-approved immunotherapies for PCA include Sipuleucel-T (a dendritic cell-based therapy) and pembrolizumab 
(PD-1/PD-L1 axis-targeting checkpoint inhibitor), with other approaches currently being investigated in clinical trials [10]. Mast cells 
(MCs) have long been recognized for their central role in allergic reactions. However, their involvement in tumor development and the 
tumor microenvironment has become increasingly apparent, where they not only promote tumor growth and angiogenesis but also aid 
in the evasion of immune system attacks by tumor cells [11-13]. In various types of cancer, the density of mast cells is significantly 
elevated, contributing to tumor growth and metastasis. For instance, in renal cell carcinoma (KIRC), the presence of mast cells cor-
relates with a poor prognosis [14]. In breast cancer, mast cells aid in prognostic prediction for patients with lung metastasis from breast 
cancer, yet their function and prognostic significance remain contentious, as they may exert both tumor-promoting and anti-tumor 
effects [15,16]. In glioblastoma, mast cells play a pivotal role in tumor angiogenesis and reshaping the tumor microenvironment 
(TME), and they can serve as a potentially effective prognostic factor for glioblastoma [17]. The relationship between mast cells and 
PCA has only recently begun to gain recognition in the scientific community [18-21]. Intratumoral mast cells may act as prognostic 
biomarkers following prostatectomy [22]. However, no studies have yet reported the biological functions of MCs in the onset of 
prostate cancer. Given the complex role of mast cells in the tumor microenvironment and their diverse actions across different cancer 
types, an in-depth investigation into the function of mast cells in prostate cancer is imperative. This will not only enhance our un-
derstanding of the tumor immune microenvironment but may also uncover novel therapeutic strategies to improve the prognosis and 
treatment outcomes for patients with prostate cancer. 

The use of single-cell RNA sequencing (ScRNA-seq) has led to a dramatic improvement in our ability to characterize the molecular 
features of TME immune cell populations. Researchers have previously used scRNA-seq to determine the molecular characteristics of 
TME immune cells, which has led to the construction of gene signature models that may predict prognosis and immunotherapy efficacy 
in cancer patients [23,24]. However, there is limited research employing scRNA-seq data to explore the molecular analysis, prognosis, 
and treatment disparities of Mast cells within the TME of prostate cancer (PRAD) patients, necessitating further investigation. 

In this study, we comprehensively analyzed PRAD using scRNA-seq data to uncover the molecular characteristics of infiltrating 
Mast cells and determine the specific marker genes. Subsequently, we developed a Mast cell marker gene signature (MCMGS) using a 
machine-learning approach and predicted prognostic features in PRAD using TCGA RNA-seq data. The GEO-independent cohort was 
used to validate MCMGS’s predictive ability. Additionally, we investigated the associations between MCMGS and factors such as tumor 
immune microenvironment, genomic heterogeneity, treatment response, and drug selection for PCA. Our findings offer potential 
biomarkers and therapeutic strategies with significant clinical implications for managing PCA. 
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2. Materials and methods 

2.1. Data collection and processing 

Multiple databases were utilized in this study to obtain data for analysis. ScRNA-seq datasets (GSM5793828, GSM5793829, 
GSM5793831, GSM5793832) related to PCA based on GSE193337 were retrieved from GEO (www.ncbi.nlm.nih.gov/geo) to identify 
Mast cell marker genes in prostate adenocarcinoma (PRAD). In addition, the overall tumor transcriptome data of 501 PRAD patients, 
along with their clinical information, were retrieved from UCSC Xena (https://xenabrowser.net/) using TCGA. Samples with fewer 
than 30 days of follow-up or those without relevant clinical data were not included, resulting in 494 patients’ clinical data used for 
constructing the training set, identifying survival-related genes, and developing prognostic features. Clinical and RNA-seq data from 
additional datasets, including GSE70770, GSE46602, ICGC (PRAD-CA and PRAD-FR), DKFZ, and E-MTAB-6128, encompassing a total 
of 597 patient samples, were obtained from various sources such as the International Cancer Genome Consortium (ICGC), cBioPortal, 
and ArrayExpress (Fig. 1). 

Transcriptome data underwent quantile normalization, background correction, and log2 transformation. The results presented as 
fragments per kilobase of transcript per million mapped reads (FPKM) were translated to the values for transcripts per kilobase of 
transcript per million (TPM). For genes with duplicates or multiple probes corresponding to a single gene, the average expression value 
was utilized. Genes with an average expression value below 1 were excluded from the analysis. The data that were used in this 
investigation were obtained from several internet databases that are open to the general public and had already obtained ethical 
approval from the original studies. 

Fig. 1. Flowchart.  
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2.2. Identification of Mast cell marker genes via ScRNA-seq analysis 

To identify the genes associated with Mast cells, a ScRNA-seq study was conducted. We utilized the harmony [25] algorithm for 
data integration, processing multiple distinct scRNA-seq datasets obtained from the GEO database for PCA. Based on the top 15 
corrected Harmony embeddings and the FindNeighbors function, cells were clustered downstream. Annotation of cell types was 
performed using the singleR package after visualizing cell clusters with the t-SNE function. We annotated the clusters based on 
reference data from the human primary cell atlas [26]. We conducted a differential gene expression analysis utilizing the 
Wilcoxon-Mann-Whitney test through FindAllMarkers to detect the differentially expressed genes (DEGs) within each cell subpopu-
lation. Adjusted p-value <0.01 and |log2 (fold change)| > 1 were used as threshold parameters to identify genes that serve as markers 
for Mast cells. 

2.3. Mast cells-based prognostic model construction by machine learning 

Gene expression profiles of Mast cell markers in PCA were retrieved from the TCGA database. We conducted univariate Cox 
regression analysis to identify marker genes for Mast cells. We combined 10 different machine learning methods to produce a stable 
and accurate consensus model; survival support vector machine (survival-svm), generalized boosted regression modeling (GBM), 
supervised principal components (SuperPC), Cox partial least squares regression (plsRcox), Cox boost, stepwise Cox, Ridge, Lasso, 
elastic net (Enet), and random survival forests (RSF). 

To fit predictive models for prognostically relevant Mast cell marker genes, 101 algorithm combinations were evaluated on the 
TCGA-PRAD cohort. Furthermore, each model was tested on five validation datasets (GSE70770, GSE46602, ICGC cohort, DKFZ, and 
E-MTAB-6128). We determined which model had the greatest average Harrell’s concordance index (C-index) across all validation 
datasets. Prognostically relevant Mast cell marker genes (MCMGS) in prostate cancer were identified for further investigation. 

Marker genes for prostate adenocarcinoma (PRAD) advancement were evaluated via univariate Cox regression analysis in the 
training set, with progression-free survival (PFS) as the primary clinical endpoint. Prognostic genes were identified depending on their 
statistical significance, utilizing a p-value threshold of <0.01. PFS was chosen as the primary clinical endpoint due to its established 
reliability in the context of prostate cancer [27]. Specifically, PFS is measured as the time duration between the diagnosis date and the 
occurrence of new events, encompassing cancer progression, local recurrence, distant metastasis, or death resulting from cancer. 

