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Adult mammalian cardiomyocytes have very limited capacity to proliferate and repair the
myocardial infarction. However, when apical resection (AR) was performed in pig hearts on
postnatal day (P) 1 (ARP1) and acute myocardial infarction (MI) was induced on P28 (MIP28),
the animals recovered with no evidence of myocardial scarring or decline in contractile
performance. Furthermore, the repair process appeared to be driven by cardiomyocyte
proliferation, but the regulatory molecules that govern the ARP1-induced enhancement of
myocardial recovery remain unclear. Single-nucleus RNA sequencing (snRNA-seq) data
collected from fetal pig hearts and the hearts of pigs that underwent ARP1, MIP28, both
ARP1 and MI, or neither myocardial injury were evaluated via autoencoder, cluster analysis,
sparse learning, and semisupervised learning. Ten clusters of cardiomyocytes
(CM1–CM10) were identified across all experimental groups and time points. CM1 was
only observed in ARP1 hearts on P28 and was enriched for the expression of T-box
transcription factors 5 and 20 (TBX5 and TBX20, respectively), Erb-B2 receptor tyrosine
kinase 4 (ERBB4), and G Protein-Coupled Receptor Kinase 5 (GRK5), as well as genes
associated with the proliferation and growth of cardiac muscle. CM1 cardiomyocytes also
highly expressed genes for glycolysis while lowly expressed genes for adrenergic signaling,
which suggested that CM1 were immature cardiomyocytes. Thus, we have identified a
cluster of cardiomyocytes, CM1, in neonatal pig hearts that appeared to be generated in
response to AR injury on P1 and may have been primed for activation of CM cell-cycle
activation and proliferation by the upregulation of TBX5, TBX20, ERBB4, and GRK5.
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INTRODUCTION

Mammalian cardiomyocytes exit the cell cycle during the perinatal period and lose the ability to
proliferate; thus, the hearts of mammals are unable to repair the damage caused by myocardial injury
that occurs more than 2 days after birth (Porrello et al., 2011; Lam and Sadek, 2018; Ye et al., 2018;
Zhu et al., 2018). However, when apical resection (AR) was performed in pig hearts on postnatal day
(P) 1 (ARP1), and acute myocardial infarction (MI) was induced on P28 (MIP28), the animals
completely recovered with no evidence of myocardial scarring or decline in contractile performance
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by P56, whereas the hearts of animals that underwent MI on P28
without previous AR injury displayed significant fibrosis and
declines in contractile activity (Zhao et al., 2020). Furthermore,
the repair process appeared to be driven by the proliferation of
cardiomyocytes, and comparative analyses of bulk and single-
nuclei RNA sequencing (snRNA-seq) data from the hearts of
animals that underwent ARP1 only, MIP28 only, or both ARP1 and
MIP28 (ARP1MIP28), as well as uninjured (CTL) and fetal pig
hearts, suggested that signaling pathways associated with cell-
cycle activity, glycolytic metabolism, and declines in DNA
damage were upregulated in the cardiomyocytes of ARP1MIP28
hearts (Zhang et al., 2020; Zhao et al., 2020; Nakada et al., 2022).
Also, in our previous study using snRNA-seq data (Nakada et al.,
2022), we found a novel cardiomyocyte subpopulation marked by
coupregulation of Nebulin (NEB) and Pyruvate Kinase M1/2
(PKM), which uniquely appeared in regenerative ARP1MIP28
heart on postnatal day P35. On the other hand, how ARP1

cardiomyocytes differed from CTL ones such that they
responded differently following MIP28 injury was not
thoroughly examined. For the studies presented in this report,
we collected more snRNA-seq data from the cardiac tissues of
additional animals and then analyzed our expanded dataset with
an artificial-intelligence–based pipeline for deeper understanding
on which regulatory molecules and signaling pathways
contributed to the ARP1-associated enhancement of
myocardial regeneration, and which cardiomyocyte subsets
highly utilizes these regulators. We expanded the snRNA-seq
dataset by obtaining a new MIP28-only group on postnatal days
P30, P35, and P42 and more ARP1-MIP28 pigs at P30, P35, and
P42. In addition, an artificial-intelligence technique was
developed and applied for high-dimensional snRNA-seq data
using a much smaller number of dimensions (Wang et al., 2016)
and consequently improved snRNA-seq data clustering findings.

RESULTS

Autoencoding and Cluster Analysis
Identified 10 Cardiomyocyte Populations in
the Hearts of Fetal, ARP1, MIP28, and
ARP1MIP28 Animals
Our complete dataset encompassed the results from snRNA-seq
analyses of myocardial tissues in animals that underwent ARP1

only and were sacrificed on P28 and P56 (ARP1-P28 and ARP1-
P56, respectively); animals that underwent MIP28 only and were
sacrificed on P30, P35, P42, and P56 (MIP28-P30, -P35, -P42, and
-P56, respectively); animals that underwent both ARP1 and MIP28
and were sacrificed on P30, P35, P42, and P56 (ARP1MIP28-P30,
-P35, -P42, and -P56, respectively); CTL animals that were
sacrificed on P1, P28, and P56 (CTL-P1, -P28, and -P56,
respectively); and embryos obtained on embryonic day 80
(Fetal) (Supplementary Table S1). Tissues were collected from
the border zone of infarction or the corresponding region of non-
infarcted hearts, and nuclei with <500 or >25,000 unique
molecular identifiers (UMIs), or with >25% mitochondrial
UMIs were excluded from subsequent analyses. A total of

283,421 nuclei from 41 hearts were included in our analyses;
1,786 (median) genes and 31,736 (median) UMIs were captured
per nucleus (Supplementary Table S2), and 129,991 of the nuclei
were from cardiomyocytes. Data were aligned and normalized
with the Seurat v.4 toolkit (Hao et al., 2021), and then embedded
with an autoencoder before clustering and visualization via
Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018; Meehan, 2021); this deep-
learning–based method has outperformed other state-of-the-
art approaches for unsupervised cluster analysis (Yang et al.,
2019).

When data for all cell types were analyzed (Supplementary
Figure S1), most of the clusters contained cells from multiple
injury groups and time points, indicating that the results were not
influenced by between-batch variation or sampling error, and
each cluster was composed primarily of a single cell type
(cardiomyocytes, smooth muscle cells, endothelial cells,
fibroblasts, immune cells, or skeletal muscle–like cells. The
skeletal muscle–like cluster uniquely expressed exclusive-
skeletal-markers myosin light chain 3 (MYL3) (Hailstones and
Gunning, 1990) and Myosin light chain kinase 2 (MYLK2) (Stull
et al., 2011); meanwhile, it expresses cardiac Actin Alpha Cardiac
Muscle 1 (ACTC1) and Myosin Heavy Chain 7 (MYH7). Cardiac
muscle populations expressing both cardiomyocyte and skeletal
muscle markers were reported in Clément et al. (1999). Also, the
cardiac/skeletal muscle–like cluster upregulated both Nebulin
(NEB) and Pyruvate Kinase M1/2 (PKM), which were
consistent with the PKM+/NEB + cardiomyocyte
subpopulation in our previous report (Nakada et al., 2022).
Cardiomyocytes were distributed into 10 clusters
(CM1–CM10) (Figures 1A, B), each of which was associated
with a set of explicitly expressed marker genes (Figure 1C,
Supplementary Tables S3–S4).

