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Graphical Abstract

(1) Single-cell transcriptomics analysis ofHGSOC samples reveals six distinct cell
types.
(2) Characterization of epithelial cell subclusters identifies novel markers for
HGSOC.
(3) Subclustering fibroblast cells suggests their functional heterogeneity.
(4) Our study also uncovers the JUN pathway and several ligand-receptor signals
as potential drivers for HGSOC.
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Abstract
Background:High-grade serous ovarian carcinoma (HGSOC) is the most com-
mon and aggressive histotype of epithelial ovarian cancer. The heterogeneity and
molecular basis of this disease remain incompletely understood.
Methods: To address this question, we have performed a single-cell transcrip-
tomics analysis of matched primary and metastatic HGSOC samples.
Results: A total of 13 571 cells are categorized into six distinct cell types, includ-
ing epithelial cells, fibroblast cells, T cells, B cells, macrophages, and endothe-
lial cells. A subset of aggressive epithelial cells with hyperproliferative and drug-
resistant potentials is identified. Several new markers that are highly expressed
in epithelial cells are characterized, and their roles in ovarian cancer cell growth
and migration are further confirmed. Dysregulation of multiple signaling path-
ways, including the translational machinery, is associated with ovarian cancer
metastasis through the trajectory analysis. Moreover, single-cell regulatory net-
work inference and clustering (SCENIC) analysis reveals the gene regulatory net-
works and suggests the JUN signaling pathway as a potential therapeutic target
for treatment of ovarian cancer, which is validated using the JUN/AP-1 inhibitor
T-5224. Finally, our study depicts the epithelial-fibroblast cell communication
atlas and identifies several important receptor-ligand complexes in ovarian can-
cer development.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics
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Conclusions: This study uncovers new molecular features and the potential
therapeutic target ofHGSOC,whichwould advance the understanding and treat-
ment of the disease.

KEYWORDS
chemoresistance, gene regulatory network, intercellular communication, metastasis, single-
cell RNA-seq

1 INTRODUCTION

High-grade serous ovarian carcinoma (HGSOC) is the
most aggressive gynecological malignancy and one of the
leading causes of cancer death in women worldwide.
Our knowledge about the molecular etiology and clini-
cal pathology of HGSOC is greatly advanced. Neverthe-
less, the overall prognosis of the disease has been barely
improved for decades.1 Primary debulking surgery fol-
lowed by chemotherapy has become the frontline treat-
ment for patients with HGSOC since the 1980s. However,
most patients die from the relapsed disease, because treat-
ment resistance eventually emerges in 80-90% of cases ini-
tially diagnosed with the late stage andmetastatic spread.2
Thus, thoroughly elucidating the mechanisms underlying
ovarian cancer metastasis and refractoriness remains an
active area of investigation, which would be of significant
benefit to the development of therapeutic approaches and
survival of patients.
Mutation of the tumor suppressor gene TP53 is both

an early event and an invariant feature of HGSOC that
is characterized by extreme chromosomal instability.3,4
While wild-type p53 protein is regarded as “a guardian
of the genome” by inducing cell cycle arrest and DNA
repair,5,6 p53 mutation not only abrogates the wild-type
activity of p53, but also endowsmutant p53 with oncogenic
function, namely “gain of function,” to promote metasta-
sis and chemoresistance of ovarian cancer.7–9 BesidesTP53
gene mutation, deficiency of the homologous recombina-
tion (HR) DNA repair pathway is found in approximately
50% of HGSOCs,3,4 which arises mainly frommutations in
BRCA1 and BRCA210 and, in some cases, from other com-
ponents of the HR pathway.11 The common amplifications
encoding CCNE1, MYC, and MECOM are present in more
than 20% of tumors, which empowers cancer progres-
sion and provides potential therapeutic targets.3,4 In addi-
tion, gene expression profiling identified four molecular
subtypes of HGSOC, termed “immunoreactive,” “differen-
tiated,” “proliferative,” and “mesenchymal,”3,12 although
this stratification has not been integrated into the clinical
setting. However, bulk tumors were analyzed and charac-
terized in the above studies, while HGSOCs display intra-

tumoral heterogeneity that profoundly undermines our
knowledge about the pathogenesis and influences the ther-
apeutic outcomes of the disease.
Recently, single-cell RNA sequencing (seq) of ∼46 000

cells from 25 ascites, two primary HGSOC tumors,
and three ascites-derived xenografts reported significant
variability in composition and functional programs of
HGSOC and suggested that inhibition of the JAK/STAT
pathway may have potent antitumor activity.13 Another
study describing single-cell RNA profiles of six inde-
pendent tumors also revealed widespread heterogene-
ity of HGSOC.14 Characterization of the heterogeneous
signatures within HGSOC will certainly lead to better
understanding of mechanisms for ovarian carcinogenesis,
metastasis, and drug resistance.
In this study, we analyzed the transcriptomic profiles

of 13 571 cells from four paired primary and metastatic
HGSOC samples. Our data unveiled a group of aggressive
epithelial cells that are potentially hyperproliferative and
resistant to chemotherapies. Also, several new tumor cell
markers that are critical for ovarian cancer cell growth and
migration were identified and experimentally validated.
The trajectory analysis revealed the gene expression sig-
natures during cancer progression, providing the first clue
to the role of the translational machinery in ovarian can-
cer metastasis at the single-cell layer. Moreover, dissection
of the gene regulatory networks suggested the JUN sig-
naling pathway as a potential therapeutic target for treat-
ment of ovarian cancer, which was validated using the
JUN/AP-1 inhibitor T-5224. Lastly, our study revealed that
the epithelial-fibroblast cell communication is critical for
ovarian cancer development.