2.4. Validated risk characterization of the MCMGS model 

Patients were classified into high-risk and low-risk groups (categories) based on an optimal model as per the median risk score of 
MCMGS. The survival ROC tool was employed to compute the area under the curve (AUC) for the feature genes in the training and 
testing datasets, especially for 1-, 3-, and 5-year prediction intervals, to evaluate the prognostic potential of MCMGS. To assess sta-
tistical significance, we used Kaplan-Meier (KM) analysis and log-rank test with the aid of the “survminer” R package. The predict-
ability of the features was evaluated through survival analysis across five independent datasets and AUC validation. 

2.5. Comparison of MCMGS with other published markers 

We conducted a retrospective review of previously published articles on genes associated with prostate cancer prognosis. From 
these studies, we collected the genes included in the constructed models. The gene expression data were proportionally normalized and 
multiplied by their respective coefficients to obtain a score for each sample. Then, we calculated the area under the curve (AUC) for 
each signature to compare its predictive ability. We compared the MCMGS with other publicly available signatures. 

2.6. MCMGS as an independent prognostic indicator for PRAD 

Clinical data from various datasets, including TCGA, DKFZ, E-MTAB-392, GSE70770, GSE46602, and ICGC, were utilized in this 
study. The dataset consisted of patients who had their entire follow-ups recorded, as well as their survival status, providing information 
on variables like T stage, N stage, age, Gleason score, and PSA levels. After including all of these clinical factors using univariate and 
multivariate Cox regression analyses, a further analysis was carried out to ascertain whether the risk score generated by MCMGS 
maintained its significance. Furthermore, a Kaplan-Meier (KM) survival analysis was employed to examine the prognostic significance 
of MCMGS in various clinical subsamples of PCA patients included in the PFS prediction model. This analysis compared the variations 
in survival rates between high-and low-risk patients in each clinical group. 

2.7. Developing a nomogram for use in predictive analysis 

The “survival” and “rms” R packages were used in the development of the nomogram, incorporating age, T stage, Gleason score, 
and risk score. The nomogram was used to provide a visual representation of the predicted survival outcome for PRAD patients. 
Additionally, to determine how well the nomogram-predicted results matched up with actual outcomes, a calibration curve was drawn. 
The chosen feature genes’ accuracy in predicting patients’ survival outcomes was verified using C-index curves. These analyses aimed 
to provide a robust predictive model for PRAD patient survival and examine how well each factor contributes to a prognosis. 
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2.8. Functional enrichment analysis 

With the aid of the “clusterProfiler” R package, we conducted Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway analyses. ClusterProfiler’s enriched GO functions were used for GO analysis, while the org.Hs.eg.db database from 
the Bioconductor project was used to annotate the genome. The most up-to-date version of the KEGG database was retrieved via a web 
API, and the “enrichKEGG” function was used for the KEGG analysis. Significantly enriched pathways were identified using a p-value 
threshold of <0.05. 

2.9. Gene set enrichment analysis (GSEA) 

The prognostic gene signature’s molecular mechanisms were investigated by GSEA utilizing Java GSEA software. Biological process 
(BP) pathways associated with high-risk patients were identified by querying the annotated gene set c5.go.bp.v7.2.symbols.gmt. 
Statistical significance was determined by setting the threshold at FDR <0.05 and |NES| > 1, indicating the enrichment of biologically 
relevant pathways. 

2.10. Immune cell infiltration analysis and estimation of stromal and immune fractions 

The CIBERSORT algorithm is a valuable tool for extracting immune cell infiltration profiles of 22 different types of cells from gene 
expression data. In this study, to compare immune cell infiltration levels between high- and low-risk categories, we used the 
CIBERSORT method. Additionally, to assess the extent of stromal and immune cell infiltration using gene expression data, we used the 
ESTIMATE method from the “ESTIMATE” R package. The TCGA PRAD cohort’s RNA sequencing data were employed to determine 
matrix scores, immune scores, estimate scores, and tumor purity scores. Furthermore, these scores were compared across risk cate-
gories by means of Wilcoxon t-tests, enabling the examination of variations in the tumor microenvironment across diverse risk 
categories. 

2.11. Prediction of the response to immunotherapy 

To predict how well a patient will respond to immune checkpoint blockade (ICB) treatment, we included three factors: T-cell 
receptor (TCR) repertoire, tumor mutation burden (TMB), and PD-L1 expression. PD-L1 mRNA expression in PRAD patients was 
determined using TCGA RNA sequencing data. The TCGA database was searched for gene mutation information for PRAD patients, and 
TMB was then computed utilizing “maftools” package. TMB represented the count of somatic insertions and substitutions per million 
bases within coding regions of the genome. We employed the comprehensive TISIDB platform (http://cis.hku.hk/TISIDB/) to examine 
the link between PRAD patients’ gene expression levels, immune subtypes, and therapeutic targets. 

2.12. Drug sensitization and small book drug identification 

Using the “pRRophetic” R package, both high-risk and low-risk patients were evaluated for treatment responses. The package 
determines the half-maximal inhibitory concentration (IC50) on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset for each 
PRAD patient. The GDSC dataset, containing information on drug sensitivity genomics, is available at [28] (https://www. 
Cancerxgene.org/). This analysis aims to provide insights into the potential therapeutic efficacy and individualized treatment 
response within different risk categories of PRAD patients. 

2.13. Pan-cancer analysis of MCMGS characterized genes 

For each cancer type, our analysis focused on comparing the expression profiles between the tumor and adjoining non-tumor 
tissues. Specifically, the gene expression patterns of signature genes (log2FC > 1.5, FDR <0.05) were examined. We used TCGA to 
analyze clinical data from 33 tumor samples, thus determining whether there was a correlation between gene expression profiles and 
patient survival. Subsequently, based on mRNA values, tumor samples were categorized into low and high-expression groups, and 
survival time and status were fitted within these groups using the SURVIVAL R package. Each gene in each type of cancer was subjected 
to a log-rank test and a Cox proportional hazards model. Additionally, SNV data were collected from a total of 10,234 samples across 
33 different types of cancer. We compiled a summary of the data utilizing a percentage heatmap to acquire a further understanding of 
the overall mutation frequency in pan-cancer. We meticulously analyzed copy number variation (CNV) data from 11,495 tumor 
samples within the TCGA database to detect significant genomic amplifications or deletions among the participants. This analysis 
aimed to uncover the genomic alterations associated with the MCMGS genes that could potentially influence cancer progression and 
patient outcomes. Amplifications and deletions were considered concerning homozygosity to enhance the detection of each gene 
alteration. High-frequency CNVs were defined as those with a frequency exceeding 5 %. Lastly, we compared the methylation levels of 
each gene between tumor and non-tumor samples utilizing Wilcoxon signed-rank tests and identified genes showing significant 
hypomethylation or hypermethylation using a probability value threshold of 0.05. 
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2.14. Statistical analysis 

The Spearman correlation analysis was conducted to examine the relationships that existed between the variables. Hazard ratios 
(HR) were calculated utilizing univariate and multivariate Cox regression models, and forest plots visualized the regression co-
efficients. LASSO regression addressed overfitting concerns in constructing the predictive model. Wilcoxon rank-sum tests compared 
categorical variables across risk groups. Univariate and multivariate Cox regression analyses were conducted to investigate the pre-
dictive significance of MCMGS as well as its link to clinical-pathological characteristics. The level of statistical significance was 
established at P < 0.05. R software, v R4.2.1 (http://www.r-project.org/), was applied for both data analysis and generation. Data 
analysis and graphical generation were both conducted using the R software, version R4.2.1 [R Core Team (2023). R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.r-project.org/]. 

