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Ischemia-reperfusion (IR) is an inevitable complication of liver surgery. Recent studies
indicate a critical role of endoplasmic reticulum stress (ERS) in hepatic IR. Mesenchymal
stem cells (MSCs) have proven to be an effective tool for tissue regeneration and
treatment of various diseases, including that of the liver. However, the mechanisms
underlying the therapeutic effects of stem cells on hepatic IR injury (IRI) are still poorly
understood, especially in the context of ERS. In this study, we established a porcine
model of hepatic IRI and partial hepatectomy, and transplanted the animals with
adipose-derived mesenchymal stem cells (ADSCs) isolated from miniature pigs. ADSCs
not only alleviated the pathological changes in the liver parenchyma following IRI, but
also protected the resident hepatocytes from damage. Mechanistically, the ADSCs
significantly downregulated ERS-related proteins, including GRP78, p-eIF2α, ATF6 and
XBP1s, as well as the proteins involved in ERS-induced apoptosis like p-JNK, ATF4
and CHOP. Taken together, ADSCs can alleviate hepatic IRI by inhibiting ERS and its
downstream apoptotic pathways in the hepatocytes, indicating its therapeutic potential
in liver diseases.

Keywords: ADSCs, ERS, ischemia-reperfusion, hepatectomy, laparoscopy

INTRODUCTION

The endoplasmic reticulum (ER) is the site of protein synthesis, post-translational modifications,
folding and trafficking. In addition, it also regulates the cellular stress response and calcium levels,
apart from synthesizing cholesterol, steroids and other lipids. ER stress (ERS) is characterized by
protein misfolding, accumulation of the aberrant proteins and Ca2+ imbalance, which triggers
the unfolded protein response (UPR) (Kozutsumi et al., 1988) and the apoptotic pathway. The
UPR in mammalian cells is mediated by the PKR-like ER kinase (PERK), activating transcription
factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE-1) pathways, which can also trigger
apoptosis if severe or sustained ERS damages ER function. The primary effect of UPR is to inhibit
protein translation by inducing ER-resident chaperones like glucose-regulated protein 78 (GRP78).
Although UPR can alleviate the ERS and protect cells from apoptosis (Kim et al., 2008), prolonged
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UPR can trigger cell death and inflammatory responses (Kim
et al., 2008; Lenna and Trojanowska, 2012).

Recent studies have demonstrated a crucial role of ERS in
hepatic ischemia-reperfusion (IR), which is inevitable in complex
liver surgery and causes severe hepatocyte damage. Reduction of
IR injury (IRI) is a major clinical challenge at present (Zhang
et al., 2018, 2019; Ge et al., 2019). IR is accompanied by hypoxia,
glucose/nutrient depletion, ATP depletion, excessive free radical
production and Ca2+ imbalance, all of which can cause ER
dysfunction and trigger ERS. Several studies have implicated ERS
in the pathophysiology of liver IRI (Liu et al., 2012; Li et al.,
2018; Obert et al., 2018), wherein it aggravates the condition by
inducing apoptosis (Liu et al., 2012; Folch-Puy et al., 2016; Li
et al., 2018; Xie et al., 2018). Therefore, the ERS response is a
potential therapeutic target for alleviating liver IRI.

Adipose-derived mesenchymal stem cells (ADSCs) are ideal
seed cells for cell-based regenerative therapies are widely used
in tissue engineering (Iaquinta et al., 2019). Studies in animal
models have shown that mesenchymal stem cells (MSCs) can
alleviate intervertebral disc degeneration (Liao et al., 2019),
acute myocarditis (Zhang et al., 2017b), obesity-associated kidney
injury (Li et al., 2019), systemic lupus erythematosus (Guo et al.,
2015) etc. by inhibiting ERS and apoptosis in the injured cells.
In addition, MSCs can also protect the kidney from IRI by
reducing ERS (Wang et al., 2019). To the best of our knowledge,
no study so far has examined the therapeutic effects of ADSCs
on hepatic IRI. To this end, we established a model of hepatic
ischemia-reperfusion and partial hepatectomy in miniature pigs,
and transplanted the animals with ADSCs. These stem cells
visibly attenuated the pathological and cellular damage in the
liver by inhibiting ERS and ERS-induced apoptosis. Our findings
provide new insights into the therapeutic potential of ADSCs
in liver diseases.