2 RESULTS

2.1 Single-cell expression atlas unveils
diverse cell types in HGSOC

To explore intratumoral heterogeneity in HGSOC, we gen-
erated single-cell transcriptome profiles of four matched
pair samples of primary and metastatic carcinomas from
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F IGURE 1 Diverse cell types in HGSOC delineated by single-cell transcriptomics. (A) Workflow depicting sample collection, single cell
preparation, cDNA library construction, and RNA-sEquation (B) The t-SNE plot displays main cell types in HGSOC. Cell number and
percentage of each cell type are summarized in the right panel. (C) The heatmap displays the top 10 SDE genes in each cell type. (D)
Expression levels of specific markers for each cell type are plotted onto the t-SNE map. Color key from gray to red indicates relative expression
levels from low to high. (E) The heatmap displays large-scale CNVs of epithelial cells. The red color represents high CNV level and blue
represents low CNV level. (F) Violin plots show CNV levels among six cell types

two patients using nanowells to capture single cells
through the BD Rhapsody platform (Figure 1A). After ini-
tial quality control, single-cell transcriptomes in a total
of 13 571 cells were acquired for further analysis (Table
S1). By analyzing variably expressed genes across all cells,
we identified six major cell types in nine clusters of cells,
including epithelial cells (cluster 1), fibroblast cells (clus-

ters 2, 4, 6, and 9), T cells (cluster 3), macrophages (clus-
ter 5), endothelial cells (cluster 7), and B cells (clus-
ter 8), by t-distributed stochastic neighbor embedding (t-
SNE) (Figures 1B, S1A-S1C). We then performed differ-
ential gene expression analysis to define the identities of
these cell clusters. Each cluster was compared to the other
pooled clusters to find unique gene signatures (Table S2)
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and the top 10 significantly differentially expressed (SDE)
genes of each cluster are represented in the heatmap as
shown in Figure 1C. The well-known cell type markers
were used to characterize the cell clusters. The epithe-
lial markers EPCAM, KRT5, KRT8, and KRT18 were sig-
nificantly enriched in the cluster of epithelial cells (Fig-
ures 1D and S1D). PAX8 and KRT7, the markers for the
fallopian tube epithelium (FTE),15 were also selectively
expressed in this cluster (Figure S1D), which suggests the
FTE origin for HGSOC. The stromal markers, such as
DCN, COL6A1, and COL6A2, were highly expressed in
the fibroblast cell clusters (Figure S1E). Importantly, this
group of fibroblast cells expressed the markers for cancer-
associated fibroblasts (CAFs) including ACTA2 (encoding
α-SMA), PDGFRA, PDGFRB, DDR2, FAP, and CAV1 (Fig-
ures 1D and S1E). The immune cellswere divided into three
distinct clusters, including T lymphocytes, B lymphocytes,
andmacrophages (Figure 1B). Specificmarkerswere found
in each cluster, such as CD3E, CD8A, and CD2 in the T
cell cluster (Figures 1D and S1F), MS4A1 (also known as
CD20), CD79A and BANK1 in the B cell cluster (Figures 1D
and S1I), and AIF1, CD14 and CD163 in the macrophage
cluster (Figures 1D and S1G). A small amount of endothe-
lial cells were characterized by their selective expression of
markers PECAM1, CDH5, and CD34 (Figures 1D and S1H).
Therefore, these results reveal that HGSOC is highly het-
erogeneous and composed of diverse cell types.

2.2 Chromosomal copy number
variations identify malignant cells in
HGSOC

A plethora of evidence has shown that all tumors con-
sist of transformed malignant cells and nontransformed
cells, and the interaction of these two classes of cells cre-
ates the tumor microenvironment.16 Thus, we sought to
definemalignant cells among all the six cell types by calcu-
lating large-scale copy number variations (CNVs) inferred
from single-cell gene expression profiles using an approach
described previously.17 As expected, the epithelial cell clus-
ter showed dramatically higher CNV level compared with
other cell types (Figure 1E, F), which is also reflected by the
t-SNE plot (Figure S1J). Interestingly, no significant differ-
ence of the CNV levels was observed between the primary
and metastatic tumors (Figure S1K).

2.3 Distinct molecular features of
epithelial cells in HGSOC

To depict their intrinsic portraits, these malignant epithe-
lial cells were further divided into five subclusters (epithe-
lial cluster EC1 to EC5) by the SNN algorithm and t-SNE

analysis (Figures 2A and S2A, S2B). Epithelial cells from
the primary and metastatic tumors were separately dis-
tributed base on their gene expression signatures (Figure
S2C), although they did not show any significant differ-
ences in the CNV levels (Figure S2D, S2E). The unique
gene signatures and the top 10 SDE genes of each epithe-
lial subgroup were delineated (Table S3 and Figure 2B).
Additionally, the Gene Set Variation Analysis (GSVA) was
performed to functionally annotate the epithelial sub-
groups (Figure 2C). EC1 showed gene enrichment for gly-
colysis/gluconeogenesis, citrate cycle, extracellular matrix
(ECM)-receptor interaction, and focal adhesion, partially
sharing a subset of SDE geneswith EC5 (Figure 2C, D). The
SDE genes of EC2 were involved in the cytokine-cytokine
receptor interaction, and the neuroactive-related pathways
including neuroactive ligand-receptor interaction, caffeine
metabolism, taste transduction, and olfactory transduction
(Figures 2C, E and S2F). It has been shown that FTE con-
sists mainly of secretory and ciliated epithelial cell types.18
EC2 was found to strongly express the well-documented
ciliated epithelial markers FOXJ1 and PIGR,19,20 and sev-
eral newly identified FTE ciliated markers, such as CAPS
and GDF1515 (Figures 2E and S2F), suggesting that this
group of malignant epithelial cells may originate from cil-
iated cells, while other subgroups are likely to originate
from secretory cells, of FTE. EC3 exhibited higher expres-
sion of genes associated with nucleotide and amino acid
metabolism. Also, genes involved in the Fanconi anemia
pathway and ABC transporters were elevated in EC3, sug-
gesting a potential drug-resistant feature of this subclus-
ter (Figure 2C, F). EC4 was characterized by the immune
response-related pathways and the complement and coag-
ulation cascades (Figures 2C, G and S2G). The major his-
tocompatibility complex (MHC) class II genes including
HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DRA andHLA-
DRB1, as well as the MHC II complex-associated CD74,
were also found to be overexpressed in EC4 (Figures 2G
and S2G), indicating this group of cells are active in antigen
processing and presentation for immune response. Inter-
estingly, EC5, a small proportion (8.9 %) of epithelial cells,
displayed significant and remarkable enrichment for path-
ways associated with cell cycle, DNA replication, DNA
repair, and drug metabolism (Figures 2C, H and S2H).
The proliferation marker MKI67 and chemoresistance-
associated genes, such as FEN1, NEK2, and TOP2A, were
highly overexpressed in this group of cells. In addition, sev-
eral homologous recombination-associated genes, such as
BRIP1, BARD1, RAD51, MND1, TTK, RAD51AP1, BIRC5,
RPA1, and HJURP, were also activated (Figures 2H and
S2H), suggesting that these cells may be resistant to PARP
inhibitors. Furthermore, we defined the cell cycle stages of
epithelial cells according to expression of the S and G2/M
phase markers21 across all five subclusters, as cell cycle
progression is a major indicator of proliferative potential
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F IGURE 2 Epithelial cell subtypes reveal distinct molecular features. (A) The t-SNE plot displays five subclusters of epithelial cells. (B)
The heatmap shows the top 10 SDE genes in each subset of epithelial cells. (C) GSVA analysis indicates enriched pathways of each subset of
epithelial cells. (D-H) Violin plots show the expression of selected markers in each subset of epithelial cells. (I) The t-SNE plot shows
epithelial cell subsets in different phases of the cell cycle
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of cancer cells. Consistently, we found that EC5 is mainly
composed of S-phase and G2/M-phase cancer cells (Fig-
ure 2I), again indicating that these cells are hyperprolif-
erative. Altogether, epithelial cells of HGSOC are catego-
rized into five subclusters with distinct functions based on
single-cell gene expression profiles, andEC5may represent
the most aggressive epithelial subtype with enhanced pro-
liferative potential and therapeutic resistance.
We also performed immunohistochemistry (IHC) stain-