Cardiomyocytes in the CM1 cluster were found almost
exclusively in ARP1-P28 hearts, where they comprised 62.91%
of the total cardiomyocyte population (Figure 1D). The CM2
cluster included a substantial proportion of cardiomyocytes from
CTL (22.53%) and ARP1 (25.11%) hearts at P28, as well as
ARP1MIP28 hearts at P30 (31.77%) and P35 (21.17%). CM3
cardiomyocytes were present only in CTL-P56 hearts, where
they comprised just 2.63% of all cardiomyocytes and expressed
elevated levels of genes associated with cell differentiation. Small
numbers of CM4 cardiomyocytes, which expressed high levels of
collagen [Collagen Type V Alpha 2 Chain (COL5A2) and
Collagen Type III Alpha 1 Chain (COL3A1)] and genes that
regulate the pluripotency of stem cells, including APC (Kielman
et al., 2002), PIK3CA (Jeong et al., 2017), MAPK1 (Lu et al.,
2008), and JARID2 (Landeira et al., 2010) (Supplementary
Figure S2A), were present in all hearts. Cardiomyocytes from
CM5 were only in CTL-P56 hearts and explicitly expressed genes
that drive cardiomyocyte maturation, such as Ankyrin Repeat
And SOCS Box Containing 18 (ASB18), Yip1 Domain Family
Member 7 (YIPF7), Creatine Kinase, M-Type (CKM), and
Creatine Kinase, Mitochondrial 2 (CKMT2) (Uosaki et al.,
2015; Guo and Pu, 2020). CM6 included the majority
(57.16%–69.69%) of cardiomyocytes from all injury groups
(ARP1, MIP28, and ARP1MIP28) on P56 and was enriched for

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9144502

Nguyen et al. Large Mammals Cardiomyocytes' Cell-Cycle Regulation

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


FIGURE 1 | Cluster analysis identified 10 populations of cardiomyocytes in Fetal, CTL, ARP1, MIP28, and ARP1MIP28 hearts. (A,B) Cardiomyocyte snRNA-seq data
were reduced to 10 dimensions with an autoencoder, processed via cluster analysis, visualized via UMAP, and displayed according to (A) experimental group and time
point and (B) cluster (CM1–CM10). (C) The expression of genes that were explicitly associated with each cluster is displayed as a heat map. (D) The proportion of
cardiomyocytes from each cluster is displayed for each experimental group and time point.
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FIGURE 2 |Genes that contribute to cell-cycle activity and muscle growth tended to be more highly expressed in clusters associated with regenerating hearts than
in CTL hearts at P28 and afterward. Sparse analysis was conducted for the expression of genes associated with (A) the cell-cycle, (B) adrenergic signaling, (C) the
contractile activity and development of cardiac muscle, and (D) cardiac-muscle cell proliferation and muscular growth; then, the proportion of cardiomyocytes with high,
medium, or low levels of expression was calculated for each cluster.
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the expression of Z-disc and insulin-signaling genes. CM7
encompassed most (86.75%) of the cardiomyocytes in CTL-P1
hearts and was associated with elevated levels of genes that
participate in the morphogenesis of cardiac muscle and
myofibril assembly. The CM8 cluster included nearly all
(99.69%) of the cardiomyocytes in fetal hearts, none of those
from any other group or time point, and was enriched for genes
that contribute to embryonic development. CM9 cardiomyocytes
were present only in CTL-P56 hearts, where they comprised
29.51% of all cardiomyocytes, and expressed high levels of genes
associated with the Z-disc, focal-adhesion, and other structural
components of muscle cells. Finally, cardiomyocytes from the
CM10 cluster were found in all nonfetal groups at all time points
and included the majority (57.85%–92.16%) of cardiomyocytes in
MIP28 and ARP1MIP28 hearts from P30-P42. The pairwise
similarities among these clusters were presented in
Supplementary Figure S3.

ARP1 and MIP28, Both Alone and in
Combination, Promoted Cardiomyocyte
Cell-Cycle Activity for Approximately Two
Weeks AfterMyocardial Infarction Induction
Sparse modeling (Bi et al., 2003; Huang et al., 2010; Chkifa et al.,
2015; Zhang et al., 2014) enables researchers to extract relevant
data from datasets that contain a large number of variables that
do not contribute to the property being studied. When sparse
modeling was used to evaluate the expression of cell-cycle genes
in our cardiomyocyte snRNA-seq dataset (Supplementary
Figure S4), our results are consistent with our previous report
in (Nakada et al., 2022). Briefly, the proportion of high-cell-cycle
in each phase of the cell cycle was the greatest in Fetal and CTL-
P1 hearts. Also, these proportions in CTL-P1 hearts were higher
than in hearts from any other postnatal group, which is consistent
with the perinatal occurrence of cardiomyocyte cell-cycle arrest.
However, cycling cardiomyocytes were much more common in
ARP1 hearts at P28, and in both MIP28 and ARP1MIP28 hearts
from P30-P42, than in CTL hearts at P28 or P56. Cell-cycle
activity was also significantly more common in cardiomyocytes
from ARP1MIP28 hearts than from MIP28 hearts on P35 (G1S: p =
1.06 × 10−58; S: p = 9.67 × 10−12; G2M: p = 7.44 × 10−66; M: p =
4.11 × 10−7) but not on P42, which suggests that AR on P1
promoted cardiomyocyte proliferation for approximately 1 week
after MI induction on P28. Notably, this period of ARP1-
enhanced proliferation coincided with a greater proportion of
CM2 cardiomyocytes in ARP1MIP28 hearts.

ARP1-P28 Hearts Contained a Cluster of
Cardiomyocytes With a Latent Capacity for
Myocardial Proliferation and Growth
When cell-cycle gene expression was evaluated for cardiomyocyte
(CM1) clusters (Figure 2A), cycling activity tended to be highest
in CM8 and lowest in CM9, which is consistent with our
observation that these two clusters were almost exclusively
associated with Fetal and CTL-P56 hearts, respectively. The
proportion of cycling cells was also elevated among CM4

cardiomyocytes, which express high levels of
pluripotency-maintenance genes (Mouse Genome Informatics,
2022) (Supplementary Figure S2B) and consequently, appear to
have some progenitor-cell–like properties. However, CM1
cardiomyocytes, which were found only in ARP1 hearts at P28,
were not especially more proliferative than CM9 (primarily in
CTL-P56); for example, G2M (Mouse Genome Informatics,
2021a) [odds ratio (OR) = 2.66, p = 3.38 × 10−76] and MG1
(Cui et al., 2020) (OR = 1.45, p = 1.59 × 10−21) cells were less
common in CM1 than in CM10, which comprised the bulk of
cardiomyocytes in both MIP28 and ARP1MIP28 hearts during the
2 weeks after MI induction. Nevertheless, analyses of adrenergic
signaling (KEGG: Adrenergic signaling in cardiomyocytes, 2021)
(Figure 2B), cardiac-muscle contraction (Mouse Genome
Informatics, 2021b), and cardiac-muscle–cell development
(Gene Ontology: Cardiac Muscle Cell Development, 2021)
(Figure 2C) indicated that CM1 cardiomyocytes were
functionally immature, while genes associated with the
proliferation (Mouse Genome Informatics, 2021c) (OR = 5.61,
p < 10−60) and growth (Mouse Genome Informatics, 2021d) (OR
= 4.35, p < 10−60) of cardiac muscle (Figure 2D) were more highly
expressed in CM1 than in CM10. Collectively, these observations
suggest that although CM1 cardiomyocytes themselves did not
display exceptionally high levels of cell-cycle activity, they were
still immature and might retain a latent capacity for proliferation
that could have been reactivated by MI induction on P28.

CM1 Cardiomyocytes Express Elevated
Levels of T-Box Transcription Factors 5 and
20 (TBX5 and TBX20), Erb-B2 Receptor
Tyrosine Kinase 4, and G Protein-Coupled
Receptor Kinase 5
CM1 cardiomyocytes were enriched for expression of the
regulatory molecules TBX5 (p = 8.65 × 10−184), TBX20 (p =
2.97 × 10−225), and Erb-B2 receptor tyrosine kinase 4 (ERBB4)
(p = 4.86 × 10−186) (Figure 3A). Notably, these three genes were
also coupregulated in the clusters that were exclusively associated
with Fetal hearts (CM8) and with CTL hearts on P1 (CM7), and
previous reports have shown that disruptions of TBX5 (Misra
et al., 2014; Maitra et al., 2009), TBX20 (Xiang et al., 2016;
Chakraborty and Yutzey, 2012), or ERBB4 (Bersell et al., 2009)
activity reduce cardiomyocyte proliferation in fetal and neonatal
mouse hearts. Furthermore, the expression of G protein-coupled
receptor kinase 5 (GRK5), which is associated with cardiac
hypertrophy (Gold et al., 2012; Traynham et al., 2015), was
upregulated in CM1 cardiomyocytes. Thus, we queried the
TRRUSTv2 (Han et al., 2018) and STRING v11.5 (Szklarczyk
et al., 2021) databases to identify the genes that are targeted by or
interact with these four molecules, and then used the database for
annotation, visualization, and integrated discovery (DAVID)
bioinformatics resources (Huang et al., 2009) with the Gene
Ontology Annotation (GOA) (Huntley et al., 2015), Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2017), and Reactome (Jassal et al., 2020) databases to characterize
the network (Figure 3B) of biological processes and signaling
pathways that may have been upregulated in CM1
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FIGURE 3 | TBX5, TBX20, ERBB4, and GRK5 were consistently upregulated in CM1, CM7, and CM8 cardiomyocytes. (A) The abundance of TBX5, TBX20,
ERBB4, and GRK5 RNA transcripts was measured in cardiomyocytes from each cluster and displayed in a violin plot. The expression was normalized according to the
Seurat pipeline: the expression matrix was scaled by the ScaleData function with vars. to. regress set to nUMI and nGenes; then, the scaled expression was log-
normalized. (B) The network of genes, cellular processes, and signaling pathways regulated by TBX5, TBX20, ERBB4, and GRK5 was evaluated with DAVID
bioinformatics resources. Targeted genes were identified in the TRRUST v2 (TBX5 and TBX20) and STRING v11.5 (ERBB4 and GRK5) databases and functional/
pathway data were obtained from the GOA, KEGG, and Reactome databases. PP, positive regulation of cell proliferation; PD, positive regulation of cardiac muscle cell
differentiation; CP, canonical Wnt signaling pathway; MP, MAPK signaling pathway; Ep, ErbB signaling pathway. (C) The bulk RNAseq expressions of TBX5, TBX20,
ERBB4, GRK5, NKX2-5, MEF2C, TBX2, GJA5, STAT5A, YAP1, SHC1, FZD5, LRP5, ARRB1, and CHUK in regenerative and naïve pig heart. The transcript counts were
normalized using DeSeq2 pipeline.
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cardiomyocytes. Collectively, our results identified increases in
processes of cell proliferation (Mouse Genomic Informatics,
2021a) and cardiac-muscle–cell differentiation (Mouse
Genome Informatics, 2021c), as well as in ErbB (Zhu et al.,
2010), MAPK (Liu and Zhong, 2017), and canonical Wnt (Kwon