3. Result 

3.1. Defining mast cell marker gene expression profiles in prostate cancer 

To ensure high-quality scRNA-seq data, we utilized four PCA scRNA-seq datasets (GSM5793828, GSM5793829, GSM5793831, 
GSM5793832) from GSE193337. Genes expressed in at least three cells and cells expressing at least 200 genes were retained. Ulti-
mately, GSM5793828 contained 2420 cells, GSM5793829 contained 5724 cells, GSM5793831 contained 5087 cells, and GSM5793832 
contained 5964 cells. The Harmony method was applied to integrate the four prostate cancer samples (Fig. 2a), resulting in the 
identification of 14 cell clusters (Fig. 2b).Subsequently, the cell types within each cluster were annotated using the Human Primary 
Cell Atlas reference data [29] as well as the research data from Isabel Heidegger et al. [30] Cluster analysis also revealed unique 
patterns of gene expression, with known marker genes differentially expressed across various cell clusters as shown in Fig. 2c. Among 
them, mast cells were defined as the cells found in the 12th cluster (Fig. 2d), with 168 genes (Supplementary Table 1). GO and KEGG 
functional enrichment analyses demonstrated their association with immune features such as myeloid leukocyte activation, mast cell 
activation, T cell activation, and leukocyte activation involved in immune response (Supplementary Figs. 1a and b). 

Fig. 2. Identification of Mast cell marker genes by sc-RNAseq. (a) T-SNE plot of 19,195 cells from 4 prostate cancer samples. (b) Identification of 14 
cell clusters. (c) Each cell cluster’s top 5 marker genes, shown in a heatmap. (d) Cell type identification using marker genes. 
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3.2. Characterization of mast cell marker gene construct models 

Considering PFS as the disease progression time, 168 Mast cell marker genes from the TCGA-PRAD dataset were analyzed using 
univariate Cox regression to generate a prognostic MCMGS. We identified 35 significant prognostic Mast cell marker genes (Sup-
plementary Table 2). In a 10-fold cross-validation framework, ten machine learning algorithms (Survival-SVM, Enet, GBM, step-wise 
Cox, SuperPC, Cox boost, Ridge, Lasso, plsRcox, and RSF) were applied to identify Mast cell marker genes with the highest C-index in 
the TCGA PRAD training and testing sets. The datasets used for analysis included DKFZ, E-MTAB-28, ICGC, GSE70770, and GSE46602 
(Fig. 3a). The optimal C-index was obtained by the integration of the CoxBoost and RSF algorithms, and using this model, we identified 
13 valuable genes that constitute the optimal MCMGS (FTH1, STMN1, LTC4S, TYROBP, GALC, BACE2, MSRA, ANXA4, PLIN2, CD9, 
IL13, P2RX1, PRNP) (Supplementary Table 3). 

The median risk score obtained by sorting the MCMGS risk scores was applied to classify patients into low-and high-risk categories. 
Fig. 3b depicts the distribution of survival status among various risk score groups, showing that the high-risk patients had a lower 
survival duration relative to those at low risk across multiple datasets. The area under the ROC (AUC) values were computed for PFS at 

Fig. 3. Construction and validation of the MCMGS model using 101 machine learning methods. (a) C-index is computed for every model across all 
datasets., with the CoxBoost + RSF combination yielding the highest C-index. (b) Survival curves by MCMGS in TCGA-PRAD, DKFZ, E-MTAB-6128, 
GSE46602, GSE70770, and ICGC datasets. (c) Each dataset’s ROC curves for 1-, 3-, and 5-year PFS. 
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1, 3, and 5 years in different datasets to assess the prediction accuracy of the MCMGS risk model. The AUC values were as follows: 
TCGA PRAD dataset (0.979, 0.985, 0.972), DKFZ dataset (0.807, 0.834, 0.878), E-MTAB-6128 dataset (0.709, 0.755, 0.661), 
GSE46602 dataset (0.679, 0.763, 0.823), GSE70770 dataset (0.663, 0.677, 0.602), and ICGC dataset (0.910, 0.933, 0.927). These 
results highlight the robust prognostic value of the MCMGS signature (Fig. 3c). 

3.3. Evaluation and validation of the MCMGS model 

Clinical variables such as Gleason score, serum PSA, TNM staging, age, and tumor percentage are commonly used for guiding the 
management and prognostication of PCA. In this study, we compared the C-index of these variables with the risk scores generated by 
our constructed MCMGS. Moreover, we compared MCMGS with ten previously published prostate cancer signatures and found that in 
the TCGA PRAD cohort, MCMGS demonstrated a higher AUC value of 0.979 when compared to other markers (Supplementary Fig. 1c, 
Supplementary Table 4). These results underscore the high predictive performance of our MCMGS model, enabling improved prog-
nostication of survival outcomes in prostate cancer patients. 

Fig. 4. Clinical subtype analysis of MCMGS: (a),(b) Proportions and variations in disease progression between high- and low-risk groups in the 
TCGA PRAD dataset. (d): Univariate, and (d): multivariate Cox regression analysis with various clinical characteristics. (e) Differences in high- and 
low-risk groups across different T-stage, PSA, Gleason score, and N-stage groups. (f) Risk scoring based on MCMGS gene features as a valuable 
prognostic marker for adverse outcomes in various clinical-pathological groups. MCMGS differentiates high-risk patients based on clinical- 
pathological features: age, Gleason score, T stage, PSA, and N stage. *p < 0.05; ****p < 0.001; ns, no statistical significance. 
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3.4. Independent prognostic effect of MCMGS in patients with PRAD and analysis in different clinical subtypes 

In the TCGA PRAD patient cohort, a higher proportion of disease progression cases (40 %) was noted in the high-risk patients 
relative to only 1 % in those at low-risk. Compared to patients who did not experience disease progression, those who did had 
considerably higher risk scores (p < 2.22e-16) (Fig. 4a and b). To evaluate the independent predictive power of MCMGS in the 
prognosis of PCA individuals, clinical parameters and risk scores of PRAD patients from the TCGA dataset were analyzed via univariate 
and multivariate analyses. In the TCGA dataset, the MCMGS risk score was shown to independently function as a prognostic factor of 
PFS (HR: 1.182, 95 % CI: 1.150–1.215, p < 0.001) (Fig. 4c and d). Furthermore, within the TCGA PRAD cohort, the prognostic power of 
the risk score was assessed across many age groups, T-stages, N-stages, Gleason scores, and PSA levels. The analysis revealed signif-
icantly higher risk scores in patients with T3-4 stage tumors, N1 stage tumors, high PSA (PSA>4 ng/ml), and high Gleason score 
(Gleason>7) (p < 0.05, Fig. 4e). Additionally, across all clinical groups of PRAD patients, high-risk scores were strongly correlated 
with a worse prognosis (p < 0.001, Fig. 4f). Overall, these data illustrate that MCMGS independently serves as a predictive factor for 
risk stratification and PFS in PCA patients. 