ing of the EC2 markers MUC5B and FOXD1 and the EC4
markers PAEP and HP in primary and metastatic ovar-
ian tumor samples. Remarkably, we showed that MUC5B-
or FOXD1-positive cells are specifically present in pri-
mary sites (Figure S2I), while PAEP- or HP-positive cells
are exclusively in metastatic sites (Figure S2J). These
observations are in line with the former result (Fig-
ure S2C), and clearly demonstrate the differences of
the cell populations in primary and metastatic ovarian
tumors.
Intriguingly, a number of novel markers that may con-

tribute to ovarian cancer development have been identi-
fied among the top 25 SDE genes of each subcluster (Fig-
ure S2K and Table S3). Particularly, we examined if ANPEP
(from EC2), CASP14 and CLEC2B (from EC3), CADM3
and NRBP2 (from EC4), and SPC25, ESCO2, and GTSE1
(from EC5) are responsible for ovarian cancer cell prolif-
eration by the cell viability assay. As shown in Figure 3A,
knockdown of each of these genes significantly reduced
proliferation of ovarian cancer OVCA420 cells. To elu-
cidate if the eight genes are specific to ovarian cancer,
we have performed a set of cell viability assays using the
colorectal and breast cancer cell lines, RKO and MCF-
7 (Figure S3A, S3B). Knocking down some of the genes
indeed inhibited colorectal or breast cancer cell growth,
although the inhibitory effects were mild compared to
those in ovarian cancer cells, suggesting that these genes
are associated with growth of different cancers, but might
be more specific to ovarian cancer. Furthermore, the tran-
swell assay was performed to evaluate if these genes are
required for the invasive potential of ovarian cancer cells.
Remarkably, depletion of any of the eight genes signifi-
cantly repressed migration of OVCA420 cells (Figure 3B).
Except for ANPEP, also known as CD13, that was shown
to be associated with ovarian cancer growth,22 the func-
tions of all the other markers during development of ovar-
ian cancer are largely unknown and worthwhile for future
investigation.

2.4 Dynamic gene expression profiles
during progression of HGSOC

Pseudo-time reconstruction was performed to stratify the
tumor cells during cancer development. Distribution of

epithelial cells from two patients was shown in the tra-
jectory that can predict the de novo tumor progression
path (Figure 4A, E). Along the trajectory, the percentage
of metastatic epithelial cells increased in the late-stage cell
population (Figure 4B, F), validating the reliability of the
trajectory analysis. Our data showed dynamic gene expres-
sion profiles during themalignant evolution of tumor cells
(Figure 4C, G; Tables S4 and S5). The Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses of these dynamically expressed genes indicated
that cell cycle and division, DNA repair, inflammatory,
andmetabolic pathways, particularly, glycolysis and citrate
cycle, are remarkably dysregulated during ovarian cancer
progression (Figure 4D, H). Of note, the expression of sev-
eral positive regulators of cell cycle progression was found
to be increased or fluctuated, while the negative regula-
tors were downregulated, suggesting dynamic expression
of cell cycle genes is critical for fine-tuning the cell cycle
during ovarian cancer progression (Figure 4D,H). Interest-
ingly, we noticed that a number of ribosome biogenesis and
translation-related genes are upregulated during tumor
cell evolution (Figure 4D). Although enlarged nucleoli
and increased ribosome biogenesis are features of some
cancers, our results at the single-cell level revealed that
enhancement of ribosome biogenesis and protein transla-
tion is associated with metastasis of ovarian cancer, which
is consistent with previous studies in bulk tumors.23,24
Indeed, higher expression of some ribosome biogenesis-
associated genes was significantly correlated with poor
prognosis in ovarian cancer (Figure 4I). These results also
suggested that the nucleolar stress-based targeting ther-
apy, such as Actinomycin D and CX-5461,25,26 might be
potentially effective in treating metastatic ovarian cancer.
On the contrary, multiple signaling pathways were found
to be downregulated during ovarian cancer progression.
For instance, the expression of the ciliated epithelial mark-
ers, including FOXJ1, PIGR, CAPS, and GDF15, declined
during the process of metastasis (Figure 4D), although
they were overexpressed in EC2 that mainly consisted of
primary tumor cells (Figures 2E and S2C, S2F). Consis-
tently, underexpression of these markers predicted worse
prognosis in ovarian cancer (Figure 4J). Also, we found
that the progression of ovarian cancer is accompanied by
reduced expression of the immune response-related genes
(Figure 4H), whose downregulation is significantly asso-
ciated with unfavorable prognosis (Figure 4K). Moreover,
the prognostic value of all the SDE genes was evaluated,
and the results revealed that most of these genes are signif-
icantly correlated with cancer progression and may serve
as prognostic markers (Tables S4 and S5). Together, these
results demonstrate dynamic gene expression profiling
during ovarian cancer development, and suggest that dys-
regulation of several critical pathways is associated with
prognosis of ovarian cancer.
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F IGURE 3 Functional validation of the epithelial markers. (A) Ablation of the newly identified marker genes, including ANPEP,
CASP14, CLEC2B, CADM3, NRBP2, SPC25, ESCO2, and GTSE1, inhibits proliferation of ovarian cancer OVCA420 cells. (B) Ablation of any of
the newly identified marker genes inhibits migration of ovarian cancer OVCA420 cells. *P < .05 by two-tailed t-test
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F IGURE 4 Gene expression profiles during metastasis of HGSOC. (A) The developmental pseudo-time of epithelial cells (from patient
1) inferred by analysis with Monocle2. Color key from dark to bright indicates cancer progression from the early to the late stage. (B) Primary
and metastatic tumor cells are shown in the developmental trajectory. (C) The heatmap displays the SDE genes during progression or
metastasis of ovarian cancer. Color key from blue to red indicates relative expression levels from low to high. (D) The GO and KEGG analyses
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2.5 Characterization of fibroblasts in
HGSOC