MATERIALS AND METHODS

Animals and Groupings
Eighteen 4–6 months old Bama miniature pigs weighing 20–
25 kg (half of them male and half female) were provided by
the College of College of Veterinary Medicine (Harbin, China)
and randomly divided into the sham-operated (Sham), IRI and
ADSCs-transplanted (ADSCs) groups (six animals per group).
The animals were housed in a temperature and humidity-
controlled environment under a 12 h light/dark cycle with
ad libitum access to piglet food (Shenzhen Jinxinnong Feed,
China) and water. The experiments were approved by the
Animal Care and Use Committee of the Northeast Agricultural
University (SQ-2019-0209), and conducted in accordance with
the guidelines for the care and use of experimental animals
established by the Ministry of Science and Technology of the
People’s Republic of China.

Isolation and Characterization of ADSCs
Adipose-derived mesenchymal stem cells were harvested from
the abdomen of the miniature pigs. Briefly, the adipose tissue
was removed and digested with 0.01% collagenase I (Biosharp,

China), and re-suspended in L-DMEM supplemented with
10% FBS (Clark, United States), 2 mM L-glutamine, 1 µg/ml
penicillin and 100 µg/ml streptomycin (all obtained from
Solarbio, China). The single cells were seeded into 25 cm2

cell culture flasks (Corning, United States) and cultured at
37◦C under 5% CO2 (Galaxy 170 S, Eppendorf, Germany).
The ADSCs from the third to fifth passages were incubated
with anti-porcine FITC-conjugated antibodies against CD29,
CD34, CD44, and CD105 (1:1000, Abcam, United States).
After washing twice with PBS, the stained cells were acquired
in a Coulter flow cytometer and analyzed using the FACSD
software (BD, United States). Adipogenic, osteogenic and
hepatic differentiation was analyzed by culturing the cells
in the respective differentiation media (Cyagen Biosciences,
United States) according to the manufacturers’ instructions.

Surgical Procedure
After overnight fasting, the animals were anesthetized with 2.5–
4% isoflurane. CO2 was injected into the abdominal cavity
via a veress needle, and the pneumoperitoneum pressure was
maintained at 10 mm Hg. Left hepatectomy and right hepatic
ischemia for 60 min was performed in the IRI and ADSCs
groups by laparoscopy as described previously (Zhang et al.,
2014), while the liver lobe was only flipped in the Sham group.
The animals in the ADSCs group were injected ADSCs through
the liver parenchyma by laparoscopic instruments immediately
after hemi-hepatectomy (106 cells/kg). ADSCs at P3-P5 were
resuspended in saline for allogeneic transplantation. The surgical
procedure was shown in Figure 1. Tolfedine 4% (Vetoquinol
S.A, France) was administered to all animals after the operation.
The abdominal incision suture was removed 7 days after the
operation. All surgeries are performed skillfully by veterinarians
trained in laparoscopic surgery in the same environment. The
liver tissues were collected from the same site in the right lobe
both preoperatively (after the anesthesia) and 1 day after the
operation, and stored at−80◦C.

Histological Analysis
The resected tissues were fixed with 10% buffered formalin,
embedded in paraffin, and cut into 4 µm-thick sections. The
tissue sections were stained with hematoxylin and eosin (H&E)
as per standard protocols, sealed with neutral balsam, and
observed by light microscopy. Histopathological score was
according to the Suzuki classification (Suzuki et al., 1993). Refer
sinusoidal congestion, vacuolization of hepatocyte cytoplasm and
parenchymal necrosis for scoring criteria.

Transmission Electron Microscopy
Fresh liver specimens were immediately fixed in 2.5%
glutaraldehyde for 2 h at 4◦C, washed with PBS and post-fixed
in 1% osmic acid for 2 h. The fixed samples were dehydrated in
graded alcohol, embedded in resin, cut into ultrathin sections
and then stained with uranyl acetate and lead citrate. The
stained sections were observed under a transmission electron
microscope (TEM; H-7650, Hitachi, Japan).
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FIGURE 1 | The surgical procedure.