3.5. MCMGS-based risk model construction nomograms 

The model’s predictive accuracy for PRAD patients was assessed by ROC curve analysis. The AUC values for risk score-based 
predictions at 1-year, 3-year, and 5-year time points were high (Fig. 5a) (AUC = 0.979, 0.985, 0.972), demonstrating a high degree 
of model specificity and sensitivity. Importantly, compared to traditional clinicopathological features, the risk score (AUC = 0.979) 
exhibited superior prognostic capability for PRAD patients (Fig. 5b). We created a nomogram for PRAD patients that takes into account 
their T-stage, Gleason score, age, and risk score to improve the generated risk model’s clinical value and usability (Fig. 5c). The data 
confirmed that the risk score had the greatest impact on predicting PFS, which indicates that the risk model based on the 13 MCMGS 
genes can accurately predict PRAD. The calibration plot demonstrated satisfactory consistency between predicted and observed 
probabilities at 1-, 3-, and 5-year PFS (Fig. 5d), further confirming its practicality in predicting patient prognosis. 

Fig. 5. Construction of column charts based on clinical features. (a) ROC curve analysis over time. (b) Multi-index ROC analysis. (c) Nomogram 
prediction of 1, 3, and 5-year PFS in PRAD patients. (d) Calibration curves for building nomograms predicting 1, 3, and 5-year survival rates. 
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Fig. 6. Genetic variations of MCMGS gene features. (a) Chromosomal locations of CNV alterations in MCMGS gene features. (b) CNV alterations in 
MCMGS gene features. (c) Differential expression of MCMGS gene features in normal and tumor tissues. (d) Detailed analyses of survival curves for 
each MCMGS gene feature, classified by high- and low-expression groups. *p < 0.05; ***p < 0.001; ns, no statistical significance. Immunohisto-
chemical analysis of MCMGS gene features. (e)–(i) Protein expression levels of GALC, STMN1, PLIN2, FTH1, ANXA4, and other genes in normal and 
tumor tissues. 
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3.6. Genetic variation and immunohistochemical analysis of MCMGS signature genes 

To examine the overall expression of MCMGS feature genes in PRAD patients, we first analyzed the gene expression levels and 
identified altered CNV chromosomal locations, as depicted in Fig. 6a. We observed widespread CNV alterations in the MCMGS feature 
genes, with a majority of patients exhibiting decreased copy numbers (Fig. 6b). Furthermore, we analyzed mRNA expression levels of 
MCMGS feature genes among PRAD samples. Specifically, tumor tissues showed downregulated expression of FTH1, MSRA, ANXA4, 
PLIN2, CD9, P2RX1, and PRNP (all p < 0.05) and upregulated expression of STMN1 (p < 0.05) (Fig. 6c). We discovered that all of the 
MCMGS feature genes were linked to PRAD prognosis when stratified based on high and low expression (Fig. 6d). 

To explore potential differences in protein expression levels of ten MCMGS signature genes (CD9, TYROBP, GALC, STMN1, PLIN2, 
FTH1, PRNP, MSRA, BACE2, ANXA4), we collected IHC-stained images from the HPA database, including samples from PRAD and 
benign prostatic hyperplasia tissues. We aimed to examine any possible variations in protein expression levels between these two 
sample types. Compared to normal samples, differential protein expression levels of the ten MCMGS feature genes were observed in 
PRAD samples, further supporting our findings (Fig. 5e–i). 

3.7. Functional enrichment analysis of MCMGS-related genes 

We conducted a functional enrichment analysis to identify the basic mechanisms and biological activities that contribute to the risk 
model’s predictive abilities. We found 81 and 69 positively and negatively correlated genes, respectively, between the high- and low- 
risk groups in the TCGA cohort utilizing the “limma” package in R with filtering criteria of FDR <0.05 and |log2FC| ≥ 1. GO and KEGG 
enrichment analyses were performed on the selected genes using the “ClusterProfiler” tool. 

Fig. 7. The MCMGS was analyzed via functional enrichment analyses. KEGG and GO enrichment analyses (Figure a, b) were performed to explore 
the associated biological pathways and functional annotations. Additionally, GSVA analysis (Figure c) was carried out to assess the gene set 
variation between the high- and low-risk groups. 
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The GO analysis results illustrated that these genes were predominantly implicated in cellular processes, specifically mitotic cell 
division. The biological processes included non-membrane-bound organelle assembly, sister chromatid separation, chromosome 
segregation, nuclear chromosome segregation, mitotic nuclear division, organelle fission, and nuclear division. Cellular components 
(CC) mainly involved spindle, contractile fiber, centromeric region of chromosome, chromosomal region, and microtubule, among 
others. Molecular functions (MF) primarily included microtubule binding (Fig. 7a). The findings of KEGG analysis also revealed the 
enrichment of these genes in the cell cycle, oocyte meiosis, folate biosynthesis, nicotinate, and nicotinamide metabolism, and other 
cellular growth, death, coenzyme, and vitamin metabolism-related pathways (Fig. 7b). 

The molecular mechanisms linked to these genes were investigated via GSEA. Notably, the enrichment pathways observed in the 
high-risk group encompassed fatty acid metabolism, beta-alanine metabolism, lysosome, prostate cancer, and glycosphingolipid 
biosynthesis lacto and neolacto series. In contrast, the enrichment pathways observed in the low-risk group primarily included ho-
mologous recombination, cell cycle, mismatch repair, pyrimidine metabolism, DNA replication, RNA polymerase, proteasome, and 

Fig. 8. The MCMGS risk score was utilized to predict tumor microenvironment and immune cell infiltration, as demonstrated by (a) Tumor 
microenvironment (TME) components predicted by the MCMGS risk score. (b) Immune cell correlation heatmap based on several different algo-
rithms. (c) Relative abundance distribution of 22 tumor-infiltrating immune cells. (d) Expression and correlation analysis of immune cell pop-
ulations. (e) Immune function scores based on MCMGS risk score. 
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bladder cancer (Fig. 7c). 

3.8. MCMGS is associated with immune cell infiltration in TME 

Variations in immune cell composition contribute to the diversity of immune responses. The role of Mast cells in anti-tumor im-
munity and their association with prognosis through immune infiltration in the tumor microenvironment (TME) remains unclear. For 
TCGA PRAD patients, we calculated ESTIMATE, immune, and stromal scores utilizing the ESTIMATE algorithm. Notably, immune 
scores were substantially greater in the high-risk group (P < 0.05), indicating increased overall immune level and immunogenicity in 
the TME (Fig. 8a). Immune cell correlation heatmaps generated using EPIC, XCEEL, MCPCOUNTER, QUANTISEQ, CIBERSORT-ABS, 
CIBERSORT, and TIMER algorithms exhibited augmented infiltration of Mast cell-related immune cells, regulatory T cells (Tregs), and 
M2 macrophages, in the high-risk group. Conversely, the low-risk category exhibited greater infiltration of CD8+ T cells, macrophages, 
immature B cells, and neutrophils (Fig. 8b). 

In the TCGA PRAD cohort, the CIBERSORT method was applied to analyze the distribution and association of 22 different types of 
tumor-infiltrating immune cells (TIICs). The low-risk category showed considerably greater infiltration levels of memory resting CD4 T 
cells, activated dendritic cells (DCs), and resting mast cells as opposed to the high-risk category. However, there were considerably 
increased Tregs in the high-risk group in contrast with those in the low-risk group (Fig. 8c). 