et al., 2007) signaling (Supplementary Tables S5, S6).
Intermediate molecules in the network included: 1) Fibroblast
Growth Factor 10 (FGF10), which is activated by both TBX5 and
TBX20, phosphorylates Forkhead Box O3 (FOXO3), and
downregulates the cell-cycle inhibitor p27 (Rochais et al.,

FIGURE 4 |Genes associated with both glycolysis and βFAOX were upregulated in CM1 and CM2. The abundance of RNA transcripts for genes that contribute to
(A) glycolysis (ABCD1, CPT1B, HADHA, and HADHB) and (B) βFAOX (ACSS2, GPI, and HK1) was measured in cardiomyocytes from each cluster and displayed in a
violin plot. The expression was normalized according to the Seurat pipeline: the expression matrix was scaled by the ScaleData function with vars.to.regress set to nUMI
and nGenes; then, the scaled expression was log-normalized. (C) Sparse analysis was conducted for the expression of glycolysis and βFAOX genes, and the
proportion of cardiomyocytes with high, medium, or low levels of expression was calculated for each cluster.
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2014); 2) Gap Junction Protein Alpha 5 (GJA5), which is activated
by TBX5 and contributes to the differentiation of induced-
pluripotent stem cells into cardiomyocytes, endothelial cells,
and other cardiac cell types (Paik et al., 2018); 3) Myocyte
Enhancer Factor 2C (MEF2C) and NK2 Homeobox 5 (NKX2-
5), which are upregulated by TBX20 and cooperatively participate
in the embryonic development of mouse hearts (Vincentz et al.,
2008; Materna et al., 2019); 4) the Hippo pathway effector Yes-
associated Protein 1 (YAP1), which is activated by ERBB4 and
regulates the cell cycle by interacting with transcription factors of
the Transcriptional Enhanced Associate Domain (TEAD) family
(Zhao et al., 2008; Yuan et al., 2020); and 5) Beta-2 Adrenergic
Receptor (ADRB2), as well as downstream components of the
canonical Wnt signaling pathway (Chen et al., 2009), which may
reactivate proliferation in mature cardiomyocytes (Fan et al.,
2018). Notably, bulk-RNA seq data (Zhang et al., 2020) cross-
checking also showed the overexpression of TBX5, TBX20,
ERBB4, GRK5, NKX2-5, MEF2C, TBX2, GJA5, STAT5A,
YAP1, SHC1, FZD5, LRP6, ARRB1, and CHUK among
regenerative hearts (Figure 3C). Here, these regenerative-
hearts expressions on postnatal day 7 (P7) were even higher
than they are in naïve-hearts P1 and P3.

CM1 and CM2 Cardiomyocytes Were
Enriched for the Expression of Genes That
Contribute to Both Glycolysis and β Fatty
Acid Oxidation
As cardiomyocytes mature, the primary mechanism for ATP
generation switches from glycolysis to beta fatty acid oxidation
(β-FAOX) (Lopaschuk and Jaswal, 2010), which is consistent with
our observation that glycolysis genes [Acyl-CoA Synthetase Short
Chain Family Member 2 (ACSS2), Glucose-6-Phosphate Isomerase
(GPI), and Hexokinase 1 (HK1) (Glycolysis, 2021)] were highly
expressed in the CM8 cluster (i.e., fetal cardiomyocytes) but not in
CM9 (i.e., the CTL-P56–exclusive cluster), while genes involved in
β-FAOX [ATP Binding Cassette Subfamily D Member 1 (ABCD1)
(van Roermund et al., 2011), Carnitine Palmitoyltransferase 1B
(CPT1B) (Angelini et al., 2021), and Hydroxyacyl-CoA
Dehydrogenase Trifunctional Multienzyme Complex Subunits
Alpha (Miklas et al., 2019) and Beta (Sekine et al., 2021)
(HADHA and HADHB, respectively)] were downregulated in
CM8 and upregulated in CM9 (Figures 4A, B). Sparse-model
analysis indicated that glycolysis (Glycolysis, 2021) was the
dominant metabolic pathway in most other cardiomyocyte
clusters. Compared to CM9 (primarily CTL-P56
cardiomyocytes), glycolysis markers were upregulated in CM1
(OR = 9.21, p < 10−60), CM2 (OR = 5.23, p < 10−60), and CM10
(OR = 8.28, p10−60), yet did not reach the CM7 (CTL-P1 exclusive)
and CM8 (Fetal exclusive) level. In addition, compared to CM8, β-
FAOXmarkers were upregulated in CM1 (OR = 128.77, p < 10−60),
CM2 (OR = 102.75, p < 10−60), and in CM10 (OR = 41.68, p <
10−60), yet did not reach CM9 level, (Figure 4C). β-FAOX
upregulation in CM10 was significantly less than in CM1 and
CM2. Notably, the CM2 and CM10 clusters comprisedmost (~90%
ormore) of the cardiomyocytes in ARP1MIP28 hearts during the first
week after MI induction, and DAVID analysis indicated that the

metabolism of CM2 but not CM10, cardiomyocytes was also
supported by increases in insulin (KEGG: Insulin signaling
pathway, 2021) and glucagon (KEGG: Insulin signaling pathway,
2021) signaling. Nevertheless, assessments of cell-cycle activity in
the CM2 and CM10 clusters were similar (Figure 3A), so whether
CM2 cardiomyocytes have a unique role in the ARP1-induced
enhancement of myocardial repair and regeneration remains
unclear.

The Fate of CM1 Cardiomyocytes After
Myocardial Infarction on P28 May Have
Been Regulated by Protein Kinase
AMP-Activated Noncatalytic Subunit
Gamma 2, Nuclear Receptor Subfamily 4
Group a Member 3, and Activating
Transcription Factor 3
Because cardiomyocytes in the CM1 cluster appeared to retain
some latent capacity for proliferation and were present almost
exclusively in ARP1 hearts at P28, whereas the CM2 and CM10
clusters collectively encompassed most of the cardiomyocytes in
ARP1MIP28 hearts at P30 and P35 and were more similar to CM1
than other ARP1MIP28 clusters (Supplementary Figure S3), we
used a semisupervised machine-learning technique to investigate
whether the induction of MI in hearts that had recovered from
previous AR surgery could have triggered the transformation of
CM1 cardiomyocytes into CM2 and CM10 cardiomyocytes.
snRNA-seq data for each cardiomyocyte in the CM1 cluster
were compared to data for CM2 and CM10 cardiomyocytes
from ARP1MIP28 hearts on P30; then, the CM1 cardiomyocytes
were distributed by semisupervised machine-learning into two
subpopulations: CM1a or CM1b, which more closely resembled
cardiomyocytes from the CM2 or CM10 clusters. (Figure 5A).
Transcription factors that were differentially expressed between the
CM1a and CM1b subpopulations (Figure 5B, Supplementary
Table S7) included protein kinase AMP-activated noncatalytic
subunit gamma 2 (PRKAG2), nuclear receptor subfamily 4 group a
member 3 (NR4A3), and activating transcription factor 3 (ATF3),
which were also more highly expressed in CM2 than in CM10
cardiomyocytes, and the expression of all three genes declined in
ARP1MIP28 hearts after P35, which coincided with the
disappearance of CM2 cardiomyocytes. Notably, PRKAG2
regulates both glycolysis and fatty acid oxidation (Hinson et al.,
2016), which were uniquely coupregulated in CM1 and CM2
cardiomyocytes, and both NR4A3 and ATF3 appear to be
cardioprotective: NR4A3 was associated with improvements in
infarct size and cardiac function, as well as declines in
inflammation when overexpressed in infarcted mouse hearts
(Jiang et al., 2019), and measures of cardiac fibrosis,
hypertrophy, and function, as well as glucose tolerance, were
worse in mice carrying a cardiac-specific ATF3-knockout
mutation than in wild type mice when the animals were fed a
high-fat diet (Kalfon et al., 2017). There are 38.15% CM1
(Figure 5C) cells co-expressing PRKAG2, NR4A3, and ATF3.
Then, multiplying the percentage of PRKAG2 + NR4A3 +
ATF3 + CM1 cells by the proportion of CM1 cells (38.15%) in
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ARP1P28 cardiomyocytes (62.91%) yields 24.00%. This PRKAG2
+ NR4A3 + ATF3 + percentage is similar to CM2 percentage in
ARP1MIP28P30 and ARP1MIP28P35. Collectively, these
observations suggest that CM1 may be composed of the mix-
transition states. Also, PRKAG2, NR4A3, and ATF3 may function
as molecular switches that trigger the transformation of CM1
cardiomyocytes into CM2 cardiomyocytes. Meanwhile, from the
same analysis, transformation from CM1 into CM10
cardiomyocytes may associate with the expressions of RGS6 and
TMEM126A, which consistently upregulated in CM1b and CM10.