Immunohistochemistry
The tissue sections were incubated with 3% H2O2 for 10 min in
the dark to quench endogenous peroxidases, followed by antigen
retrieval using sodium citrate under high pressure steam. After
cooling to room temperature, the sections were washed with
PBS, blocked with bovine serum albumin (BSA) and incubated
overnight with the primary antibody (1:200, GRP78, WL0781,
Wanleibio, Shenyang China) at 4◦C. The sections were then
washed with PBS and incubated with the streptavidin-labeled
HRP (PV-6001, ZSGB, Beijing China) at room temperature
for 30 min, followed by incubation with DAB solution for
3 min. After counterstaining with hematoxylin, the sections
were analyzed using the Image-Pro Plus 6.0 software (Media
Cybernetics, Silver Spring, MD, United States). For each section,
five randomly selected views (×400) were analyzed.

Real-Time Quantitative PCR
Total RNA was extracted from liver samples using the
TRIzol reagent (Invitrogen, China) according to the standard
protocol. The quality and concentration of the RNA were
assessed by NanoDropTM One/One (Thermo Fisher Scientific,
United States). The cDNA was synthesized using Prime ScriptTM

RT reagent Kit (Takara, Japan), followed by real-time qPCR
in a Light Cycler 480 (Roche Applied Science, Penzberg,
Germany) according to the manufacturer’s instructions. The
reaction parameters were as follows: pre-denaturation at 95◦C
for 30 s, followed by 40 cycles of denaturation at 95◦C for
5 s, annealing and elongation at 60◦C for 1 min. The relative
abundance of the mRNAs was calculated according to the
2−11Ct method (Livak and Schmittgen, 2001). The primers
were synthesized by Sangon Biotech (Shanghai, China) and are
listed in Table 1. Three technical replicates were tested for each
sample, and the expression of each gene was analyzed in three
biological replicates.

Western Blotting
Liver tissues were homogenized using Tissue Protein Extraction
Reagent supplemented with 1 mM PMSF (Beyotime, Shanghai,
China) and phosphatase inhibitor (MCE, Monmouth Junction,

United States) in an automated fast sample grinder (Jingxin,
Shanghai, China). The protein concentration was determined
with a Bicinchoninic Acid (BCA) Protein Assay Kit (Beyotime,
China). Equal amounts of protein per sample were separated
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), and the bands were transferred to nitrocellulose
(NC) membranes using a transfer buffer. The membranes
were blocked with 5% BSA for 2 h at room temperature.
After washing thrice with Tris-buffered saline (TBS) containing
Tween 20 (TBST) for 30 min, the membranes were incubated
overnight with the primary antibodies against GRP78, ATF4,
ATF6, CHOP, XBP1s, β-actin (Wanleibio, Shenyang, China),
JNK, p-JNK (ImmunoWay, Plano, United States), eIF2α and
p-eIF2α (Abcam, Cambridge, United Kingdom) at 4◦C. The
membranes were washed again with TBST for 30 min and
then incubated with horseradish peroxidase (HRP)-conjugated
anti-species secondary antibody (1:5000, Wanleibio, Shenyang,
China) for 2 h. The bands were developed using Western Bright
ECL reagent (Advansta, United States), imaged using a Tanon
5200 Imaging System (Tanon Science & Technology Co., Ltd.,
Shanghai, China), and quantified using ImageJ software.

Statistical Analysis
Data were expressed as mean ± standard deviation (SD) and
analyzed using GraphPad Prism 7.0 (Graph Pad Software,

TABLE 1 | Gene-specific primers used in the qPCR.

Gen Accession number Primer sequences(5′–3′)

GRP78

ATF6

ATF4

XBP1s

CHOP

β-actin

XM-001927795.4

XM-013996840.1

NM-001123078.1

NM_001271738.1

NM-001144845.1

XM-021086047.1

Forward: TCGGCGATGCAGCCAAGAAC
Reverse: CGGGTCATTCCATGTCCGGC
Forward: ACCCTGTTTGCTGAACTTGG
Reverse: CAAGGCACCAAATCCAAATC
Forward: TCAGTGCCTCAGACAACAGC
Reverse: GCATGGTTTCCAGGTCATCT
Forward: TTGTCACCCCTCCAGAACATC
Reverse: ATGCCCAAGAGGATATCAGACTCA
Forward: AAGACCCAGGAAACGGAAAC
Reverse: GAGCCGTTCGTTCTCTTCAG
Forward: TCTGGCACCACACCTTCT
Reverse: TGATCTGGGTCATCTTCTCAC
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United States). One-way analysis of variance (ANOVA) was
used to compare between groups, and P < 0.05 was considered
statistically significant.