The MCMGS risk score model demonstrates the ability to classify distinct immune subtypes, which may have implications for 
immunotherapy response. Variations in immune cell infiltration can influence immune function. Notably, we observed that the low- 
risk group had a higher abundance of neutrophils, MHC class I, mast cells, Mast cells, regulators, and type II IFN response, with their 
expression levels displaying an inverse link to the risk score (Fig. 8d and e). 

3.9. TMB analysis 

Using the map tools algorithm on TCGA PRAD data, we evaluated somatic mutation spectra across various risk categories. 
Increased mutation rates in the 15 most commonly mutated genes were observed in both high-and low-risk groups (Supplementary 
Fig. 2a). The frequency of mutations was greater (64.84 %) in the high-risk group contrasted with the low-risk group (43.39 %). In the 
high-risk group, mutations were more prevalent in SPOP (14 %), TP53 (12 %), and TTN (11 %), whereas in the low-risk group, these 
mutation rates were 9 %, 7 %, and 9 %, respectively. Importantly, Tumor mutational burden (TMB) was considerably greater in the 
high-risk group relative to the low-risk group (P < 0.05) (Supplementary Fig. 2b). The low-risk group with low TMB had the superior 
PFS, as shown by the survival analysis (P < 0.05) (Supplementary Fig. 2c). As per the median TMB and risk values, we divided patients 
into four categories (L-TMB + Low-risk, L-TMB + High-risk, H-TMB + Low-risk, and H-TMB + High-risk), and discovered that overall 
survival (OS) was highest for individuals with low TMB and low risk and lowest for those with high TMB and high risk (Supplementary 
Fig. 2d). 

3.10. Evaluation of MCMGS risk scores to predict immunotherapy response 

Immune checkpoint inhibitors (ICIs) have shown effectiveness in tumor therapy. Mast cells, key immune cells with potential roles 
in prostate cancer immunotherapy, are promising therapeutic targets. We assessed the predictive capability of MCMGS for response to 
ICI in PRAD. Notably, 14 immune checkpoint genes (ICG) showed substantial upregulation in the high-risk group, whereas only six 
ICGs exhibited upregulation in the low-risk group (Fig. 9a). The BEST database (https://rookieutopia.com/) was used to analyze 
immune modulator distribution in ten datasets and found a positive correlation between most immune modulators and MCMGS genes 
(Fig. 9b). Targeted therapy against these upregulated immune checkpoint genes may benefit patients with this tumor subtype. Analysis 
of the TCIA database predicted immune-based therapy responsiveness based on IPS, indicating immunogenicity. In Fig. 9c–f, we 
observed significantly higher Immune Phenotype Score (IPS) values in the low-risk group compared to the high-risk group across 
different immune subgroups, including those negative for CTLA-4 and PD-1, positive for CTLA-4 and negative for PD-1, and negative 
for CTLA-4 and positive for PD-1 (p < 0.05). These findings suggest that patients in the low-risk group may respond better to 
immunotherapy. 

Next, we investigated the association between MCMGS scores and therapeutic benefits in an external cohort (GSE126044) of 
patients who were treated with immunotherapy. The high-risk patients displayed a stronger immune response against PD-L1 based on 
MCMGS scores, and the ROC curve confirmed MCMGS’s effectiveness in predicting immunotherapy response (Fig. 9g). These findings 
collectively suggest that MCMGS can be a valuable tool for determining how PRAD patients will respond to ICIs. 

3.11. Screening and analysis of drug sensitivity for small-molecule drugs 

We employed the pRRophetic package to screen potential therapeutic agents for PRAD treatment, aiming to evaluate their 
effectiveness. Specifically, we examined six widely used antitumor drugs and examined the difference in IC50 between the high- and 
low-risk groups. Docetaxel, niraparib, oxaliplatin, cabozantinib, vincristine, and dactylitis all showed greater IC50 values (the dose 
needed to suppress cell growth by 50 %) in the high-risk group as opposed to the low-risk group (Fig. 9h–m), showing increased drug 
sensitivity in the low-risk group. These results lead to the assumption that risk scores serve as a stratification tool for achieving optimal 
treatment outcomes by providing insight into the likelihood that an individual would respond favorably to a certain drug. 

A. Maimaitiyiming et al.                                                                                                                                                                                              

https://rookieutopia.com/


Heliyon 10 (2024) e35157

14

(caption on next page) 

A. Maimaitiyiming et al.                                                                                                                                                                                              



Heliyon 10 (2024) e35157

15

3.12. Pan-cancer analysis of MCMGS characterized genes 

Our study repeatedly confirms the crucial value of the aforementioned 13 genes comprising the MCMGS in PRAD. However, to 
summarize the pan-cancer spectrum of these 13 genes, it is essential to investigate their involvement across various human malig-
nancies, including expression profiles, predictive capabilities, methylation patterns, CNVs, and SNVs. Firstly, we established survival 
profiles for the relevant genes by linking gene expression levels from TCGA with patient survival outcomes (Fig. 10a). Furthermore, we 
evaluated the gene expression in tumor tissue in comparison to that in healthy tissues in TCGA. We found that the expression of these 
13 genes is generally upregulated in tumor tissues (Fig. 10b). In most cancers, these signature genes exhibit differential methylation 
compared to normal tissues; notably, we observed a tendency towards higher levels of methylation (Fig. 10c). Abundant CNV losses 
were observed in these genes across multiple tumor types (Fig. 10d). Single nucleotide variation (SNV) analysis revealed that the most 
prevalent mutation types among the 33 tumor types in TCGA were MCMGS missense mutations, with the highest frequency being 
single nucleotide polymorphisms. Among different SNV categories, C > T alterations have the highest frequency (Fig. 10e). Out of 480 
patients across the 33 tumor types, GLAC showed the highest mutation frequency (Fig. 9f). Next, we conducted copy number variation 
analysis and summarized the proportion of homozygous and heterozygous mutations within MCMGS across the 33 tumor samples 
(Fig. 10g). 

Expanding upon these findings, we further investigated the association between cancer-related pathway activity and the expression 
of NRGs. Remarkably, our results demonstrate that MCMGS exerts regulatory influence on diverse pathways in different tumor types, 
modulating the hormone AR and EMT pathways in PRAD patients (Fig. 10h). We investigated the correlation between MCMGS dif-
ferential expression and drug sensitivity using the Cancer Therapeutics Response Portal and GDSC databases (Fig. 10i and j). This 
highlights the potential of our risk spectrum gene expression patterns as predictive factors for chemotherapeutic drug sensitivity in 
patients and as targets for future drug sensitization strategies. 

3.13. Expression of MCMGS characterized genes in immune and molecular subtypes in PRAD 

We examined the link between MCMGS and distinct immune and molecular subtypes by using the TISIDB database. We identified 
12 genes, including FTH1, STMN1, GALC, BACE2, MSRA, ANXA4, PLIN2, CD9, LTC4S, TYROBP, P2RX1, and PRNP, that closely 
correlated with four distinct PCA immune subtypes: C1: wound healing subtype, C2: IFN-γ dominant subtype, C3: inflammatory 
subtype, C4: lymphocyte depleted subtype (Fig. 11a). Furthermore, we observed differential expression of these 12 genes across 
different molecular subtypes in PRAD; each gene exhibited significant variations in different molecular subtypes (Fig. 11b). 