CM1 Markers ERBB4 and GRK5 Are Highly
Expressed in Regenerative Hearts
The roles of TBX5 (Maitra et al., 2009; Misra et al., 2014), TBX20
(Chakraborty and Yutzey, 2012; Xiang et al., 2016), and ERBB4

(Bersell et al., 2009) in cardiomyocyte proliferation had been
reported in previous independent studies; therefore, we focused
on validating ERBB4 and GRK5, which localize on the cell
surface, protein expression in our pig tissue. The western
blotting of ERBB4 and GRK5 showed increased protein levels
in ARP1-P28, which is consistent with our snRNA-seq data
(Figure 6). Western blotting measures the protein expression
in the whole tissue, including cardiomyocytes and
noncardiomyocytes; therefore, we performed further
immunofluorescence validation (cardiomyocyte-specific).

We are interested in investigating the specific expression of
GRK5 during heart regeneration as existing GRK5 studies
(Martini et al., 2008; Islam et al., 2013; Traynham et al., 2016;
de Lucia et al., 2022) have not found the role of GRK5 in
cardiomyocyte proliferation. Therefore, additional
immunofluorescence analysis (Figure 7) was performed to

FIGURE 5 | Cardiomyocytes in the CM1 cluster could be partitioned into CM2- and CM10-like subpopulations. (A) snRNA-seq data for CM1 cardiomyocytes in
ARP1-P28 hearts and for CM2 and CM10 cardiomyocytes in ARP1MIP28-P30 hearts were evaluated with a semisupervised learning model to calculate a rescaled score
for each CM1 cardiomyocyte. Cardiomyocytes with rescaled scores approaching 0 were designated CM1a (CM2-like) and cardiomyocytes with rescaled scores
approaching 1 were designated CM1b (CM10-like). (B) The abundance of ATF3, NR4A3, PRKAG2, RGS6, and TMEM126A RNA transcripts was measured in
CM1a, CM1b, CM2, and CM10 cardiomyocytes. (C) The proportion of PRKAG2+NR4A3+ATF3+ cardiomyocytes in CM1 (ARP1-P28), in comparison with CM2
proportions.
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show the GRK5 expression in cardiomyocytes undergoing the
regenerative or non-regenerative process. We found that GRK5
expression increases (p = 0.03) 7 days after MIP28 injury in the
control (CTL-P28 and MIP28-P35) group. But the increased
GRK5 level in the control group is still less than its level in
ARP1-P28 samples (p = 0.03). This result is consistent with
snRNA-seq analysis, where GRK5 expression is the most
elevated in CM1 (exclusively for ARP1-P28) among the
injured-heart cardiomyocytes. Surprisingly,
immunofluorescence analysis shows that GRK5 is also highly
expressed in the Fetal group, where cardiomyocytes are expected
to actively proliferate.

DISCUSSION

Although the proliferative capacity of mammalian
cardiomyocytes is extremely limited, the meager amount of
myocardial regeneration that occurs after MI in the adult
heart appears to require the presence of cycling
cardiomyocytes (Laflamme and Murry, 2011). A number of
studies have shown that mammalian cardiomyocytes remain
proliferative for only a few days after birth (Porrello et al.,
2011; Lam and Sadek, 2018; Ye et al., 2018; Zhu et al., 2018)
but when AR surgery was performed in pigs on P1,
cardiomyocytes proliferated in response to MI injury that
occurred on P28, and the animals fully recovered with little or
no evidence of contractile dysfunction or myocardial scarring
(Zhao et al., 2020). The snRNA-seq analyses presented here build
upon these previous observations by showing that the proportion
of cycling cardiomyocytes increased in response to either ARP1 or
MIP28, and in animals that underwent both surgical procedures,
ARP1 appeared to further upregulate cardiomyocyte cell-cycle
activity for 1 week after MI induction.

Cluster analysis of our snRNA-seq data indicated that
cardiomyocytes in the hearts of Fetal pigs, CTL (uninjured)
neonatal pigs, and neonatal pigs that underwent ARP1, MIP28,
or both (ARP1MIP28) can collectively be grouped into 10 different
subpopulations (CM1–CM10), and that the abundance of each
cluster varied depending on the injury group and time-point
analyzed. Cell-cycle gene expression tended to be highest in CM8,
which is consistent with our observation that this cluster
comprised >99% of the cardiomyocytes in fetal hearts but was
absent in all other groups, and cell cycle activity was greater in
CM1–7 and CM10 than in CM9, which was almost exclusively
associated with CTL-P56 hearts. Notably, the CM1 cluster
comprised >60% of the cardiomyocytes in ARP1-P28 hearts
but was absent in all other groups, including CTL-P28 hearts,
which suggests that CM1 cardiomyocytes may have a prominent
role in the ARP1-induced enhancement of myocardial
regeneration. As in Figure 1B, CM1 is very separated from
CM8 (representing fetal cardiomyocytes) and CM7
(representing neonatal day 1 cardiomyocyte). Therefore, CM1
is more likely associated with the later postnatal period
regeneration rather than the neonatal period. In addition, we
hypothesize that CM1 responds to the second myocardial
infarction injury on the postnatal day 28 (MIP28) by transiting
to CM2 or CM10. This response may change the transcription
profile of CM1 cardiomyocytes; therefore, the analysis may not
represent this “CM1—the same cluster” in ARP1-MIP28-P30 and
ARP1-MIP28-P30. Therefore, we performed semi-supervised
learning to find which regulators might determine the
transition from CM1 into CM2 or CM10. Interestingly,
proliferative regulators, TBX5 and GRK5 continued expressing
highly in CM2. Different from our previous publication (Nakada
et al., 2022), which only detected six cardiomyocyte
subpopulations, the newly added data, and AI-based pipeline
enabled significantly deeper analysis, resulting in ten
subpopulations. Beyond reconfirming the PKM2+/NEB +
subpopulation as in (Nakada et al., 2022), this work
characterized four cardiomyocyte subpopulations in injured-

FIGURE 6 | Western blotting confirming ERBB4 and GRK5 expression.
The expression in each sample was scaled according to GAAPDH level to
ensure equal loading. (A) Representative Western Blotting image in each
group. Each row presents a protein, in order: ERBB4, and GRK5. Each
column presents a sample, in order: Fetal (3 samples), CTL-P28 (3 samples),
and ARP1-P28 (3 samples). (B) Bar chart comparing the average expression
among groups. Here, the value for each sample is represented in a circle dot.
The horizontal lines and stars (*) represent nonparametric statistical
comparisons between two groups. *p-value < 0.05.
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heart cardiomyocytes (CM1, CM2, CM10, and CM6).
Furthermore, transitions among these subpopulations (CM1,
CM2, and CM10) were investigated, which had not been
examined in our previous work (Nakada et al., 2022).