RESULTS

Isolation and Characterization of ADSCs
Adipose-derived mesenchymal stem cells are identified on the
basis of morphology, immunophenotype and differentiation
potential. The cells harvested from porcine abdomen adhered
to the plastic surface, and acquired the spindle morphology of
fibroblasts by the third passage (Figure 2A). The ADSCs were
subjected to adipogenic, osteogenic and hepatic differentiation
in suitable media. Oil red O staining showed the formation of
lipid droplets following a 14-day culture in adipogenic media
(Figure 2B). The ADSCs cultured in osteogenic media for 21 days
showed the presence of alizarin red-stained calcium crystals
(Figure 2C), and PAS-positive glycogen granules were seen after
hepatic differentiation (Figure 2D) for 21 days. Finally, the
ADSCs were negative for CD34 (1.1%), and expressed CD29
(98.9%), CD44 (92.4%) and CD90 (99.6%) (Figures 2E–H).

ADSC Transplantation Alleviated Hepatic
IRI
The liver tissues of the sham-operated animals showed no
pathological changes in the hepatocytes and the parenchymal
structure (Figure 3A). In contrast, the symptoms of IRI
such as focal hepatic necrosis, severe vacuolar degeneration,
hepatocyte swelling, hepatocyte cord arrangement disorder and
inflammatory cell infiltration appeared within a day after
the partial hepatectomy (Figure 3B). Transplantation of the
ADSCs significantly alleviated IRI, as indicated by minor
lesions in the parenchyma, slightly swollen liver cells, and

regularly arranged hepatocyte cords. In addition, the degree of
vacuolar degeneration, hemorrhage and necrotic foci were also
significantly reduced in the ADSCs-treated animals (Figure 3C).
The histopathology scoring was shown in Figure 3D. The liver
histological damage score in the IRI group was significantly
higher than that in the sham and ADSCs groups (P < 0.01).
After stem cells transplantation, the liver injury score of ADSCs
group was significantly lower than that of IRI group (P < 0.01).
The ultrastructural changes in the hepatocytes were also analyzed
in all groups by TEM. As shown in Figure 4A, the hepatocytes
of the sham-operated animals had normal morphology with
intact cell and nuclear membranes. IRI resulted in significant
swelling and uneven ridges of the hepatocyte mitochondria,
along with structural disruption and expansion of the ER
(Figure 4B). ADSC transplantation alleviated the damage in
both organelles (Figure 4C). Taken together, ADSCs protects the
liver from IRI and its therapeutic effects are likely mediated via
neutralization of ERS.

ADSCs Blocked ERS and ERS-Induced
Apoptosis in the Hepatocytes
To determine whether ADSCs relieve ERS in the ischemic
liver, we next analyzed the levels of ERS and apoptosis-
related proteins in the different experimental groups. The
ERS core protein GRP78 was markedly elevated in the
hepatocyte cytoplasm following ischemia-reperfusion and partial
hepatectomy compared to that in the sham-operated group.
However, ADSC transplantation significantly downregulated
GRP78 compared to the untreated animals 1 day after surgery
(Figures 5A–F; P < 0.01 for all). Consistent with this, the GRP78
mRNA levels were also significantly higher in the IRI group
relative to the sham-operated control (P < 0.05), and decreased
in the ADSCs group at day 1 post-operation (Figure 5G;
P < 0.01). The levels of the ERS-related proteins p-eIF2α, ATF6