Fibroblasts have been considered to be a highly abundant
and heterogeneous population of cells in tumors. Fibrob-
last cells from HGSOC were reanalyzed and categorized
into five distinct subclusters (fibroblast cluster FC1 to FC5)
by t-SNE analysis (Figures 5A and S4A-S4C). The unique
gene signatures and the top 10 SDE genes associated with
each fibroblast subcluster were delineated (Table S6 and
Figure 5B). The GSVA analysis was performed to func-
tionally annotate the fibroblast subsets (Figure 5C). FC1
showed gene enrichment primarily for lipid and steroid
metabolism (Figure 5C), as evidenced by several marker
genes, such as ACSM3, STAR, SCD5, and others (Fig-
ure 5D). FC2 exhibited preference for genes involved in glu-
cose metabolism, including glycolysis/gluconeogenesis,
citrate cycle, and oxidative phosphorylation, and multi-
ple DNA repair pathways (Figure 5C), which was vali-
dated by several representative markers as shown in Fig-
ure 5E. Interestingly, FC2 displayed the highest correla-
tion with epithelial cells (Figure S4D) and showed specific
expression of tumor epithelial markers KRT8, KRT10, and
KRT18 (Figure S4E), as well as the EMT markers SNAI1
and SNAI2 (Figure S4E), suggesting that FC2 may have
the tumor-like aggressive potential. The observations indi-
cate that these cells may represent the aggressive popu-
lation of fibroblasts and may confer tumor resistance to
anticancer chemotherapies. Highly expressed genes in FC3
were enriched in the immune response-related pathways,
as they are mainly associated with immune or infectious
diseases (Figure 5C, F). Although FC4 showed higher level
of genes involved in diverse pathways, such as taste and
olfactory transduction, steroid hormone biosynthesis, ABC
transporters, etc. (Figure 5C),we particularly observed dra-
matic upregulation of substantial vascular genes, such as
MCAM, RGS5, ADGRF5, and ANGPT2, in this subclus-
ter (Figure 5G), suggesting an essential role of this group
of fibroblast cells in vascular development and angiogen-
esis. FC5 was found to highly express genes enriched in
different lipid metabolic pathways and the extracellular
matrix signaling (Figures 5C). Additionally, a subset of
genes associated with development, tissue regeneration,
and stem-like features were also elevated in the subclus-
ter (Figure 5H). Finally, we performed IHC staining of the

FC1 marker STAR and the FC5 marker MFAP5 in primary
and metastatic ovarian tumor samples. As expected, STAR
expressed at a higher level in primary fibroblasts com-
pared to metastatic fibroblasts (Figure S4F), while MFAP5
exhibited a higher expression level in metastatic fibrob-
lasts than primary fibroblasts (Figure S4G), which was
consistent with the result illustrated in Figure S4C. These
results unveil the heterogeneity of HGSOC fibroblasts that
can support ovarian cancer development by promoting
chemoresistance, immune-suppression, angiogenesis, and
tumor cell migration.

2.6 Gene regulatory networks identify
the JUN pathway as a driver for HGSOC

Transcription factors (TFs) and their downstream-
regulated genes constitute a complex and intermingled
network of gene regulation, which determines and main-
tains cell identity. Single-cell regulatory network inference
and clustering (SCENIC) analysis was performed to infer
the activity of regulons (a TF together with its target genes
comprise a regulon)27 for the primary and metastatic cell
types (Figure 6A, B), epithelial cell clusters (Figure 6C,
D), and fibroblast cell clusters (Figure 6E, F), respectively.
The regulon modules based on the regulon crosstalk
(regulon-to-regulon correlation) were determined by the
Connection Specificity Index (CSI) that ranks the regulon
significance and mitigates the effects of nonspecific
interactions. The analysis of the primary and metastatic
groups led to 65 regulons across six regulon modules
(Figure 6A). Comparison of the activity of the six modules
revealed that the module 1, including the TFs FOSL1,
EGR1, JUN, JUNB, ATF2, and KLF13, displays the highest
regulation activity in both primary and metastatic cell
types (Figure 6B). The analysis of the epithelial clusters
revealed that the module 2 has the highest regulation
activity among the five regulon modules (Figure 6C, D).
Along with the TFs NF-κB, C/EBPβ, ETS2, and HIF1A that
have been well-documented as tumor promoters, JUN
and its 17 downstream target genes were also categorized
in this highly active module (Figure 6C). Consistently,
the JUN signaling pathway was also identified as one
of the most active regulons across the fibroblast clusters
(Figure 6E, F). These results suggested that JUN may act

