
 International Journal of 

Molecular Sciences

Review

The Role of Neutrophilic Granulocytes in Philadelphia
Chromosome Negative Myeloproliferative Neoplasms

Dominik Kiem 1,2, Sandro Wagner 1,2, Teresa Magnes 1,2 , Alexander Egle 1,2,3, Richard Greil 1,2,3

and Thomas Melchardt 1,2,3,*

����������
�������

Citation: Kiem, D.; Wagner, S.;

Magnes, T.; Egle, A.; Greil, R.;

Melchardt, T. The Role of

Neutrophilic Granulocytes in

Philadelphia Chromosome Negative

Myeloproliferative Neoplasms. Int. J.

Mol. Sci. 2021, 22, 9555. https://

doi.org/10.3390/ijms22179555

Academic Editor: Alain Couvineau

Received: 9 July 2021

Accepted: 30 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology,
Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria;
d.kiem@salk.at (D.K.); sa.wagner@salk.at (S.W.); t.magnes@salk.at (T.M.); a.egle@salk.at (A.E.);
r.greil@salk.at (R.G.)

2 Cancer Cluster Salzburg, 5020 Salzburg, Austria
3 Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer

Research (SCRI-LIMCR), 5020 Salzburg, Austria
* Correspondence: t.melchardt@salk.at; Tel.: +43-57255-25801

Abstract: Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are composed
of polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The
clinical picture is determined by constitutional symptoms and complications, including arterial and
venous thromboembolic or hemorrhagic events. MPNs are characterized by mutations in JAK2,
MPL, or CALR, with additional mutations leading to an expansion of myeloid cell lineages and,
in PMF, to marrow fibrosis and cytopenias. Chronic inflammation impacting the initiation and
expansion of disease in a major way has been described. Neutrophilic granulocytes play a major role
in the pathogenesis of thromboembolic events via the secretion of inflammatory markers, as well
as via interaction with thrombocytes and the endothelium. In this review, we discuss the molecular
biology underlying myeloproliferative neoplasms and point out the central role of leukocytosis and,
specifically, neutrophilic granulocytes in this group of disorders.

Keywords: myeloproliferative neoplasms; chronic inflammation; neutrophilic granulocytes

1. Introduction

Myeloproliferative neoplasms (MPN) form a distinct group of hematologic malig-
nancies. According to the current WHO classification, the spectrum of MPNs include:
chronic myeloid leukemia (CML); chronic neutrophilic leukemia (CNL); polycythemia vera
(PV); primary myelofibrosis (PMF); essential thrombocythemia (ET); chronic eosinophilic
leukemia not otherwise specified (CEL, NOS); and otherwise unclassifiable MPNs (MPN-
U) [1]. In this review, we will focus strictly on the three most frequent Philadelphia
chromosome (Ph) negative disease entities: PV, ET, and PMF, which are mostly associated
with mutations in either the Janus kinase 2 (JAK2) gene, the myelproliferative leukemia
virus oncogene (MPL), or the calreticulin (CALR) gene [2,3]. These three entities share
common features in their biology and pathophysiology and lead to partially overlapping
clinical presentations. Since CML arises from a chromosome 9:22 translocation, commonly
referred to as the Philadelphia chromosome, which therefore displays a significantly differ-
ent biology compared to PV, ET, and PMF, we omitted the further discussion of that entity
in our review [4].

2. Clinical Picture and Course of Disease

MPNs are characterized by clonal proliferation, which will be described in Section 3.
Although the diagnosis of the exact MPN subtype is based on different criteria regarding
peripheral blood cell counts and bone marrow biopsy, clinical symptoms may be very simi-
lar. These can include constitutional symptoms (most prominently fatigue and weight loss),
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bone pain, itching, mood alterations, and abdominal discomfort or pain, as splenomegaly
is often present at initial diagnosis [5]. Aquagenic pruritus and erythromelalgia are typi-
cal symptoms associated with PV and may precede disease onset for years [6,7]. MPNs
represent a biological continuum, and transformation between entities is possible. JAK2-
positive PV and ET arguably represent the same disease entity with diagnosis determined
by allelic frequency and other genetic factors, which will be described in more depth in
Section 3 [8]. Although PMF manifests in previously healthy individuals, the transition
from PV or ET to post-PV or -ET myelofibrosis (MF) may eventually occur (10-year risk
4.9–6% in PV and 0.8–4.9% in ET) [9,10]. Additionally, at an advanced stage of disease,
the risk of transformation into acute myeloid leukemia (AML) increases [11]. Bleeding
and thromboembolic events are common complications that have been associated with
leukocytosis; treatment generally aims to reduce the rate of thrombo-hemorrhagic events
and clinical symptoms [9,12–14]. The risk of transformation into AML does not seem to be
lowered through the use of currently available treatment options and depends mainly on
the subtype of disease: The 10-year transformation risk is less than 1% in ET, around 3%
in PV, and 10–20% in PMF [9,15]. In the following, we will further elucidate the roles of
neutrophilic granulocytes in MPNs.