4. Discussion 

PCA is the most prevalent malignant neoplasm and the second leading contributor to cancer-associated mortality in men worldwide 
[1]. After early radical treatment of PCA patients, further disease progression occurs after some time, primarily in the form of elevated 
biochemical indicators (PSA) and imaging progression. In this context, the criterion for biochemical recurrence is defined as two 
consecutive PSA ≥0.2 ng/ml on the premise of negative imaging. Biochemical recurrence is the earliest manifestation of disease 
recurrence. It is a decisive risk factor for distant metastasis and prostate-specific mortality in prostate cancer. Approximately 30 % of 
patients with biochemical recurrence will have distant metastases, and in the absence of a second treatment, 19–27 percent of patients 
may die during the first 10 years after being diagnosed with PCA [31,32]. Early identification of risk factors for disease progression and 
early intervention to prolong the time to disease progression will result in better overall survival. Post-radical treatment, the inte-
gration of multiple biomarkers into a cohesive model is essential for enhancing prognostic accuracy, evaluating immune responses, and 
predicting drug sensitivity. This integrated approach allows for a more nuanced understanding of patient outcomes and can guide 
personalized treatment strategies. This approach enables the development of personalized treatment plans, active monitoring of 
high-risk patients, and timely intervention in disease progression. These measures are essential for enhancing prognosis in patients 
with prostate cancer. 

Mast cells within the tumor microenvironment (TME) are a subject of scientific debate, with their roles being tumor-specific and 
stage-dependent [33]. These cells have the potential to either support tumorigenesis through the promotion of inflammatory responses 
and angiogenesis, acting as a source of VEGF α, TGF-β, and CXCL8 [34], which are markers of poor prognosis, or to exert anti-tumor 
effects by releasing mediators that activate immune cells. The correlation between mast cells and tumor angiogenesis, along with their 
infiltration into cancer cells, has been strongly associated with adverse outcomes, suggesting a pro-tumor role for these cells. However, 
mast cells have also been reported to play a role in tumor suppression [14–17]. In the context of prostate cancer, mast cells have been 
linked to the invasiveness and metastatic potential of the tumor [21]. Notably, The modulation of mast cell quantity or functionality 
could potentially lead to improved therapeutic responses in prostate cancer [18]. The MCT subtype of mast cells is associated with 
unfavorable clinical outcomes, indicating a possible contribution to immune evasion and tumor progression [19]. In an innovative 

Fig. 9. Evaluation of MCMGS risk score in predicting immunotherapy response. (a) Variations in gene expression of immune checkpoints between 
high- and low-risk groups. (b) Heatmap displaying immune checkpoint expression across various datasets (ICGC-PRAD, TCGA, GSE54460, 
GSE70769, GSE111177, GSE107229, GSE21034, GSE70768, DKFZ2018, and GSE116918). (c), (d), (e), (f) Predicting immunotherapy sensitivity 
using IPS score. (g) Evaluating MCMGS efficacy for anti-PD-L1 therapy in the GSE126044 cohort. Prediction of chemotherapy sensitivity by MCMGS 
signature. (h) Docetaxel, (i) Niraparib, (j) Oxaliplatin, (k) Cabozantinib, (l) Etoposide, and (m) Dactolisib IC50 values. 
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study, Peng Song and colleagues employed single-cell RNA sequencing to predict the survival and treatment response of patients with 
lung adenocarcinoma (LUAD). They developed a seven-gene signature based on NK cell marker genes, which could assist in clinical 
decision-making and identify patients who may benefit from immunotherapy [24].The study capitalized on the advancements in 
scRNA technology, providing a powerful tool to explore tumor heterogeneity and distinct cellular subpopulations. Inspired by these 
developments, the researchers initially conducted single-cell sequencing using the GEO dataset, screening 168 Mast-cell-related genes 
in prostate cancer. These genes were found to be predominantly linked to immune features such as T-cell activation, mast cell acti-
vation, and immune response, as determined by KEGG and GO analyses. Subsequently, we conducted univariate analysis on the TCGA 

Fig. 10. Pan-cancer analysis of MCMGS signature genes. (a) Bubble plot showing the correlation between gene expression levels in the TCGA 
dataset and survival outcomes across different cancer patients. (b) Differential expression of relevant genes in pan-cancer. (c) Differences in tumor 
promoter methylation between pan-cancer and normal promoter methylation of relevant genes. (D) Copy number variation rates of relevant genes 
in pan-cancer. (e) (f) Classification and mutation frequency of MCMGS mutations in multiple tumors. (g) Expression of MCMGS signature genes in 
multiple tumors. (h) The relationship between GSVA scores of MCMGS signature genes and cancer-associated pathway activity in certain cancers is 
summarized in Figure. (i) (j) Correlation analysis between NRGs expression and chemotherapy drug sensitivity in CDRP and CDSC cohorts. 

Fig. 11. Expression of MCMGS signature genes in immune and molecular subtypes of PRAD. (a) Expression levels of FTH1, STMN1, GALC, BACE2, 
MSRA, ANXA4, PLIN2, CD9, LTC4S, TYROBP, P2RX1, and PRNP in different immune subtypes of PRAD. (b) Differential expression of FTH1, 
STMN1, GALC, BACE2, MSRA, ANXA4, PLIN2, CD9, LTC4S, TYROBP, P2RX1, and PRNP in different molecular subtypes of PRAD. 
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PRAD dataset to identify genes associated with prognosis. A comprehensive evaluation of 101 combinations involving 10 machine 
learning algorithms led to the identification of the optimal model, which consisted of a combination of CoxBoost and RSF based on the 
highest C-index. This approach effectively reduced variable dimensionality, unveiled underlying patterns, and simplified and refined 
the model. Consequently, the established MCMGS model accurately predicts the prognosis and immune characteristics of PRAD pa-
tients. Thirteen characteristic genes MCMGS of Mast cell markers associated with the prognosis of prostate cancer were finally 
identified. These 13 MCMGS were FTH1, STMN1, LTC4S, TYROBP, GALC, BACE2, MSRA, ANXA4, PLIN2, CD9, IL13, P2RX1, and 
PRNP. 