Cell-cycle activity was not substantially greater in CM1
cardiomyocytes than in cardiomyocytes from any other cluster
except CM9. However, TBX5, TBX20, ERBB4, and GRK5, which
have been linked to the proliferation of fetal and neonatal
cardiomyocytes [TBX5 (Misra et al., 2014; Maitra et al., 2009),
TBX20 (Xiang et al., 2016; Chakraborty and Yutzey, 2012),

ERBB4 (Bersell et al., 2009)] and cardiac hypertrophy [GRK5
(Gold et al., 2012; Traynham et al., 2015)], were upregulated in
the CM1 cluster, as well as in Fetal cardiomyocytes.
Bioinformatics analysis (Figure 3B) showed that TBX5 and
TBX20 transcription factors amplified the expression of
positive regulation of cell proliferation, cardiac muscle cell
differentiation, canonical Wnt signaling pathway, and MAPK
signaling pathway makers. Furthermore, ERBB4 and GRK5,
which are surface receptor proteins, may activate ERBB,
canonical Wnt, and MAPK signaling pathways at downstream.

FIGURE 7 | Immunofluorescence analysis confirming GRK5 expression in cardiomyocytes. Here, the expression of GRK5 was represented by the average
GRK5 red-channel value (light intensity) that is overlapped with cardiac troponin (cTnT) blue-channel (foreground), which was calculated after adjusting GRK5 red-
channel background. DAPI (blue) indicates nuclei. (A) Violinplot of GRK5 intensity in 118 staining images. Here, the horizontal bar and the star (*) indicate nonparametric
Wilcoxon’s rank sum test between two sample groups. *p-value < 0.05. (B) Representative images of GRK5/cTnT/DAPI in each group.
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Thus, AR on P1 may have primed cardiomyocytes for cell-cycle
reactivation by maintaining the signaling mechanisms associated
with these four molecules through at least P28. TBX5 and GRK5
were also highly expressed in CM2 cardiomyocytes, which
comprised ~20% of cardiomyocytes in ARP1-P28 hearts and a
substantially greater proportion of cardiomyocytes in ARP1MIP28
than in MIP28 hearts during the first week after MI induction.
This 7-day window coincided with the period when cycling
cardiomyocytes were significantly more common in
ARP1MIP28 hearts, and although we did not observe
differences between cardiomyocyte clusters, injury groups, or
time-points in the expression of downstream effectors of these
signaling pathways, the results from bulk RNA sequencing
assessments suggested that MI induction on P1 upregulated
the expression of two molecules identified in our network
analysis, MEF2C and NKX2-5, as well as TBX5 (Zhang et al.,
2020). CM1 and CM2 cardiomyocytes also displayed substantial
evidence of both glycolytic and βFAOX metabolism, while most
of the other cardiomyocytes (i.e., CM10 and CM4) in ARP1MIP28
and MIP28 hearts on P30 and P35 relied primarily on glycolysis
for energy production, but whether TBX5 or GRK5 activate
βFAOX in neonatal cardiomyocytes, and if so, whether
βFAOX upregulation improves the regenerative response to
myocardial injury, has yet to be investigated.

The TBX5+/TBX20+/ERBB4+/GRK5+ cardiomyocyte
subpopulation (CM1) and its markers were not detected in
our previous report (Nakada et al., 2022). This subpopulation
was detected in this study by adding new snRNA-seq data and
applying the artificial-intelligence techniques. Pipelines to
analyze snRNA-seq data include unsupervised clustering
(Kiselev et al., 2019), which means the technical result
depends on the data being used. Given the same data, it is
known that different pipelines can lead to different results
(Vieth et al., 2019). Therefore, whether the novel CM1
subpopulation appeared in this study primarily due to adding
new data or using a different pipeline is yet to be investigated.
From the computational perspective, compared to the Seurat-
based pipeline (Hao et al., 2021) used in (Nakada et al., 2022), the
artificial-intelligence-based pipeline gives the dimensional
reduction advantage. Before clustering, artificial intelligence
(autoencoder) reduced the high-dimensional snRNA-seq data
into 10 dimensions; meanwhile, Seurat, applying Principal
Component Analysis still reduced into 2,000 dimensions.
Notably, both of them use the same principle to compute
lower-number dimensions: when using the lower-number
dimensions to reconstruct the data, the difference between the
reconstructed data and original high-dimensional data is
minimized. In computing, given the similar optimization
criteria, using a lower number of dimensions is better to
“curse of dimensionality” issue (Trunk, 1979): the calculation
is much less accurate if too many data dimensions are used.

As support of our finding, the roles of TBX5, TBX20, and
ERBB4 in promoting cardiomyocyte proliferation had been
reported in other studies. In addition, we confirmed the
evaluated protein levels of ERBB4 and GRK5 in regenerative
heart tissue. Therefore, immunofluorescence analysis was
performed to quantify GRK5 expression within

cardiomyocytes, where we confirmed the signal intensity of
the cTnT region/GRK5 in ARP1-P28 and Fetal groups were
higher. Overall, our results suggest that GRK5 may contribute
to cardiomyocyte proliferation, whose mechanisms are yet to be
further confirmed in future studies.

In conclusion, the results presented here identified a cluster of
cardiomyocytes, CM1, in neonatal pig hearts that appeared to be
generated in response to AR injury on P1, which in turn, results in
CMs cell-cycle activation, and has improved recovery from
subsequent AMI on P28. Although CM1 cardiomyocytes did
not appear to be substantially more proliferative than
cardiomyocytes from other clusters that were present in
injured and uninjured hearts through P42, they may have
been primed for cell-cycle reactivation by the upregulation of
regulatory molecules that contribute to cardiomyocyte
proliferation (TBX5, TBX20, and ERBB4) and cardiac
hypertrophy (GRK5). Collectively, these observations support
future investigations of the roles of these four regulatory
molecules in cardiomyocyte proliferation and myocardial repair.

MATERIALS AND METHODS

Animals
All experimental protocols were approved by The Institutional
Animal Care and Use Committee (IACUC) of the University of
Alabama, Birmingham, and performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (NIH publication No 85-23). Pigs were
purchased from Prestage Farm, Inc. (West Point, MS) and
cared for as described previously (Zhao et al., 2020). Pigs were
housed in an incubator at ~85°F with room air through P14 and
then transferred to the normal room and grown under regular pig
feeding and ~72°F temperature. Animals were fed bovine
colostrum every 4 h for the first 2 days of life, a 1:1 mixture of
colostrum: sow’s milk on day 3 of life, and sow’s milk thereafter.
Supplemental iron was provided on day 7.

Aapical Resection and Myocardial
Infarction–Induction Surgery
Pigs were anesthetized with isoflurane and placed on a heating
pad in a dorsal recumbent position; then, a median sternotomy
was performed to expose the heart. AR was performed on P1 by
removing 4–5 mm of tissue from the ventricular apex, and MI
was induced on P28 by permanently occluding the left-anterior
descending coronary artery with a suture; then, the sternum was
reapproximated, and the chest was closed in layers, and the air
was evacuated from the mediastinum.

Nuclei Isolation
Tissues were cut while submerged in cold phosphate-buffered saline
(PBS) orUW solution, washed to remove blood, and transferred into
1 ml lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2,
0.1% Nonidet™ P40 Substitute, and 50 U/ml RNase inhibitor in
DEPC-treated water), cut into smaller pieces, and aspirated with the
lysis buffer into a 50-ml tube; then, 10 ml of lysis buffer was added,
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the tissues were ground for 20–30 s, andmore lysis buffer was added.
The mixture was placed on ice for 10min, filtered with 100-μm and
70-μm strainers, and centrifuged for 5min at 700 rcf and 4°C; then,
the supernatant was removed, and the pellet was resuspended in
10ml nuclei wash and resuspension buffer [1 × PBS, 1.0% bovine
serum albumin (BSA), and 50 U/ml RNase inhibitor]. The
suspension was passed through a 40-μm strainer, and the nuclei
were centrifuged again for 5 min at 700 rcf and 4°C; then, the
supernatant was removed, the pellet was resuspended in 1ml
nuclei wash, and resuspension buffer and the nuclei were
centrifuged a third time for 5 min at 700 rcf and 4°C. The
supernatant was removed; then, the pellet was resuspended in
5ml sucrose cushion buffer I (2.7 ml Nuclei PURE 2M Sucrose
Cushion Solution and 300 μl Nuclei PURE Sucrose Cushion Buffer)
and mixed with 10ml sucrose buffer. The mixture was layered over
5 ml of sucrose cushion buffer in a second Eppendorf tube and then
centrifuged for 60 min at 13,000 g and 4°C. All but 100 μl of the
supernatant was removed, the nuclei were resuspended in nuclei
wash and resuspension buffer, and the solutionwas passed through a
40-μm strainer; then, the nuclei concentration was determined with
a cell counter or hemocytometer and adjusted to 1,000 nuclei/μl. The
nuclei were placed on ice, stained with propidium iodide for 5 min,
and then immediately processed via the 10× Genomics® Single-Cell
Protocol.