3. Molecular Biology of Ph-Negative Myeloproliferative Neoplasms and
Predictive/Prognostic Implications

MPNs are known to originate from a single, mutated hematopoietic stem cell (HSC),
termed the MPN stem cell [3,16]. A hallmark of MPNs is the activation of the (MPL-
)JAK-STAT pathway [17,18]. Apart from thrombopoiesis, the MPL-signaling axis plays a
key-role in HSC renewal [19]. Additionally, JAK2 is involved in erythropoiesis downstream
of the EPO receptor, as well as in granulopoiesis downstream of granulocyte colony-
stimulating factor (G-CSF) receptor (Figure 1). The activating mutation JAK2V617F [20–23]
is found in almost all patients with PV (with a JAK2 exon 12 deletion in a small fraction
of patients) [24] and around 60% of patients with ET or PMF [25,26]. In ET and PMF,
MPL mutations are found in 3–10%: most prominent are the mutations MPLW515L and
MPLW515K [26], while CALR exon 9 frameshift mutations are detected in 20–25% of
patients [26,27]. The latter indirectly leads to a constitutive activation of MPL [28]. In
around 8% of patients, no alteration in the aforementioned genes can be found and are
called “triple-negative” patients [8].

It is important to note that JAK2V617F mutations with a low allelic fraction can be
found in a significant number of healthy subjects, therefore, are a common cause for clonal
hematopoiesis of indeterminate potential (CHIP) [29] that may precede clinical disease
onset by many years [30]. Arguably, however, it confers an elevated risk for portal and
mesenteric vein thrombosis in patients not (yet) fulfilling the diagnostic criteria for any
MPN [31,32]. The introduction of a JAK2V617F mutation into an HSC resulted in myeloid-
lineage biased HSC leading to erythro- and thrombocytosis in a mouse model but was
also associated with increased DNA damage and low disease penetration [33]. JAK2V617F
mutations have, however, also been detected within lymphoid cell lineages, implying
that malignant stem cells maintain their ability for lymphoid differentiation [34,35]. Even
though the JAK2V617F mutation is thought to be a driver of disease in affected patients,
commonly used mouse models have not shown clonal expansion at the HSC level [36].
Therefore, additional mutations at the HSC level are necessary before MPNs can develop.
This may involve regulators of the JAK-STAT pathway or gene expression via epigenetic
modifications or transcription factor mutations [37]. As reviewed by several authors,
additional mutations might affect cytokine signaling, splicing machinery, transcription
factors, and epigenetic modifiers [38–40]. Apparently, germline predisposition might also
influence disease penetrance as well as phenotype of MPN. Additionally, it is not only the
presence of additional somatic mutations, but also the order in which they are acquired
that determines the development of disease [41,42]. The disease phenotype is also in part
determined by the allelic frequency. For JAK2V617F, the allelic burden seems to be lowest
in ET and highest in MF; similarly, for CALR, the allelic burden is higher in MF than
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ET [43–45]. Several genetic factors carry prognostic implications: A worse prognosis in
PV is associated with mutations in ASXL1, SRSF2, and IDH2; in ET, with mutations in
SH2B3, SF3B1, U2AF1, TP53, IDH2, and EZH2 [46]. Examples for genes associated with
poor prognosis in MF include ASXL-1, SRF2, U2AF1-Q157, TP53, or Ras [8,35,47].
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Figure 1. Schematic overview of hallmark mutations in MPN. JAK2 lies downstream of the EPO receptor, the thrombopoietin
receptor (MPL), and the G-CSF receptor. The activation of JAK2 by a JAK2V617F or a JAK2 exon 12 mutations, therefore,
enhances signaling downstream of pathways that would normally be activated by the growth factors for erythropoiesis,
thrombopoiesis, or granulopoiesis. An activating mutation in MPL leads to increased signaling through the thrombopoietin
(TPO)-thrombopoietin receptor-(MPL)-axis. Similarly, a mutation in the chaperone protein CALR leads to a constitutive
activation of MPL upon binding of CALR to MPL in the endoplasmic reticulum (ER).