reveals enriched functions and pathways of the SDE genes. (E) The developmental pseudo-time of epithelial cells (from patient 2) inferred by
analysis with Monocle2. Color key from dark to bright indicates cancer progression from the early to the late stage. (F) Primary and metastatic
tumor cells are shown in the developmental trajectory. (G) The heatmap displays the SDE genes during progression or metastasis of ovarian
cancer. Color key from blue to red indicates relative expression levels from low to high. (H) The GO and KEGG analyses reveals enriched
functions and pathways of the SDE genes. (I) Overexpression of ribosome biogenesis-associated genes predicts poor prognosis in ovarian
cancer. (J) Underexpression of ciliated markers predicts poor prognosis in ovarian cancer. (K) Underexpression of immune response-related
genes predicts poor prognosis in ovarian cancer
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F IGURE 5 Distinct functions of fibroblast cell subtypes. (A) The t-SNE plot displays five subclusters of fibroblast cells. (B) The heatmap
shows the top 10 SDE genes in each subset of fibroblast cells. (C) GSVA analysis indicates enriched pathways of each subset of fibroblast cells.
(D-H) Violin plots show the expression of selected markers in each subset of fibroblast cells

as an essential driver for ovarian carcinogenesis. JUN is a
component of the activator protein-1 (AP-1) complex by
forming homodimers or heterodimers with members of
JUN, FOS, or ATF family.28 Interestingly, JUNB, FOSL1,
ATF2, and ATF4, which can form heterodimers with JUN,
were also identified in these active modules (Figure 6A,
C, E). These findings prompted us to test if inhibition
of the AP-1/JUN signaling pathway suppresses ovarian
cancer cell growth. We then tested the idea by using the
JUN/AP-1 inhibitor T-5224 that was originally developed
for arthritis treatment by selectively impeding transcrip-

tional activity of c-Jun and c-Fos.29 The results indicated
that treatment of OVCA420 and ES-2 cells with T-5224
significantly inhibits their survival and proliferation in
a dose-dependent fashion (Figure 6G, H). Interestingly,
T-5224 also has a growth-inhibitory effect on normal
ovarian epithelial IOSE cells, though to a less extent com-
pared to ovarian cancer cells (Figure S5). This is probably
because c-Jun is also moderately expressed in ovary,30–32
and associated with differentiation of the normal ovarian
surface epithelium.33 Furthermore, we found that T-5224
can effectively and dose-dependently suppress ovarian
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F IGURE 6 Gene regulatory networks in HGSOC. (A, B) The CSI matrix highlights regulon-to-regulon correlation across all cell types
from primary and metastatic tumors. Hierarchical clustering of regulons identifies six distinct regulon modules (A). The heatmap shows the
regulation activity of each module (B). Color key from blue to yellow indicates the levels of activity from low to high. (C, D) The CSI matrix
highlights regulon-to-regulon correlation across five epithelial cell subtypes. Hierarchical clustering of regulons identifies five distinct
regulon modules (C). The heatmap shows the regulation activity of each module (D). Color key from blue to yellow indicates the levels of
activity from low to high. (E, F) The CSI matrix highlights regulon-to-regulon correlation across five fibroblast cell subtypes. Hierarchical
clustering of regulons identifies four distinct regulon modules (E). The heatmap shows the regulation activity of each module (F). Color key
from blue to yellow indicates the levels of activity from low to high. (G, H) The JUN/AP-1 inhibitor T-5224 suppresses proliferation of ovarian
cancer cell lines OVCA420 (G) and ES-2 (H). (I, J) The JUN/AP-1 inhibitor T-5224 suppresses migration of ovarian cancer cell lines OVCA420
(I) and ES-2 (J). *P < .05 by two-tailed t-test
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cancer cell migration by the transwell assay (Figure 6I, J).
It should be noted that the inhibition of cell migration by
200 μM T-5224 might be partially because of reduced cell
survival. Together, our results suggest the JUN signaling
pathway as a potential therapeutic target for ovarian
cancer.

2.7 Intercellular epithelial-fibroblast
cell communication in HGSOC

Since the crosstalk between tumor and fibroblast cells
in the tumor microenvironment is critically involved in
cancer progression,34 we characterized the intercellular
receptor-ligand pairs andmolecular interactions of the two
cell types by the CellPhoneDB algorithm.35 Interestingly,
we found that the frequency of receptor-ligand interactions
between epithelial and fibroblast cells varies markedly
when comparing the primary with the metastatic tumors
(Figure 7A, B). Specifically, our analyses further identified
diverse receptor-ligand interplays in both patients. Tumor
cells expressed relatively high levels of EGFR, FGFR1,
and FGFR2, while their corresponding ligands, such as
COPA, GRN, HBEGF, FGF2, FGF7, and FGF18, were
widely expressed in fibroblast cells (Figure 7C, E). Notably,
the FGFR2-TIMP1 and HLA-DRB1-OGN complexes were
likely themost active receptor-ligand interactions between
epithelial and fibroblast cells in both patients. The EGFR-
COPA/GRN/HBEGF pairs were expressed at higher levels
in themetastatic tumors than those in the primary tumors,
suggesting that these cell-to-cell connections might be
important for ovarian cancer metastasis. As expected,
althoughmany receptor-ligand pairswere identical in both
patients, some of them did show different patterns of
interaction between distinct cell subclusters (Figure 7C,
E), revealing intertumoral heterogeneity between the two
patients. While fibroblast cells, like tumor cells, expressed
EGFR and FGFR1, they also exclusively expressed higher
levels of the receptors LRP1, PDGFRs, and PLXND1 in
both patients (Figure 7D, F). Correspondingly, epithelial
cells expressed their ligands, LGALS9/MDK, PDGFs, and
SEMAs (semaphorins) (Figure 7D, F). These results indi-
cate that the crosstalk between tumor cells and fibroblast
cells via diverse receptor-ligand signals may exert a pro-
found effect on ovarian cancer development and metasta-
sis.