FIGURE 2 | Identification of ADSCs. (A) Wright’s staining of passage three spindle-shaped ADSCs (magnification 200×). (B) Oil red O-stained lipid droplets in
adipogenic cells (magnification 200×). (C) Alizarin Red-stained calcium crystals in osteogenic cells (magnification 100×). (D) PAS-stained glycogen masses in
hepatic cells (magnification 100×). (E–H) Flow cytometry analysis of ADSCs indicating CD34− CD29+ CD44+ CD90+ immunophenotype.
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FIGURE 3 | Histopathological changes and score in the liver post-IR. HE-stained liver tissues in the (A) sham-operated, (B) IRI, and (C) ADSCs groups. Black
arrows indicate hemorrhage, white arrows indicate hepatocyte vacuolar degeneration, blue arrow indicates hepatic cord structural disorder, and yellow arrows
indicate inflammatory cell infiltration (Magnification × 200). (D) Histopathology score. ∗∗P < 0.01, vs. sham group; ##P < 0.01, vs. IRI group.

FIGURE 4 | Ultrastructural changes in the liver post-IR. TEM micrographs of the liver in (A) sham-operated, (B) IRI, and (C) ADSCs groups. The blue arrow indicates
ER swelling, the yellow arrow indicates the disordered structure of ER, and the black arrow indicates the mitochondrial swelling and the disappearance of
mitochondrial ridge. N, nuclei; E, endoplasmic reticulum.

and XBP1s were also significantly higher in the IRI compared
to sham-operated and ADSCs-transplanted groups (P < 0.01).
While ADSCs markedly decreased the level of ATF6 to baseline
levels (P > 0.05 compared to sham-operated control), p-eIF2α

and XBP1s expression levels were also reduced by the ADSCs
(P < 0.01 compared to sham-operated control). Similar trends
were seen with the transcripts of ERS-related genes (Figure 6).
Since ERS is known to induce apoptosis, we also analyzed
the levels of apoptosis-related proteins like p-JNK, ATF4 and
CHOP in the liver tissues. As expected, IRI significantly increased
the levels of the above factors (P < 0.01 compared to sham-
operated control), all of which were downregulated by ADSCs
(P < 0.01). Similarly, while both ATF4 and CHOP mRNAs were
upregulated in the IRI group compared to the sham-operated
and ADSCs groups (P < 0.01), and ADSCs downregulate their
expression (Figure 7; P < 0.01 compared to IRI group). Taken
together, ADSCs suppress ERS and ERs-induced apoptosis in the
hepatocytes following hepatic IRI.

DISCUSSION

Recent studies have shown that ADSCs transplantation can
attenuate liver IRI by reducing hepatocyte apoptosis (Ge et al.,
2018a,b; Zhang et al., 2019). Furthermore, IR and partial
hepatectomy injury triggers severe ERS via the PERK/eIF2α,
IRE-1/XBP1 and ATF6 pathways, resulting in the accumulation
of the ERS-related apoptosis protein CHOP. In agreement
with previous findings, we observed that ADSCs ameliorated
the pathological and microstructural changes in the liver
parenchyma in a porcine model of hepatic IRI by alleviating
hepatocyte ERS and apoptosis.

Adipose-derived mesenchymal stem cells are pluripotent stem
cells that are abundant in the adipose tissue and can be easily
isolated. In addition, they can rapidly expand ex vivo and
maintain their pluripotency both in vivo and in vitro, making
them ideal for cell-based regenerative therapy for various human
diseases. Several studies have reported the therapeutic effects of
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FIGURE 5 | Effect of ADSCs transplantation on GRP78 levels. (A–C) Representative IHC images showing in situ expression of GRP78 in the liver tissues.
(D) Analysis of GRP78 protein immunohistochemical results. (E–G) Western blotting and qRT-PCR results showing GRP78 protein and mRNA levels. IOD, integrated
optical density. ∗∗P < 0.01, ∗P < 0.05, vs. sham group; ##P < 0.01, vs. IRI group.