Molecular alterations on the HSC level are the underlying cause of all subtypes of MPN
and can be carried across all steps of granulopoiesis, i.e., in common myeloid progenitors,
granulocyte monocyte progenitors, promyelocytes, myelocytes, metamyelocytes, and,
finally, mature neutrophils.

4. Inflammation and Neutrophilic Granulocytes in MPN

In recent years, several studies pointed out the importance of inflammation and
neutrophils in the initiation and promotion of MPN [41,48–52]. This includes the expansion
of JAK2V617F mutated HSCs driven by secretion of proinflammatory cytokines by stromal
cells of the bone marrow [52]. Longhitano et al. proposed a role for the inflammasome
in MPN [53]. For several inflammatory markers, a positive impact on MPN stem cells
was found. Tumor necrosis factor-alpha (TNF-alpha) has been shown to be elevated as a
result of JAK2V617F mutation and assisted in the expansion of mutant clones, while having
a negative effect on the non-mutant HSC [54]. From a murine model, and subsequently
from human bone marrow gathered from patients, IL-33 has been identified to induce
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colony formation on the HSC level and to lead to prolonged survival of JAK2V617F-
positive cell lines [55]. In an in vitro study, the expansion of erythroid precursors seemed
to be dependent on IL-11 and hepatocyte growth factor (HGF), even in the presence of
a JAK2V617F mutation [56]. Similarly, inflammatory processes may further support the
malignant clones even after shutting down JAK2 signaling; JAK2V617F-positive cells have
been reported to be protected against JAK2 inhibition by IL-6, CXCL10, and fibroblast
growth factor (FGF) [57].

The transcription factor NF-E2 is often found to be overexpressed in patients with
MPN [58], independently of JAK2 mutational status. As a mechanism, an increased binding
of RUNX-1 to the NF-E2 promotor has been described in neutrophils [59]. Increased levels
of NF-E2 in mouse models led to leuko-and thrombocytosis [60]. NF-E2 is also induced by
IL-1beta, mainly found in PMF and ET [53], and is shown to induce MF and fibrotic tissue
formation in vitro [61], as well as to be secreted by JAK2V617F-positive HSC in animal
models [62]. Conversely, NF-E2 induces IL-8 [63], which is often elevated in patients
with MPN [64,65]. Apart from altering megakaryopoiesis [65], IL-8 has been described
as contributing to stem cell mobilization and to neutrophilia [66], as well as stimulating
growth of the erythroid lineage [67]. Additionally, granulocytes in MF have been described
as a major source of IL-8 themselves [68]. As summarized by Longhitano et al., elevation of
many other cytokines, growth factors, and metalloproteases can be found [53]. Importantly,
however, in PMF, prognostic values for IL-8, IL-2R, IL-12, IL-15 [69], and CRP (which
is directly related to the JAK2V617F allele burden, [70,71]) levels, have been described.
Similarly, a correlation between CRP and JAK2V617F has been described in PV and ET [72].
Although cytokines may be produced by malignant clones, JAK-STAT activation does
also occur in non-malignant cells and causes them to further support the inflammatory
process [68]. YKL-40, a useful biomarker in many diseases with a proinflammatory state,
has also been found to be elevated in MPN. Moreover, it increases with disease progression
and transition to post-PV MF and correlates with neutrophils, platelets, CRP, LDH, and
the JAK2V617F allele burden [48,73,74]. Neutrophil gelatinase-associated lipocalin (NGAL,
also known as lipocalin-2), another useful marker in many inflammatory and malignant
diseases (esp. CML), has also been shown to be elevated in patients with PV and ET,
and to correlate with neutrophil levels [75,76]. Even higher levels of lipocalin-2 were
reported in patients with MF [77]. Experiments by two different groups independently
described secretion of NGAL in JAK2V617F-harboring cells, leading to a relative increase
in proliferation of malignant hematopoietic stem cells compared to non-mutant cells, as the
JAK2V617F mutation conferred resistance against NGAL-induced apoptosis [77,78]. NGAL
also contributes to bone marrow fibrosis by stimulating proliferation of stromal cells [77].
Table 1 summarizes different mediators of inflammation involved in MPN.
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Table 1. Overview of the roles of important inflammatory markers in MPN.