3 DISCUSSION

HGSOC is characterized by abdominal metastasis, high
risk of relapse, and chemoresistance. Single-cell RNA-
seq opens an avenue to better understand the funda-

mental mechanisms of this disease. In line with previ-
ous studies,13,14 our results revealed vast intratumoral het-
erogeneity of HGSOC by identifying diverse cell types,
including epithelial cells, fibroblast cells, T cells, B cells,
macrophage, and endothelial cells. Through further clus-
tering of the epithelial cells, we particularly identified
a subset of epithelial cells (EC5) highly expressing the
proliferation marker Ki-67, and substantial genes associ-
ated with DNA repair pathways and chemoresistance (Fig-
ure 2C, H and S2H). PARP inhibition is a targeted strategy
to induce synthetic lethality in tumors, such as HGSOC,
with BRCA1/2 mutations or homologous recombination
deficiency (HRD).36,37 Intriguingly, these cells also overex-
pressed amyriad of homologous recombination-associated
genes, strongly suggesting that they are active in the
homologous recombination pathway leading to resistance
to PARP inhibition. Previous studies indicate that epithe-
lial ovarian cancer can originate from the FTE that is
mainly composed of secretory and ciliated epithelial cell
types.18 We found that the EC2 cluster of epithelial cells is
enriched for ciliated epithelial markers, including FOXJ1,
PIGR, CAPS, and GDF15 (Figures 2E and S2F). This obser-
vation verifies the FTE as a common origin of ovarian can-
cer and, as a complement to the previous knowledge,15
indicates that HGSOC tumor cells also preserve some cili-
ated cell characteristics of its progenitor lineage. Addition-
ally, our study identified a number of novel markers, such
as CASP14, CLEC2B, CADM3, NRBP2, SPC25, ESCO2, and
GTSE1, which are upregulated in a cluster-specific man-
ner (Figure S2K) and critical for ovarian cancer cell pro-
liferation and migration (Figure 3A, B). In line with pre-
vious studies,38 we also showed that malignant epithe-
lial cells are clustered largely according to their tumor
of origin because of the profound intertumoral hetero-
geneity. Hence, analysis of more tumor samples would
be helpful to unveil the vast diversity of mechanisms
and, as thus, to individualized treatment of this cancer.
Fibroblasts are themost abundant population in the tumor
microenvironment critical for tumor angiogenesis, metas-
tasis, and drug resistance.34 Indeed, our data unveiledmul-
tiple sub-populations of fibroblasts that are involved in the
above processes. Importantly, a subset of possible malig-
nant fibroblast cells (FC2) was identified, as they highly
expressed genes enriched in themetabolic pathways, DNA
replication and repair, and the platinum drug resistance
pathways (Figure 5C, E). Consistently, we found that these
fibroblast cells are closely correlated with epithelial cells
(Figure S4D), as they highly expressed the epithelial mark-
ers, such as KRT8, KRT10, and KRT18 (Figure S4E). Alto-
gether, our results provide new evidence by single-cell
transcriptomics for the phenomenon that a small portion
of epithelial and fibroblast cells are critical for ovarian can-
cer development and drug resistance.
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To dissect the molecular features during progression of
ovarian cancer, we conducted the trajectory analysis of
the single-cell RNA-seq data, which allows us to iden-
tify the gene expression profiles along the developmental
path of cancer. The pseudo-time reconstructionmodel was
proved to be robust and reliable, as the tumor cells dis-
tributed along the progression trajectory in the primary-
to-metastasis pattern (Figure 4A, B, E, F). We found that
the signaling pathways including cell cycle and division,
DNA repair, inflammation, and energy metabolism that
are highly associated with tumor growth, metastasis, and
drug resistance are markedly dysregulated during ovar-
ian cancer progression (Figure 4D, H). Importantly, global
upregulation of the ribosome biogenesis and translation-
related genes were found to be accompanied by cancer
metastasis (Figure 4D; Tables S4 and S5), which is in line
with a recent work that showed the first link of riboso-
mal proteins to cancer metastasis in a metastatic mouse
model of breast cancer.39 Ribosome biogenesis is a tightly
organized multistep process, including synthesis and pro-
cessing of ribosomal RNAs (rRNAs), production of riboso-
mal proteins (RPs), and consequent assembly and matura-
tion of the ribosome.40 Given that the tumor cells require
highly motivated ribosome biogenesis and protein synthe-
sis to boost their own growth and proliferation, target-
ing the translational machinery has emerged as a potent
therapeutic approach for cancer treatment.25 It has been
well-established that perturbation of any single step of
ribosome biogenesis by, for example, Actinomycin D41,42

or CX-5461,26,43 triggers a drastic cytotoxic effect, namely
ribosomal stress or nucleolar stress, unleashing tumor sup-
pressive signals involving activation of the tumor sup-
pressors p53 and TAp73,44–46 and inhibition of the c-Myc
pathway.25,47,48 Together with these findings, our results
strongly suggest that inhibition of ribosome biogenesis
could be a promising strategy for treatment of metastatic
HGSOC.
Gene regulatory networks can be reflected by the reg-

ulation of a number of TFs and their downstream target
genes, which are themolecular basis underlying cell states.
To determine the robust gene regulatory networks and the
potential critical TFs that drive HGSOC, we conducted
SCENIC analysis of the single-cell RNA-seq data. Three
most active regulon modules that may be important for
cell state maintenance and cancer development were iden-
tified by comparing the primary and metastatic cell types