Pre-Processing of snRNA-Seq Data
Sample demultiplexing, barcode processing, and gene counting
were performed with Cell Ranger Single-Cell Software v.3.10
(https://support.10xgenomics.com/single-cell-gene expression/
software). Reads were aligned to the Sscrofa11.1 pre-mRNA
reference genome (Pig, 2021), and the pre-mRNA portion of
the reference genome was extracted for single-nuclei UMI
mapping with Cell Ranger mkref pre-mRNA. Only confidently
mapped reads with valid barcodes and UMIs were used to
generate the gene-barcode matrix. Cross-sample integration
and quality-control were performed with the Seurat R package.
Doublets were identified by using Seurat’s standard pipeline
(https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html), and
barcodes were removed if they had fewer than 500 UMIs,
more than 30,000 UMIs, or >5% mitochondrial UMIs. Nuclei
were removed if they had <200 detected genes or if >25% of the
transcripts were from mitochondrial genes. Mitochondrial genes
and other transcript identifiers were removed without mapping to
the official gene symbols from later analyses. Data were
normalized as directed in the online Seurat tutorial (https://
satijalab.org/seurat/v3.2/pbmc3k_tutorial.html); total
expression was multiplied by a factor of 10,000 and then log-
transformed. Variations in the number of genes and UMIs
detected per cell were accommodated by normalizing the
scaled expression matrix via the ScaleData function with vars.
to. regress set to nUMI and nGenes. Normalization returned two
gene-cell matrices: the first was in log scale, and the second was
the adjusted gene-cell count.

Autoencoder
An autoencoder (Kramer, 1991) is a deep-neural-network
artificial-intelligence technique used to synthesize (Sheikh

et al., 2021), denoise (Eraslan et al., 2019), or translate (Cho
et al., 2014) data. A data-synthesis autoencoder has at least three
layers: an input layer, which consists of the original high-
dimensional dataset, a central embedded layer with fewer
dimensions (typically 10–20), and a synthetic output layer
whose dimensionality is equivalent to the input layer. The
autoencoding procedure is performed by encoding the input
layer into the embedded layer, decoding the embedded layer
into the output layer, and then evaluating the extent of similarity
between the input and output layers. When the output layer
matches the input layer with maximum fidelity, the embedded
layer is considered an accurate low-dimensional representation of
the input data. Notably, the immense datasets generated via
single-cell and single-nucleus genomic analyses can require a
prohibitively large amount of computer memory, so a number of
recent studies (Wang and Gu, 2018; Eraslan et al., 2019; Tran
et al., 2021) have reduced the dimensionality of the input data
before the autoencoding procedure is initiated. However, the
transcriptional heterogeneity of cardiac cells is exceptionally high
(Nahrendorf and Swirski, 2013; Vidal et al., 2019; Tsedeke et al.,
2021) and likely to be exacerbated by the physiological changes
that occur in response to AR surgery and MI induction. Thus,
since any attempt to reduce the dimensionality of the input data
before autoencoding could mask this complexity, the input layer
used for the studies reported here included the complete list of
14,753 genes (i.e., 14,753 dimensions) with at least 1,000 UMIs in
our dataset.

Autoencoding was performed in Matlab (trainAutoencoder,
2021) with self-built models; the architecture of the autoencoder
was restricted to three layers, and the embedded layer contained
10 dimensions (Supplementary Figure S5). Optimization was
achieved by minimizing the function

E � 1
N

∑N
i

∑N
j

(xi − yj)2 + 0.001||W||2 + Q, (1)

where N denotes the number of data points, xi denotes an
arbitrary input data point, yj denotes an arbitrary synthetic
data point, ||W||2 represents the regularization of autoencoder
weights, and Q represents the sparsity parameters
(trainAutoencoder, 2021).

Data Visualization and Clustering
After autoencoding, the embedded data was reduced from 10 to 2
dimensions via Uniform Manifold Approximation (UMAP)
toolkit (McInnes et al., 2018; Meehan, 2021), and clustering
was performed with the UMAP toolkit density-based
clustering (dbscan) algorithm (McInnes et al., 2018; Meehan,
2021; Ester et al., 1996; dbscan, 2021); the 30th-distance graph
(minpts, or n_neighbors = 30) was plotted, and epsilon (or
min_dist) was set to 0.3 (Meehan, 2021). Cardiomyocytes were
identified via expression of the cardiomyocyte-specific markers
ACTC1 and MYH7 (Supplementary Note S1); then, the
cardiomyocyte data was extracted, and the autoencoding,
visualization (UMAP), and clustering (dbscan) procedures
were repeated. The assignment of cardiomyocyte clusters
(CM1–CM10) was based on visualization and the distribution
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of cardiomyocytes in each subgroup (Supplementary Note S2),
and marker genes for each cluster were identified according to the
following criteria: 1) a cluster p-value [Fisher’s Exact test (Fisher,
1922)] of less than 10−6, 2) expression by at least 50% of cells in
the cluster, and 3) mean abundance at least 1.3-fold greater
among cells in the cluster than in the total cardiomyocyte
population.

Algorithm Quality Analysis
After being clustered UMAP toolkit (McInnes et al., 2018;
Meehan, 2021), the snRNA-seq clusters were validated and
manually adjusted (if needed) by the cell-groups’ localization
in each sample group. In Supplementary Figure S6, the cell-
landscape in each group revealed specific regions that were
significantly enriched by or were exclusive for ARP1-P28,
ARP1-MIP28-P30/P35, injured P56, Fetal, CTL-P1, and CTL-
P56 cardiomyocytes. There were regions mapped to CM1,
CM2, CM6, CM8, CM7, and CM5/CM9, respectively
(Supplementary Figure S7B). This result explained and
justified our clustering parameter settings. This strategy was
also used in other single-cell analyses, such as in (Cui et al., 2020).

In addition to the (minpts = 30, epsilon = 0.3) parameter,
combination was manually examined according to the instruction
in (DBSCAN, 2022). Briefly, for each cell-point, the distances
between the point and 30 other nearest points were calculated;
then, among these 30 distances, the largest distance was selected as
“30th nearest distance.” Repeating this process for all cell-points,
the list of “30th nearest distances” for all cell-points between 0.1
and 1.2 was obtained, as displayed on the y-axis of Supplementary
Figure S7A. At any threshold t on the y-axis, the number of cell-
pointsm having “30th nearest distances” < t was counted, and the
(m, t) dot was drawn in Supplementary Figure S7A. Repeating the
(m, t) process as t increased from 0.1 to 1.2 and connecting these
(m, t) dots, the “30th nearest distance curve” was completed as
shown in Supplementary Figure S7A. On “30th nearest distance
curve,” “the elbow” (m, t) point corresponds to t ≈ 0.3. This result
further justified our decision to use the parameter combination
(minpts = 30, epsilon = 0.3).

On the other hand, we manually examined the clustering
result when slightly changing minpts = 25, 30, and 35, and epsilon
= 0.25, 0.3, and 0.35 with the Matlab UMAP toolkit (Meehan,
2021). Changing these parameters may yield different numbers of
clusters. However, using the cell groups localization to manually
merge the smaller clusters, we reconstructed a nearly identical
cluster landscape to what was obtained using (minpts = 30,
epsilon = 0.3) parameter combination. This result justified the
robustness of the cluster algorithm and toolkit.

We also justified the criteria by the number of marker genes
and their percentage over the entire pig genome, which consists of
25,800 genes. Table 1 shows that the number of genes passing two
criteria (to qualify as cluster markers) is always less than 2% of the
genome. Furthermore, we combined the marker genes from all 10
CM clusters, yielding 1,069 marker genes. Then, for the gene, we
counted in how many CM clusters such that the gene was a
marker. There were 636 genes (59.50%) that were markers of only
one CM cluster; 312 genes (29.19%) that were markers of two CM
clusters; 98 genes (9.17%) that were markers of three clusters; 21

genes (1.96%) that were markers of four clusters; and only 2 genes
(0.19%) that were markers of five clusters. There were no genes
that were markers of six or more clusters. Therefore, the criteria
to select cluster markers ensured that the markers were very
specific for the cluster.