Inflammatory Cell/Organelle/Protein Role

Bone marrow stromal cells [52] Expansion of JAK2V617F mutant HSC

Inflammasome [53] Inflammation aiding disease progression

TNF-alpha [54] Expansion of JAK2V617F mutant HSC and suppression of
non-mutant HSC

IL-33 [55] Prolonged survival of JAK2V617F-positive cell lines

IL-11, HGF [56] Necessary for expansion of erythroid precursors harboring
JAK2V617F

IL-6, CXCL10, FGF [57] Protection of malignant clones against JAK2 inhibition

NF-E2 [60,63] Leuko- and thrombocytosis, increases IL-8

IL-8 [65–67] 0.75 Alteration of megakaryopoiesis, neutrophilia, erythrocytosis

CRP [70–72] Correlation with JAK2V617F allele burden in PV, ET,
PMFPrognostic marker in PMF

IL-8, IL-2R, IL-12, IL-15 [69] Prognostic markers in PMF

YKL-40 [48,73,74] Correlated with disease progression, transition to post-PV MF,
neutrophilia, thrombocytosis, CRP, LDH, JAK2V617 allele burden

Neutrophil gelatinase-associated lipocalin (NGAL) [75–77] Correlation with neutrophilia in PV, ET, MF

Leukocytosis, and especially an increase in leukocytosis, is a useful biomarker to
assess risk for thrombosis and bleeding in patients’ MPN [13,79,80]. Table 2 summarizes
critical areas of neutrophil involvement. Neutrophilic leukocytosis has been described as
marking the transition to high-risk post-PV MF and to be a negative predictive marker for
OS [81]. In the same study, increased granulocytic proliferation within the bone marrow
was seen. As reviewed by Falanga et al. in 2005, constant activation of neutrophils in PV
and ET leading to facilitated endothelial adhesion and aggregation with thrombocytes
is thought to contribute to thrombosis [82]. This is evidenced by the increased expres-
sion of CD11b/CD18 (a pattern recognition receptor important for adhesion as well as
phagocytosis) by neutrophils obtained from patients with ET and PV [83]. In a mouse
model, neutrophilia, and especially neutrophil activation, contributed to plaque formation
and accelerated atherosclerosis by adhesion and entry into the plaque [84]. Like other
inflammatory states, premature atherosclerosis is thought to occur [50]. As a side note,
respiratory burst was observed to be impaired in these models, implicating neutrophil
dysfunction [83,85]. Evidence obtained from in vitro experiments further suggests an
activation of beta-1 integrins by JAK2V617F, implying a role of the mutation in abnormal
endothelial–neutrophil interaction [86]. Subsequently, it was shown that venous embolism
and splenic sequestration of neutrophils in JAK2V617F-positive mice was prevented by
application of beta integrin neutralizing antibodies [87]. Additionally, the activation of
platelets by leukocytes, including neutrophils, is thought to contribute to platelet dysfunc-
tion and activation and may contribute to a prothrombotic state [88,89]. An increase in
platelet numbers in the absence of leukocytosis does not appear to elevate the risk for
thrombosis [90]. In the peripheral blood of patients across all MPN subtypes, an elevation
in leukocyte or neutrophil-platelet aggregates has been observed as an expression of their
interaction [91,92]. Thrombo-inflammation initiated by neutrophils has become a generally
accepted mechanism for thrombosis, not limited to MPN [93]. On a bone marrow level, a
model has been suggested, whereby megakaryocytic sequestration of neutrophilic (and
eosinophilic) granulocytes results in bone marrow fibrosis via activation of fibroblasts, thus
contributing to the pathogenesis of PMF [94]. This process is known as emperipolesis and
is a physiologic phenomenon, the significance of which is still poorly understood, which is
augmented in inflammatory states [95]. In the aforementioned study, abnormal P-selectin
expression was described to mediate neutrophil–megakaryocyte interaction, which led to
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a release of alpha granules and growth factors [94]. Another research group described a
significantly elevated percentage of neutrophil-containing megakaryocytes within the bone
marrow and spleen in a GATA-1 PMF mouse model [96]. Here, emperipolesis-mediated
degranulation as a mechanism for the induction of fibrosis was confirmed, and the authors
described an additional mechanism for fibrosis, whereby paraptosis and neutrophil degran-
ulation induce inflammation via TGF-beta [96]. Almost thirty years ago, a high percentage
of bone marrow specimens from patients with different MPN subtypes were reported to
show emperipolesis: 75% of patients with PV and 100% of patients with ET [97]. As 75% of
cases with reactive thrombocytosis also showed this, a correlation between emperipolesis
and thrombocytosis seems plausible [97]. In vitro experiments published in 2019 reported
the reliance on neutrophil beta-integrin (CD18) expression for emperipolesis [98]. As throm-
bopoietin alone was unable to increase emperipolesis, additional neutrophilic activation, as
there is during inflammation, was hypothesized to be necessary. Emperipolesis also seemed
to stimulate thrombopoiesis. Apart from this, the same study described the interesting
phenomenon of neutrophils transporting parts of their membrane onto megakaryocytes
and onto circulating platelets.