mesenchymal stem cells (MSCs) isolated from the bone marrow
and adipose tissues of mice (Tropel et al., 2004; Choi et al., 2014)
and rats (Sgodda et al., 2007; Li et al., 2013), and confirmed their
ability to differentiate into hepatocytes in vitro (Jiang et al., 2002;
Winkler et al., 2015). Although translational research has been
conducted on the hepatocyte differentiation of porcine MSCs
(Groth et al., 2012), studies on ADSCs are still relatively few
(Bosch et al., 2006). The Mesenchymal and Tissue Stem Cell
Committee of the International Cell Therapy Association has
proposed a minimum defined standard for characterizing human
MSCs (Pittenger et al., 1999; Dominici et al., 2006), including
adhesion to plastic, multi-directional differentiation ability and
expression of distinct surface markers. The ADSCs extracted
from the subcutaneous fat of pigs differentiate into osteogenic,
adipogenic and hepatic cells, and express CD44, CD29, and CD90
but not CD34 (Brückner et al., 2013; Jiao et al., 2019). Based
on these criteria, we successfully isolated and expanded porcine
ADSCs in vitro.

The ER is a vital organelle involved in protein translation
and post-transcriptional modification, calcium homeostasis and
lipid biosynthesis (Avril et al., 2017; Zhang et al., 2017a). ER
dysfunction leads to the accumulation of unfolded or misfolded
proteins in its lumen, thereby triggering ERS via multiple
pathways (Schröder and Kaufman, 2005). Studies increasingly
show that ERS plays a major role in IRI of various organs

(Thuerauf et al., 2006; Nakka et al., 2010). Liver IR leads to
hypoxia, ATP/nutrient deprivation, oxidative stress and calcium
overload (Liu et al., 2012), all of which can induce ERS
(Chaudhari et al., 2014) that in turn triggers apoptotic cell
death (Mizukami et al., 2010; Mosbah et al., 2010; Li et al.,
2011). Since ERS is the immediate consequence of hepatocyte
metabolic disorder, the pathological damage associated with
IRI can be alleviated by inhibiting early ERS. Wang et al.
showed that bone marrow-derived MSCs (BMSCs) inhibited
ERS in the early stage of renal IR (Wang et al., 2019).
Consistent with this, porcine ADSCs significantly alleviated the
pathological damage and hepatocyte ERS induced by IR and
partial hepatectomy injury.

The 78 KD glucose regulated protein (GRP78) is a molecular
chaperone that is regulated by cellular glucose levels (Shiu and
Pastan, 1979). The increase in the amount of misfolded or
unfolded proteins during ERS leads to the decomposition of
inactive GRP78 complexes and activation of the dissociated
protein, which further aggravates ERS by initiating the requisite
pathways (Hetz, 2012). This leads to an overall increase in GRP78
levels, increased synthesis of unfolded or misfolded proteins,
and a net decrease in protein biosynthesis at the ER (Tabas,
2009; Guerrero-Hernandez et al., 2014). Therefore, altered
expression level of GRP78 is an indicator of ER dysfunction
and ERS. We observed an increase in the GRP78 protein

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 March 2020 | Volume 8 | Article 177

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00177 March 18, 2020 Time: 16:51 # 7

Jiao et al. ADSCs Therapy on Hepatocytes ERS

FIGURE 6 | Effect of ADSCs transplantation on ERS-related protein levels. Western blotting and qRT-PCR results showing eIF2a, ATF6 and XBP1s protein (A–D)
and mRNA (E,F) levels. ∗∗P < 0.01, vs. sham group; ##P < 0.01, vs. IRI group.

and mRNA levels in the liver tissues after IRI, which was
downregulated by the ADSCs. This clearly indicated that ERS
was induced in the hepatocytes during IRI and alleviated by
transplanting ADSCs.

The accumulation of unfolded or misfolded proteins in ER
lumen further triggers the unfolded protein response (UPR)
through RNA-dependent protein kinase (PKR)-like ER kinase
(PERK), inositol-requiring enzyme 1α (IRE1α), and activating
transcription factor 6 (ATF6). In the physiological state, these
proteins are bound to GRP78 and thus inactive. When the ER
homeostasis is disrupted, GRP78 dissociates from this complex
and releases the other proteins as well. The subsequent increase
in GRP78 levels and ATF6 activation are indicators of ERS (Guo
et al., 2017). The ER membrane type I proteins PERK and IRE-
1 are also activated by auto-dimerization and phosphorylation
in the intracytoplasmic domain. PERK phosphorylates the
eukaryotic initiation factor 2α (eIF2α) (Ghemrawi et al., 2018),
and IRE-1 splices the 26 bp intron of the ATF6-induced