FTH1, as a 21 kDa subunit of the ferritin complex, minimizes DNA damage caused by reactive oxygen species (ROS) induced by 
ferrous iron (Fe2+) through its ferroxidase activity, which converts Fe2+ to ferric iron (Fe3+). This protective mechanism helps cancer 
cells avoid cell death [35]. FTH1 serves as a key regulator of iron metabolism and an essential factor in the inhibition of ferroptosis, 
closely related to the tumor immune microenvironment (TIME) [36]. In a glioblastoma mouse model, FTH1 affects the tumor infil-
tration of T cells, CD8+ T cells, fibroblasts, and mast cells, influencing tumor growth, and may also affect human glioblastoma, which 
requires further experimental confirmation [37]. The interaction between FTH1 and miR-29a-5p plays a significant role in ferroptosis 
in prostate cancer [38].STMN1 (Stathmin1) is a regulatory protein involved in cytoskeleton and microtubule processes, showing 
significant upregulation in immunodeficient tumors. STMN1 has an oncogenic role in various cancers [39,40]. Overexpression of 
STMN1 in PCA implies higher tumor aggressiveness [41]. Our study indicates that STMN1 expression is associated with immune 
infiltration and adverse survival outcomes. This is consistent with the findings of Zhang et al. where STMN1 is related to immune 
regulation, DNA methylation, and m6A in hepatocellular carcinoma [42]. These findings emphasize the necessity of evaluating the 
involvement of STMN1 in immune regulation and its potential impact on clinical prognosis.LTC4S catalyzes the production of cysteinyl 
leukotrienes, which are pro-inflammatory mediators in inflammatory diseases. The expression of LTC4S is significantly correlated with 
the infiltration of typical adaptive immune cells, especially B cells, T cells, and mast cells [43,44]. The genes LTC4S, APPL2, AMD1, 
ALDH1A3, OAT, and TPD52 are upregulated in prostate cancer tissues of African American men, and these genes may have a potential 
role in the aggressiveness of prostate cancer in African American males [45]. The role of LTC4S in the aggression of prostate cancer 
requires further research.TYROBP (also known as DAP12) is a transmembrane signaling adapter protein that pairs with various re-
ceptors. It contains a cytosolic immunoreceptor tyrosine-based activation motif (ITAM) expressed in NK cells and myeloid cells. 
Additionally, it may involve members of the immunoglobulin superfamily (TREM-1, -2, and -3) [46]. YTS cells, modified with 
anti-PSCA-DAP12 CAR, show highly specific lysis of PSCA-positive target cells from PCA, bladder cancer, and glioblastoma. In 
contrast, PSCA-negative cancer cells are unaffected. These findings suggest that DAP12-based CAR is a promising tool for adjunctive 
immunotherapy [47].GALC (β-galactosidase) is a lysosomal enzyme that removes β-galactose from β-galactosides, leading to the 
formation of the tumor suppressor metabolite ceramide, which is a tumor suppressor metabolite. Recent observations suggest that 
GALC may have opposite effects on tumor growth by acting as a tumor suppressor or an oncogenic enzyme [48]. GALC induces 
tumorigenicity in colorectal cancer through senescent fibroblasts [49]. Targeted correction of the BACE2/TMEM38B axis leads to the 
depletion of intracellular calcium release and inhibits tumor progression. BACE2 shows promise as a potential therapeutic target for 
ocular melanoma based on certain findings [50]. Its role in prostate cancer still requires further research.The methionine sulfoxide 
reductase (Methionine sulfoxide reductase, MSRA) encoded by the MSRA gene is a key factor in protecting proteins from oxidation and 
acts as a scavenger of reactive oxygen species (ROS) [51]. Its tumor suppressor role is stronger in lung squamous cell carcinoma and 
adenocarcinoma than in adjacent normal tissue [52]. Although MSRA has not been studied in prostate cancer, its differential 
expression was found in this study, and its association with prostate cancer can be further confirmed in future research.Annexin A4 
(ANXA4) is a protein that may bind to phospholipids and calcium ions, an important factor in regulating membrane permeability and 
processes such as cell growth, apoptosis, tumor invasion, and antitumor treatment, including extracellular matrix, cell adhesion 
molecules, and cell signaling [53]. Pan-cancer analysis has found that ANXA4 has the potential to be a new clinical prognostic marker 
and therapeutic target in various cancer types [54]. ANXA4 is highly expressed in various tumors, and increased expression and 
nuclear translocation of ANXA4 are associated with disease progression in colorectal and ovarian plasma cell-like carcinoma [55,56]. 
Interestingly, our results suggest that ANXA4 expression is reduced in tumor tissue, which is consistent with previous studies [57], and 
its expression level may be associated with the progression of prostate cancer, and the specific mechanism of action is worth further 
research.PLIN2 belongs to the PAT family and is involved in the regulation of lipid droplet formation and degradation. It is mainly 
expressed in adipose and steroidogenic cells, where lipid droplets play an important role in ketone body metabolism [58]. Upregu-
lation of PLIN2 is correlated with poor prognosis in patients with clear cell renal cell carcinoma, and knockdown of PLIN2 enhances 
cancer cell proliferation and accelerates the invasion and migration of cancer cells, which is a recent finding [59]. Clinically, PLIN2 is 
expressed at higher levels in primary prostate cancer with higher Gleason scores and compared to dedifferentiated prostate cancer 
[60].CD9, together with E-cadherin, serves as a biomarker for renal cell carcinoma (RCC), helping not only in differentiation but also in 
predicting the metastatic tendency of RCC [61]. Studies have shown that patients with advanced metastatic PCA have increased double 
positivity for CD9 and prostate-specific membrane antigen (PSMA) in plasma-derived circulating vesicles. On the other hand, in pa-
tients with limited PCA, double positivity for CD9 and CD63 small extracellular vesicles (S-EVs) is significantly enhanced [62].IL13 is 
an immunomodulatory factor with regulatory functions in inflammation and immune responses. It is produced by Th2 cells, NKT cells, 
mast cells (MC), and basophils [63]. Compared with adjacent normal tissue, upregulation of IL-13 expression is observed in COAD 
tissue. Furthermore, a study involving 241 patients with CRC found that serum IL-13 levels were significantly lower in patients with 
advanced cancer, which was associated with a poorer prognosis [51]. During the resolution of inflammation, regulatory T (Treg) cells 
secrete IL13, promoting the efflux of macrophages and enhancing the engulfment of apoptotic cells [64]. In this study, IL-13 is 
relatively highly expressed in tumors, and Riaz Jannoo et al. found that IL-13 Rα2 cell surface receptors are highly expressed in prostate 
cancer [65].P2RX1, under the regulation of interleukin-13 (IL-13), promotes the efflux of macrophages and enhances the engulfment 
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of apoptotic cells [32]. Wareham et al. [66] found that LAD2 cells and human pulmonary mast cells both have functional P2RX1. In our 
study, P2RX1 is associated with cell death and inflammatory responses and may play a role in the immune regulation and cell death of 
tumors. However, to date, there is a lack of published research investigating the role of P2RX1 in prostate cancer, providing a potential 
avenue for future research.PRNP, also known as CD230, encodes the PrP protein primarily found in the nervous system but expressed 
in various tissues. In this study, PRNP expression is downregulated in tumor tissue. Previous research has shown that decreased PRNP 
expression in prostate cancer is significantly associated with biochemical recurrence-free survival in PCA patients [67]. In breast 
cancer, PRNP is significantly downregulated and may be involved in ROS-mediated ferroptosis, a potential new therapeutic target for 
chemotherapy and immunotherapy [68]. PRNP can serve as a potential biomarker for stratification of colorectal cancer patients [69]. 
PRNP shows promise as a potential prognostic factor in gastric cancer (GC) patients [70]. These data confirm that MCMGS is related to 
tumor progression, providing a target gene for future experimental validation, which may provide compelling evidence for the mo-
lecular mechanisms behind the occurrence and development of PCA. 