DAVID Functional Annotation
Cluster-specific markers were analyzed with the DAVID
functional annotation tool (Huang et al., 2009). Only terms
present in the manually annotated Gene Ontology (Huntley
et al., 2015), KEGG (Kanehisa et al., 2017), and Reactome
(Jassal et al., 2020) categories were selected. To avoid false
discoveries caused by multi-hypothesis testing, the selected
results were required to have p < 0.01 or Benjamini-adjusted
(Li and Barber, 2019) p < 0.05.

Sparse Modeling
Because the markers selected via our DAVID functional analysis
were restricted to those present in manually annotated databases,
complementary analyses were conducted without the selected
markers via Sparse modeling. Briefly, for each cell expression data
vector x, the sparse model estimates a score y from the linear
formula

y � wx + b. (2)
Only genes known to be associated with the ontology or

pathway being evaluated were considered [e.g., G2M scores
were calculated using only genes with known G2M ontology
(Mouse Genome Informatics, 2021a)], and higher y implied that
the cell was more likely to undergo the corresponding process.
Sparse analysis also requires predefined “positive” (y = 1) and
“negative” (y = –1) cell groups (Table 2); thus, cell-cycle gene
scores (for example) were calculated with Fetal and CTL-P56
cardiomyocytes as the positive and negative groups, respectively,
because Fetal cardiomyocytes are highly proliferative, whereas
CTL-P56 cardiomyocytes have exited the cell cycle.

The w and b (bias) parameters of Eq. 1 were computed by
minimizing

1
2
|w| + C∑

∀i
ϵi. (3)

Subject to

{yi(wxi + b) + ϵi ≥ 1
ϵi ≥ 0

∀i, (4)

where i denotes an arbitrary “positive” or “negative” cell and the
“margins” of the model are defined by wx + b � 1 and
wx + b � −1. A good model will have a very high percentage
(e.g., 90%) of cells with ϵi � 0.

Scores were computed for all cells; then, cells with y > 1 (from
Eq. 2) were categorized “high,” cells with y < –1 were categorized
“low,” and cells with –1 ≤ y ≤ 1 were categorized “middle.” Thus, a
“high” G2M categorization (for example) indicated that the cell
was more Fetal- than CTL-P56–like and, consequently, more
likely to execute the G2M phase transition. Significance was
evaluated by calculating the OR and p-value [Fisher’s Exact
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Test (Fisher, 1922)] for the proportion of “high” cells in each
group, and p < 10−6 was considered significant.

Network Analysis for TBX5, TBX20, ERBB4,
and GRK5
Genes targeted by TBX5 and TBX20 were identified in the
TRRUST v2 database (Han et al., 2018), and genes that
function downstream of ERBB4 and GRK5 were identified in
the STRING v11.5 (Szklarczyk et al., 2021) database. Identified
genes were combined into a single set and analyzed via DAVID
(Huang et al., 2009).

Semisupervised Learning Analysis
The semisupervised learning model was built with the Matlab
“fitsemiself” function (Matlab, 2021); CM2 cardiomyocytes from
ARP1MIP28-P30 hearts were used as the class 1 cells, and CM10
cardiomyocytes from ARP1MIP28-P30 hearts were used as the
class 2 cells. For each CM1 cardiomyocyte from ARP1-P28 hearts,
the model calculated a rescaled score between 0 and 1; cells with
scores approaching 0 or 1 were categorized an CM1a (i.e., CM2-
like) or CM1b (i.e., CM10-like), respectively.

Cardiomyocyte Pairwise Cluster Similarity
Analysis
The similarity between two cardiomyocyte clusters, denoted as
CMx and CMy, was calculated by averaging 1,000 similarity

scores between 1,000 randomly selected cells in CMx and
1,000 randomly selected cells in CMy. The cell-cell similarity
was computed using the following equation���������������������∑m

j�1
(sign(xj) − sign(yj))2√√

. (5)

Here, x,y represents the gene expression of a randomly selected
cell in CMx and CMy, correspondingly,m is the number of genes,
and j represents the gene index. The “sign” function converts the
expression into the binary (0 or 1) format, whereas x(i) = 1 means
the ith gene expresses in cell x, while x(i) = 0 means the ith gene
does not express in cell x.

Bulk-RNA Sequencing Analysis
The regenerative pig heart bulk-RNA sequencing data was
obtained from the Gene Expression Omnibus database,
accession number GSE144883, and processed according to
(Zhang et al., 2020). Briefly, the paired-end fastq files were
trimmed using TrimGalore (Krueger, 2019), then mapped to
Ensembl Sscrofa11.1 pre-mRNA reference pig genome (Pig,
2021) using STAR v.2.5.2 (Dobin et al., 2013), then the
transcripts for each gene (raw expression) were counted using
HtSeq v.0.6.1 (Anders et al., 2015). Then, the raw expression
matrix was normalized using Deseq2 (Love et al., 2014).
Expressions between 3 regenerative hearts, which underwent

TABLE 1 | Number and proportion of genes passing the cluster marker criteria: expressing in more than 50% of the cluster cell and having at least 1.3-fold abundance.

Cardiomyocyte (CM)
cluster

Criterion 1: genes expressed in
more than 50% of the cluster cell

Criterion 2: expression is 1.3-fold
higher (than other clusters)

Criterion 1 and Criterion 2

#Genes %Genome (%) #Genes %Genome (%) #Genes %Genome (%)

CM1 881 3.40 2,263 8.74 126 0.49
CM2 964 3.73 1,221 4.72 74 0.29
CM3 1,541 5.95 5,610 21.68 419 1.62
CM4 1,435 5.54 9,670 37.36 274 1.06
CM5 1,090 4.21 1,935 7.48 109 0.42
CM6 1,073 4.15 1,209 4.67 89 0.34
CM7 862 3.33 4,438 17.15 102 0.39
CM8 807 3.12 6,544 25.29 206 0.80
CM9 855 3.30 1,277 4.93 241 0.93
CM10 912 3.52 1,391 5.38 8 0.03

TABLE 2 | Positive and negative cell groups for Sparse analysis.

Analysis Positive cell group Negative cell group

Cell cycle phases (Cui et al., 2020) (G01, G1S, S, G2M, M, and MG1) Fetal cardiomyocytes Naïve-P56 cardiomyocytes
Cardiomyocyte adrenergic signaling (KEGG: Adrenergic signaling in cardiomyocytes, 2021) CM9* CM8*
Cardiac muscle contraction (Mouse Genome Informatics, 2021b) CM9 CM8
Cardiac muscle cell development (Gene Ontology: Cardiac Muscle Cell Development, 2021) CM8 CM9
Positive regulation of cardiac muscle cell proliferation (Mouse Genome Informatics, 2021c) CM8 CM9
Positive regulation of cardiac muscle tissue growth (Mouse Genome Informatics, 2021d) CM8 CM9
Glycolysis (Glycolysis, 2021) CM8 CM9
Beta fatty acid oxidation (Mouse Genomic Informatics, 2021b) CM9 CM8

*The CM8 and CM9 clusters were exclusively associated with cardiomyocytes from Fetal and CTL-P56 hearts, respectively.
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myocardial infraction on postnatal day 1, and 3 naïve hearts were
compared, and error-bar plotted.

Western Blotting
The Western blotting protocol, which quantified protein
expression of ERBB4, GRK5, and GAPDH was completed
according to our previous publication (Zhang et al., 2020).
Tissues were lysed in PIPA Lysis and Extraction Buffer
(Thermo Scientific, 89,901) with Halt™ Protease and
phosphatase Single-Use Inhibitor Cocktail (Thermo Scientific,
78,442); then, the lysates were denatured at 95°C for 6°min,
separated in a 4%–20% precast gel (Bio-rad, 4568093), and
transferred onto a PVDF membrane (Bio-rad, 1704156). The
membrane was incubated with 5% nonfat dry milk (Bio-rad,
1706404) for 30 min, with primary antibodies at 4°C overnight,
and then with horseradish-peroxidase (HRP)–conjugated
secondary antibodies for 30 min. Protein bands were detected
with the chemiluminescent HRP substrate (Millipore,
WBKLS0500) in a ChemiDocTM Imaging System (Bio-rad).

We performed western blotting in three Fetal, ARP1-P28, and
three CTL-P28 samples. In each sample, protein expression was
scaled according to GAPDH to confirm equal loading. Then,
statistical comparison and testing were performed using the
nonparametric test, according to (Zhao et al., 2021), due to
the small sample size. A p-value < 0.05 indicates statistical
significance.