XBP1 precursor mRNA resulting in the XBP1-spliced (XBP1s)
transcript (Ron and Walter, 2007). Transcriptional activation of
XBP1 is critical for UPR, which degrades ER-associated proteins
and upregulates certain chaperone proteins (Lee et al., 2003).
Liu et al. (2012) observed an increase in XBP1s and ATF6 levels
during ERS early in liver reperfusion, which was also detected
in our model of hepatic IRI. Chi et al. (2018) showed that
ATF6, XBP-1 and p-eIF2α were significantly upregulated in rat
brains subjected to middle cerebral artery occlusion (MCAO),
and alleviated in the animals transplanted with ADSCs. In our
study also, IRI significantly upregulated p-eIF2α and XBP1s,
and promoted cleavage of full-length ATF6α. Thus, all three
pathways of ERS were activated following hepatic ischemia-
reperfusion. ADSCs down-regulated the above factors, indicating
that their restorative effects were mediated by the inhibition
of excessive ERS.

Although the primary function of UPR is to protect cells
from stress-related damage, a sustained response in the event
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FIGURE 7 | Effect of ADSCs transplantation on apoptosis-related proteins. Western blotting and qRT-PCR results showing JNK, ATF4 and CHOP protein (A–D) and
mRNA (E,F) levels. ∗∗P < 0.01, ∗P < 0.05. vs. sham group; ##P < 0.01, vs. IRI group.

of severe ERS can also activate the JNK or caspase12-mediated
apoptosis pathways to eliminate the damaged cells (Ding et al.,
2014). Persistent ERS leads to the activation of ATF4 and
XBP1s, resulting in the upregulation of the ERS-related apoptosis
protein CHOP (Zhao et al., 2019). The PERK-eIF2α-ATF4 axis
is necessary for CHOP expression (Fels and Koumenis, 2006),
and its apoptotic effects are dependent on ATF4 (Li et al., 2009).
Thus, activation of the PERK signaling pathway protects cells
in the early stages of ERS by inhibiting protein synthesis. In
the event of prolonged ERS, however, PERK promotes apoptosis
via the eIF2α-ATF4-CHOP pathway. CHOP levels increased
significantly in the brains of wild-type mice within 24 h of
cerebral IR (Tajiri et al., 2004), further validating the relationship
between IRI, prolonged ERS and apoptosis. The JNK activation
pathway indirectly promotes ERS-induced apoptosis (Nieto-
Miguel et al., 2007) via JNK1/2, which is known to regulate
various pro-apoptotic and anti-apoptotic genes (Gorman et al.,
2012). The apoptotic signaling molecule caspase 12 on the other

hand has been detected in the ER of rodents but not in pigs
(Szegezdi et al., 2006). In our study, CHOP and p-JNK were
significantly elevated after IRI, indicating that both pathways
are activated in the IR porcine liver due to excessive ERS.
Consistent with the findings of Lee et al. (2019) that tonsil-
derived MSCs have an inhibitory effect on CHOP, we found
that the ADSCs also downregulated this protein in the injured
liver. Thus, ADSCs can alleviate hepatic IRI damage by reducing
ERS-induced apoptosis as well.

The current treatments in the pipeline for ERS and UPR
rely on targeting ER calcium homeostasis, protein misfolding,
Bip activators etc. (Ghemrawi et al., 2018). To the best of our
knowledge, this is the first study to demonstrate that ADSCs
can inhibit hepatic ERS following ischemic injury in a porcine
model, an ideal animal model that shares considerable anatomical
homology with humans. Although we did not track these cells
in vivo, Ge et al. (2018b) detected fluorescently labeled ADSCs in
the liver tissues of miniature pigs within 24 h of transplantation.
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In conclusion, ADSCs are a highly promising therapeutic tool
against tissue injury and need further clinical validation.

CONCLUSION

In conclusion, this study showed that ADSCs alleviated
pathological damage and ultrastructural changes of hepatocytes
following liver IRI by inhibiting ERS and reducing ERS-related
hepatocyte apoptosis. Thus, these results providing new insights
into cell-based therapies for hepatic IRI.
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