We found that the risk profile of MCMGS independently functioned as a prognostic factor for PCA, which is important in clinical 
practice. First, we constructed prognostic models, KM survival curves, ROC curves, and calibration curves utilizing the 13 gene 
expression levels identified by machine learning algorithms. The evaluation of these features associated with MCMGS in PRAD patients 
revealed that low-risk patients had a superior prognosis as opposed to those at high risk and could serve as independent prognostic 
factors. Our MCMGS-associated features model exhibited better AUC values than age, T-stage, Gleason score, and PSA value, indicating 
improved predictive performance. Furthermore, external validation across all five datasets consistently demonstrated the model’s 
robust potential for predicting PRAD patients’ prognoses. Furthermore, we collected and compared 10 published signatures 
comprising different combinations of functional genes. Unfortunately, as of yet, only a few of these signatures have been translated into 
actual clinical use. Moreover, several models exhibited satisfactory performance solely on the training dataset but performed poorly 
when applied to the validation dataset, indicating limited generalizability. Notably, the MCMGS signature outperformed nearly all 
other signatures, as evidenced by its higher AUC value. This suggests that our MCMGS signature, derived from feature gene selection 
and statistical prediction using a well-fitted model employing two combined machine-learning algorithms, is both stable and prom-
ising. Consequently, our newly developed column line graphs, based on this signature, hold the potential for enhancing the process of 
making decisions in clinical settings and guiding the development of therapeutic strategies. 

We performed further KEGG and GO enrichment analyses to examine the molecular mechanisms of MCMGS on the onset and 
progression of PCA. Through these analyses, we discovered that the relevant genes were primarily linked to the cell growth cycle, cell 
division, and metabolic pathway. This led to the hypothesis that MCMGS may play a role in PCA progression. It is possible that ab-
normalities in the cell cycle, which are strongly related to the onset and progression of tumors, lead to the dismal prognosis that was 
observed in high-risk patients [71]. Recent research on PCA has shown that the tumor microenvironment performs an essential role in 
the onset and progression of this disease [72]. Our MCMGS model takes into account both the tumor microenvironment (TME) and 
tumor heterogeneity. Through analysis using seven algorithms (EPIC, QUANTISEQ, MCPCOUNTER, CIBERSORT-ABS, XCEEL, 
CIBERSORT, and TIMER), we discovered that the low-risk patients exhibited a greater abundance of CD8+ T cells, macrophages, B-cell 
naïve, neutrophils, and other immune cell types. Additionally, the low-risk group had elevated levels of immune cell infiltration, as 
measured by CD4 memory quiescent T cells, DC activation, and quiescent mast cells, as opposed to the high-risk group, as determined 
by an analysis of 22 TIICs profiles in the TCGA PRAD cohort. Conversely, a lower level of immune cell infiltration was observed in the 
high-risk group. Notably, an upregulation of M2-like macrophages and Tregs was observed in the high-risk group. It was shown that 
males who had a high number of M2 macrophages present in thein the prostate tumor environment were at an elevated risk of dying 
from PCA. According to the findings of Erlandsson et al. this provides support for the hypothesis that M2 macrophages can work in 
conjunction with other variables, like T suppressor cells, to create an immunosuppressive environment [73]. Aggregation of circulating 
or tumor-infiltrating Tregs in cancer patients tends to correlate with poor prognosis [74]. The findings of the aforementioned 
investigation are consistent with this study. As per the data, reduced immune cell infiltration levels likely make it easier for tumor cells 
to evade the immune system and facilitate the progression of tumors. The worse prognosis that was reported in the PRAD patients who 
were in the high-risk category may be partly explained by these characteristics. 

TMB refers to the accumulation of mutations in somatic cells that lead to the production of neoantigens that trigger anti-tumor 
immune responses. New research points to TMB as a reliable biological marker for predicting the response to immunotherapy. 
Notably, the high-risk group was found to have higher levels of TMB than the low-risk group. We found that 14 ICGs were remarkably 
upregulated in the high-risk group (TNFRSF4, TNFRSF25, CD86, LAG3, LGALS9, TNFRSF18, HAVCR2, CTLA4, CD70, TNFSF9, 
TNFSF18, IDO2, CD80, TNFRSF14). Markedly, CD80 plays a crucial role by binding to either CD28 or CTLA4, thereby activating T cell 
costimulation or initiating T cell costimulation, correspondingly. These findings highlight the potential of ICI therapy as an effective 
approach to tumor treatment [75]. We also examined the cohort receiving immunotherapy (Cho cohort 2020) using the BEST database 
to examine the correlation between MCMGS score and response to immunotherapy and discovered that the immune response against 
PD-L1 was stronger in high-risk patients. Furthermore, the ROC curve verified the validity of MCMGS in predicting responsiveness to 
immunotherapy. In conclusion, these results indicate a higher likelihood of immunotherapy benefits for high-risk patients. MCMGS 
shows promise as a reliable biological marker for predicting the outcome of immunotherapy, and more validation is required before 
making any firm conclusions. We examined a series of chemotherapeutic and targeted medications with varying risk profiles to 
discover appropriate pharmaceuticals to satisfy the demands of individualized therapy and enhance the prognosis of PRAD patients. 
The results showed that some commonly used antitumor drugs such as docetaxel, niraparib, oxaliplatin, trametinib, vincristine, and 
Dactolisib were more sensitive to low-risk patients. Therefore, these drugs are expected to be used as effective anti-tumor treatments 
for patients with low expression of MCMGS. 

Our study identified these genes as important biomarkers for PRAD. To evaluate the potential use of the 13 MCMGS signature genes 
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in other tumor types, we performed a comprehensive pan-cancer analysis. Our results revealed diverse roles of these genes in human 
cancers, including altered expression profiles, predictive values, methylation profiles, and CNV and SNV alterations. Furthermore, 
there was an increase in the protein expression level of these genes in PRAD samples compared to controls, suggesting a role for them in 
cancer onset and progression. Clinical use of the MCMGS signature genes as diagnostic and prognostic biological markers for cancer is 
feasible. They can serve as diagnostic markers for various cancers due to their differential expression in tumor tissues. Additionally, 
they show promise as prognostic indicators or therapeutic targets based on their association with patient survival and CNV modifi-
cation. These results enhance our understanding of the pan-cancer profile of MCMGS-characterized genes and their clinical signifi-
cance. Nonetheless, more research is required to verify our results and understand the molecular mechanism behind the involvement of 
these genes in cancer onset and progression. 

In this study, we developed Mast cell-related prognostic features for prostate cancer using single-cell sequencing and machine- 
learning algorithms. We validated these features using multiple datasets and compared them with 10 previously published prog-
nostic markers. Our results demonstrated that the MCMGS risk score outperformed existing prognostic markers, including PSA, T stage, 
and Gleason score, as indicated by a higher AUC value and better discrimination capability in predicting patient outcomes. However, 
there are limitations to consider. The data relied on online databases, mainly representing Western populations, introducing potential 
selection bias and impacting model robustness. Prospective studies, as well as ex vivo and in vivo trials, are needed to explore 
immunotherapy efficacy in patients with different risk profiles and uncover the underlying molecular mechanisms in prostate cancer. 

5. Conclusion 

In conclusion, we have developed a powerful feature based on 13 gene markers associated with Mast cells using advanced bio-
informatics and machine learning techniques. These features serve as highly effective predictors of prognosis and treatment response 
in PRAD patients. They act as robust prognostic indicators for personalized prediction in clinical decision-making and aid in identifying 
individuals who are suitable candidates for immunotherapy. 
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[67] A. Aakula, P. Kohonen, S.-K. Leivonen, R. Mäkelä, P. Hintsanen, J.P. Mpindi, E. Martens-Uzunova, T. Aittokallio, G. Jenster, M. Perälä, O. Kallioniemi, 
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