(Figure 6A, B), five epithelial cell clusters (Figure 6C, D),
and five fibroblast cell clusters (Figure 6E, F), respectively.
Intriguingly, only the JUN signaling pathway was consis-
tently found in all these three active modules, suggesting
this TF as a potential driver for ovarian cancer. JUN is a
multifaceted TF as a component of the transcription fac-
tor AP-1 complexwhose function is associatedwith embry-
onic development, tissue-specific development, such as
neuron, blood and bone, T cell differentiation and activa-
tion, and cancer cell survival and proliferation.49 Of clini-
cal importance, we validated that inhibition of JUN dras-
tically suppresses ovarian cancer cell growth and migra-
tion by employing the JUN/AP-1 inhibitor T-5224 that
was used for treatment of inflammatory disorders (Fig-
ure 6G-J),29 providing the first line of evidence of JUN
as a potential druggable target in the treatment of ovar-
ian cancer. Nevertheless, tumor xenograft models foster-
ing a heterogeneous tumor microenvironment may be
required for testing the antitumor effect of JUN inhibition,
as the JUN activity is also elevated in tumor fibroblasts
(Figure 6E, F).
By dissecting the signaling network of epithelial-

fibroblast cell communication, we identified several
receptor-ligand complexes that should be critically impor-
tant for ovarian cancer development (Figure 7C-F). For
instance, the FGFR-FGF signals were shown to promote
cancer cell growth, differentiation, and motility,50 while
the PDGFR-PDGF signals are particularly essential for
mesenchymal cell proliferation, survival, and migration.51
The ACKR2-CCL2 interaction was observed in our study,
which is in line with previous work showing that ACKR2-
CCL2 is associatedwith lymphatic vascular development52
and melanoma and breast cancer metastasis.53 Interest-
ingly, a number of underappreciated receptor-ligand pairs
were also uncovered, such as HLA-DRB1-OGN, SLC7A1-
CSF1, LRP1-LGALS9, and LRP1-MDK.
In conclusion, this study demonstrates the intratumoral

heterogeneity of HGSOC by single-cell RNA transcrip-
tomics analysis. Several novel markers, prognostic fac-
tors, and the potential therapeutic target have been iden-
tified and validated. Additionally, our data have depicted
the gene regulatory signaling networks and the epithelial-
fibroblast cell communication in HGSOC. Thus, our study
provides a new angle on understanding HGSOC and the
JUN pathway as a potential new target for future develop-
ment of anti-HGSOC therapy.

F IGURE 7 Intercellular epithelial-fibroblast cell communication in HGSOC. (A, B) Detailed view of ligand-receptor connections
between each epithelial cell subcluster and five fibroblast cell subclusters. Each color arrowline indicates the ligands to receptors from one
cell population to another. The arrowline thickness is proportional to the number of ligand-receptor pairs. (C, E) Overview of selected
interactions of receptors expressed by epithelial cells and ligands expressed by fibroblast cells. (D, F) Overview of selected interactions of
receptors expressed by fibroblast cells and ligands expressed by epithelial cells
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4 MATERIALS ANDMETHODS

4.1 Preparation of single-cell
suspensions from HGSOC samples

Two HGSOC patients aged 53 and 57, who were treatment-
naïve before surgery, donated two pairs of matched pri-
mary and metastatic tumor samples. Specifically, metas-
tases were collected from omentum. This study was
approved by the Ethics Committee of Fudan University
Shanghai Cancer Center. Informed consent was obtained
from the patients. More than ten thousand cells were cap-
tured through a limited dilution approach. The surface of
supersaturated beads was filled with oligonucleotide bar-
codes, thus a bead could be paired with a cell in a microw-
ell. Once cells lysed in the cell lysis buffer, the beads were
hybridized by polyadenylated RNA molecules, which was
then used for reverse transcription. Each cDNAwas tagged
with special cell label fragment during cDNA synthesis to
indicate the cell of origin. Library for scRNA-seq were gen-
erated using BD Rhapsody platform and sequenced on the
Illumina Novaseq 6000.

4.2 Single-cell RNA seq data
preprocessing

After sequencing, the analysis pipeline takes the FASTQ
files, a reference genome file and a transcriptome anno-
tation file for sequence alignment. The pipeline gener-
ates a UMI count matrix which will be processed using
Seurat54 software (version 3.1.1) for further analysis. The
low-quality cells and likely multiple microdroplets were
removed. To do so, we filtered out cells with UMI/gene
numbers outside of the mean value ±2 fold of SD. The
low-quality cells containing>50% of the counts frommito-
chondrial genes were discarded. After the quality control,
13 571 single cells in total remained and were subjected to
the following analyses. The normalization of the library
size was carried out using the NormalizeData function54
to obtain the normalized counts. Specifically, gene expres-
sion measurements for every single cell were LogNormal-
ize normalized, multiplied by a scaling factor (10 000 by
default), and the results were logtransformed.
Highly expressed genes across single cells were iden-

tified by the previously described method.55 The most
variable genes were selected employing the FindVariable-
Genes function in Seurat.54 To remove the batch effects
in single-cell RNA seq data, the mutual nearest neighbor
(MNN) was performed as described.56 The shared nearest
neighbor (SNN) algorithm was used for clustering, which
is the default algorithm for clustering in the pipeline of

Seurat. It includes two steps corresponding to the two func-
tions. First, Findneighbors was used to calculate the K-
nearest neighbors (KNN) of each cell and construct the
SNN graph image. Second, Findclusters was used to find
cell clusters according to the SNN graph results (so it is
called graph-based clustering). All parameters used were
default parameters. Cells were reclustered separately with-
out engaging all the other cell types. After clustered based
on their gene expression patterns employing the FindClus-
ters function, cells were then visualizedwith theRunTSNE
function in Seurat.54 Weused the FindAllMarkers function
(test.use = bimod) in Seurat to identify marker genes of
each cluster.54 For a given cluster, positive markers were
identified by the FindAllMarkers function compared with
all other cells.
The FindMarkers function in Seurat was employed

to identify the differentially expressed genes (DEGs).54
The signification threshold was set as P < .05 and
|log2foldchange| > 0.58. DEG’s GO and KEGG analyses
were conducted respectively using R based on the hyper-
geometric distribution. GSVA converted the expression
matrix into a path enrichment score matrix, and the differ-
ent pathways were then obtained through the lmFit analy-
sis of the limma package.