Histology
The immunofluorescence analyses were conducted similar to our
previous work in Nakada et al. (2022). Hearts were cut into
transverse blocks (thickness: 1 cm), and myocardium from the
anterior-apical zone (AAZ) were either snap-frozen with liquid
nitrogen or processed with 10% formalin fixation and
dehydration with 10%- 30% sucrose overnight. Samples were
cut into transverse sections (thickness: 10 μm) and stained with
antibodies against GRK5 (1:100, rabbit polyclonal, Invitrogen,
PA5-106484) and cardiac troponin T (1:50, mouse monoclonal,
R&D System, MAB 1874) overnight was followed by blocking in
Ultravision Protein Block (Epredia, TA125PBQ) for 7 min. For
each group, at least 10 sections of border zone myocardium were
analyzed, and a total of 118 images from subendomyocardium,
and subepimyocardium were counted. Anti-rabbit and anti-
mouse secondary antibodies conjugated to Alexa Fluor 555
and 488 were used for visualization by microscopy. DAPI was
used for nuclei staining.

To quantify the GRK5 light intensity at the cardiac troponin
T area, the following image processing pipeline was performed
(Supplementary Figure S8). First, each staining image
(including GRK5 and cTnT) was represented in Matlab by
the Red-Green-Blue channel matrices. Here, in the red-
channel matrix, the number between 0 (totally no red) and
255 (maximum red) represents the red color intensity, so does
in the green-channel and blue-channel. Then, image
segmentation was performed in the cTnT image green
channel: green >10 implied the “foreground” (with cTnT)
areas, while green <10 implied the “background”
(Supplementary Figure S8B). Then, the “segmented” image

was mapped to the GRK5 red channel, where this channel was
adjusted by subtracting with the background red channel
baseline (Supplementary Figure S8C). GRK5 intensity was
calculated by the mean of the foreground red-channel
(adjusted) number, which was between 0 and 255. Since
only the overlap between GRK5 (red) and cTnT (green)
areas was used in GRK5 intensity calculation, this approach
was better to quantify GRK5 in cardiomyocytes. Then,
statistical comparison among the groups was completed
using nonparametric Wilcoxon’s Rank sum test. A p-value
< 0.05 indicates statistical significance.

The background red channel baseline was determined in each
GRK5 image based on the distribution (histogram) of the
background red channel numbers. Manually investigating all
118 images, we noted three background scenarios. First, when
the background numbers follow a power-law distribution, where
most of the numbers were around 0 and much fewer nonzero
backgrounds, the baseline was set to 0, implying no background
adjustment was needed. Second, when the background number
appeared to be in a homogeneous distribution, which was either
normal, uniform, or power-law, the baseline was set to be the
average of the background number. Third, when the background
numbers formed two or more distributions, we separated these
distributions and set the baseline to be the average of the largest
(most right) distribution.
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Supplementary Figure S1 | Cluster analysis identified six different cell types in
hearts from Fetal, CTL, ARP1, MIP28, and ARP1MIP28 animals. snRNA-seq data
for all cells from each experimental group and time point were processed via cluster
analysis and visualized via UMAP. (A) Results are displayed for each experimental
group and time point. (B) Results are displayed for each of six different cell types
(cardiomyocytes, fibroblasts, immune cells, smooth muscle cells, endothelial cells,
and cardiomyocyte/skeletal-like muscle cells). (C) The expression of cell-
type–specific genes that were explicitly associated with each cluster is displayed
as a heat map (cardiomyocytes: myosin heavy chain 7 [MYH7], Actin Alpha Cardiac
Muscle 1 [ACTC1]; fibroblasts: Collagen Type I Alpha 1 [COL1A1], Collagen Type I
Alpha 2 [COL1A2]; immune cells: Bridging Integrator 2 [BIN2], gamma-interferon-
inducible lysosomal thiol reductase [IFI30]; smooth-muscle cells: Actin Alpha 2
[ACTA2], Myosin Heavy Chain 11 [MYH11]; endothelial cells: Platelet And
Endothelial Cell Adhesion Molecule 1 [PECAM1], Kinase Insert Domain Receptor
[KDR]; skeletal-muscle cells: Myosin Light Chain Kinase 2 [MYLK2], Nebulin [NEB]).

Supplementary Figure S2 | Upregulation of pluripotent genes in CM4
cardiomyocyte. (A) Regulators in KEGG signaling pathways regulating
pluripotency of stem cells, including AKT Serine/Threonine Kinase 3 [AKT3],
Janus Kinase 1 [JAK1], Janus Kinase 2 [JAK2], Jumonji And AT-Rich Interaction
Domain Containing 2 [JARID2], Mitogen-Activated Protein Kinase 1 [MAPK1],
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
[PIK3CA], Signal Transducer And Activator Of Transcription 3 [STAT3], and Zinc
Finger Homeobox 3 [ZFHX3]. (B) Genes responsible for stem cell population
maintenance according to Gene Ontology annotation, including APC Regulator
Of WNT Signaling Pathway [APC], AT-Rich Interaction Domain 1A [ARID1A], DEAD-
Box Helicase 6 [DDX6], Forkhead Box O1 [FOXO1], Nuclear Receptor Coactivator 3
[NCOA3], Recombination Signal Binding Protein For Immunoglobulin Kappa J
Region [RBPJ], SWI/SNF Related, Matrix Associated, Actin Dependent Regulator
Of Chromatin, Subfamily A, Member 2 [SMARCA2], SWI/SNF Related, Matrix
Associated, Actin Dependent Regulator Of Chromatin Subfamily C Member 1
[SMARCC1], SS18 Subunit Of BAF Chromatin Remodeling Complex [SS18], and
Transcription Factor 7 Like 2 [TCF7L2]. The expression was normalized according to
the Seurat pipeline: the expression matrix was scaled by the ScaleData function with

vars.to.regress set to nUMI and nGenes; then, the scaled expression was log-
normalized.

Supplementary Figure S3 | Pairwise similarity among cardiomyocyte CM1-CM10
clusters. The cluster similarity was calculated by averaging 1000 cell-cell similarity
scores, whereas the cells were randomly selected in each cluster. The left-side bar
maps the color to the similarity score, where more red implies a higher degree of
similarity.

Supplementary Figure S4 | Cardiomyocyte cell-cycle gene expression tended to
be greater in ARP1, MIP28, and ARP1MIP28 hearts from P30-P42 than in CTL
hearts on P28. Sparse analysis was conducted for the expression of genes
associated with the G01, G1S, S, G2M, M, and MG1 phases of the cell cycle,
and the proportion of cardiomyocytes with high levels of expression was calculated
for each experimental group and time point.

Supplementary Figure S5 | Schematic representation of the autoencoder model.
The autoencoder constructed for the analyses presented here consisted of an input
layer, a central embedded layer, and an output layer. The input layer included 14,753
genes and was alternately encoded into a 10-dimensional embedded layer and then
decoded into a synthetic output layer comprising the same genes present in the
input layer. The accuracy of the embedded layer was optimized by minimizing the
indicated function.

Supplementary Figure S6 | Cell localization in each sample group’s
cardiomyocyte. Here, the umap plots for all cells were drawn, and the cells were
colored based on: whether the cell belongs to a specific sample group (red) or the
cell belongs to other sample groups. The order, from left to right and from top to
bottom, is: CTL-P28, ARP1-P28, MIP28-P30, ARP1-MIP28-P30, MIP28-P35,
ARP1-MIP28-P35, MIP28-P42, ARP1-MIP28-P42, MIP28-P56, ARP1-MIP28-
P56, Fetal, CTL-P1, CTL-P56, and ARP1-P56.

Supplementary Figure S7 | Algorithm-quality analysis confirming that the
parameter combination (minpts = 30, epsilon = 0.3) in UMAP toolkit is robust.
(A) The 30th-neartest-distance plot show that the “elbow” point, which determine
the optimal epsilon parameter (according to [92]) is approximately 0.3. (B) The
preserved cluster landscape draw by slightly changing the parameters: minpts = 25,
30, 35, and epsilon = 0.25, 0.3, 0.35.

Supplementary Figure S8 | Summary of Immunofluorescence image processing.
(A) The staining images (red: GRK5, green: cardiac troponin cTnT) were represented
in red(R)/green(G)/blue(B) channel matrices. (B) Image segmentation was
performed on the blue channel, which divided the image into the background
(no cTnT, black) and foreground (with cTnT, white). (C) The red channel background
distribution was plotted to determine a background baseline. This distribution had
three scenarios. Top: near-zero distribution, the baseline (indicated by the dashed
line) = 0; middle: one distribution form, the baseline = average of red channel
background; bottom: the two or more distributions appeared, then the baseline =
average of the largest (most right) distribution. (D) the red channel (GRK5) was
adjusted by subtracting this channel from the background baseline.
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