4.3 CNV analysis

We used the inferCNV software38 to estimate initial CNVs
for each region. CNV was calculated based on the expres-
sion level for each cell with a cutoff of 0.1. Genes were
sorted according to their genomic location, and a moving
average of gene expression was determined by the range
of 101 genes. By subtracting the mean, the expression was
centered to zero. Epithelial cells were considered as malig-
nant cells, while all the other cells were regarded as normal
cells. Finally, the de-noising was conducted to produce the
CNV profiles.

4.4 Pseudo-time analysis

The developmental pseudo-time was determined with
the Monocle2 package.57 The importCDS function was
employed to convert the raw counts from Seurat object
into CellDataSet object. The differentialGeneTest func-
tion was employed to select ordering genes (qval < 0.01).
The dimensional reduction clustering analysis was car-
ried out by using the reduceDimension function, and the
orderCells function was then used for trajectory inference.
Changes of gene expressionwere tracked over pseudo-time
by employing the plot_genes_in_pseudotime function.
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4.5 SCENIC analysis

The SCENIC analysis was conducted utilizing the motifs
database for RcisTarget and GRNboost. The softwares of
SCENIC27 version 1.1.2.2, AUCell 1.4.1, and RcisTarget 1.2.1
were used. In detail, overrepresented transcription factor
(TF) binding motifs were identified through the gene list
in RcisTarget package. The AUCell package was used to
score the activity of each group of regulons in every sin-
gle cell. The scFunctions (https://github.com/FloWuenne/
scFunctions/) package was used to calculate the connec-
tion specificity index (CSI) for all the regulons.

4.6 Cell-cell communication analysis

The CellPhoneDB (v2.0)35 was employed to identify corre-
lated ligand-receptor pairs from single-cell RNA-seq data
as described previously.58 If 10% of the cells within a spe-
cific cell cluster had nonzero read counts for the gene
encoding a ligand or a receptor, the ligand or the recep-
tor was considered as “expressed.” To constitute the net-
works of cell-to-cell communication, we linked any two
cell types where the ligandwas expressed in the former cell
type and the receptor in the latter. Igraph and Circlize soft-
wares were employed to show the networks of cell-to-cell
communication.

4.7 Cell culture, transient transfection,
and reagents

Human ovarian cancer cell lines, OVCA420 and ES-2,
used in the study were commercially purchased from
American Type Culture Collection. The protocol and
condition of cell culture were described previously.59
siRNA transfection was conducted using Hieff TransTM
Liposomal transfection reagent (Yeasen, Shanghai, China)
as described.59 The JUN/AP-1 inhibitor T-5224 was
purchased from MedChemExpress (Shanghai, China).
The siRNA sequences used were as follows, siANPEP-1:
GTAAAGCGTGGAATCGTTATT, siANPEP-2: GGAAC-
CTGGTGACCATAGATT, siCASP14-1: CGGCAGCT-
GAGATTCGAAATT, siCASP14-2: GACATATCTTG-
GAACTTCTTT, siCLEC2B-1: GAATTTTCTTAGGCG-
GTATTT, siCLEC2B-2: ATACAACTGTTCCACTCAATT,
siCADM3-1: AGATCCACCTCTCAACGCATT, siCADM3-
2: CACTGGTTATAAATCTTCATT, siNRBP2-1: AGA-
GATTTCTATGCCCTCATT, siNRBP2-2: CAGTGCAAC-
CTGGAGAGAATT, siSPC25: GATCGACTTGGACTA-
GAAATT, siESCO2-1: CAAAATCGAGTGATCTATATT,
siESCO2-2: GTATCAACCAAAGTATAGATT, siGTSE1-1:

GGAATTAAATAATCCGGTTTT, and siGTSE1-2: CGGC-
CTCTGTCAAACATCATT.

4.8 Cell viability assay

Cell viability was determined by the Cell Counting Kit-
8 (Dojindo Molecular Technologies, Japan) as described
previously.59 Cells transfected with siRNAs or treated with
T-5224 were seeded in 96-well plates. WST-8 at a final con-
centration of ten percent was added to cell cultures, and
cell viability was assessed by measuring the absorbance at
450 nm every 24 hours for 4-5 days.

4.9 Transwell invasion assay

The cell invasive potential was evaluated using transwell
chambers as described previously.60 The upper chamber
contained cell cultures in serum-free medium, while the
lower chambers were filled with the complete medium.
Cells were treated with T-5224 or DMSO for 48 hours at
37 °C. The migratory cells reaching to the lower surface of
the chamber were fixed and stained in 0.1% crystal violet.
The number of invaded cells was quantified by the image
J software.

4.10 Immunohistochemistry (IHC)
staining

The tumor tissues were collected from Fudan Univer-
sity Shanghai Cancer Center. The IHC staining was
carried out with the following antibodies, anti-PAEP
antibody (18187-1-AP, 1:200 dilution; Proteintech, Rose-
mont, USA), anti-MUC5B antibody (28118-1-AP, 1:400
dilution; Proteintech, Rosemont, USA), anti-Haptoglobin
antibody (16665-AP, 1:200 dilution; Proteintech, Rose-
mont, USA), anti-STAR antibody (12225-1-AP, 1:200
dilution; Proteintech, Rosemont, USA), anti-MFAP5
antibody (15727-1-AP, 1:800 dilution; Proteintech, Rose-
mont, USA), and anti-FOXD1 antibody (A20240, 1:200
dilution; ABclonal, Wuhan,China). The immunos-
taining results were examined by two researchers
independently.

4.11 TCGA database

Survival of ovarian cancer patients was evaluated by the
Kaplan-Meier method utilizing the KM plotter database
(kmplot.com/analysis/).61

https://github.com/FloWuenne/scFunctions/
https://github.com/FloWuenne/scFunctions/
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4.12 Statistics

The in vitro experimentswere carried out in biological trip-
licate. The Student’s t-test was performed to determine the
differences between two groups or more than two groups.
* indicates P < .05, which is considered statistically signif-
icant. Quantitative data are presented as mean ± SD.
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