Table 2. Roles of neutrophilic granulocytes and leukocytes in MPN.

Major Mechanism Area of Involvement

Increased endothelial adhesion and accelerated
atherosclerosis [82,86] Arterial thrombosis

Increased NET formation [99] Thrombosis

Aggregation of thromboyctes with neutrophils [82] Thrombosis

Emperipolesis [94,96] Bone marrow fibrosis, thrombocytosis

In a mouse model, thrombosis was attributed to increased neutrophilic extracellular
trap (NET) formation and prevented by JAK-inhibitor treatment [99]. By the same research
group, the importance of JAK2V617F was underlined by a statistically significant asso-
ciation between healthy individuals carrying it as a CHIP and the occurrence of venous
thromboembolism. NETs have been studied in many inflammatory processes, including
infectious diseases, inflammatory states, and autoimmune disorders [100]. Although help-
ful for combating bacteria, predominantly harmful features have been attributed to NETs
in sterile inflammation, including promoting the occurrence of malignancies [101]. A role
in both arterial and venous thromboembolism in different conditions has been ascribed
to NETs [102]. Generally, they are formed by neutrophils upon the release of chromatin
together with components of their membrane and granules, which subsequently leads to
sequestration of erythrocytes and thrombocytes and activation of the coagulation cascade.
Despite the potential relevance of NET formation in MPN, the current literature is not
entirely clear on its role, as reviewed by Ferrer-Marín et al. [103]. Of the three studies
conducted on samples obtained from MPN patients, only one demonstrated increased NET
production by neutrophils [99,103–105]. An explanation for this discrepancy may lie in the
fact that JAK2 inhibitor treatment appears to downregulate NET formation, and several
patients of the two negative studies received treatment with JAK2 inhibitors [103].

The fact that neutrophilia in MPN is at least partially reflective of ongoing inflam-
mation is underlined by newer gene expression profiles obtained from individuals with
MPN [106]. Although similarities between neutrophilic activation in MPN and G-CSF stim-
ulation exist, an increased activation of inflammatory pathways in neutrophils obtained
from MPN patients, in comparison to metabolic pathways in G-CSF mobilized neutrophils
from healthy controls, was observed [106].
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5. Principles of Clinical Management and Conclusions
5.1. Phlebotomy and Cytoreductive Therapy

For ET and PV, the prevention of thromboembolic events is a major treatment goal [9].
Evidence supports the use of low-dose aspirin in all patients [107,108]. Aspirin has been
shown to decrease the percentage of circulating neutrophil–platelet complexes, thereby
reducing the reciprocal activation of these two cell types [91]. In PV, phlebotomy with a
hematocrit goal below 45% significantly reduces the risk for cardiovascular events [109].
Cytoreductive therapy (e.g., hydroxyurea) should be used in patients at higher risk [9].
These agents result in a decline of all cell lines, including neutrophilic granulocytes, and
might thereby indirectly reduce inflammation. Hydroxyurea may also be used in low-risk
PV or ET for aspirin-refractory patients [9]. Additionally, it may be used as treatment
of splenomegaly in MF [47]. Moreover, according to a study from 2010, 82% of patients
will experience a relief of constitutional symptoms [110]. Pancytopenia, however, may
be aggravated by the use of hydroxyurea. A selective reduction of platelets in patients
with ET can be achieved with anagrelide, which has been compared to hydroxyurea in
ET [111,112]. One randomized trial reported an increase in arterial but a decrease in venous
thromboembolic events, and an increased risk for fibrotic transformation for anagrelide
compared to hydroxyurea [111]. This implies the involvement of other cell lines in the
development of such complications, possibly leukocytes. A more recent clinical trial,
however, did not show significant differences in thrombo-hemorrhagic events between
patients treated with anagrelide versus hydroxyurea and met the primary endpoint of
anagrelide’s non-inferiority [112].

5.2. Interferon

Interferon alpha is another cytoreductive agent which has been shown to improve con-
stitutional symptoms and blood counts, as well as to decrease JAK2 allelic burden [113,114].
Although its exact mechanism of action is still subject to research, interferon alpha is
thought to preferentially induce cell death in malignant progenitors and has been believed
to lead to a depletion of malignant stem cells, as well as to exert an immunomodulatory
effect on several inflammatory cells [115]. Moreover, ropeginterferon alfa-2b (R-2b) is
approved independently of prior treatment with hydroxyurea [116]. The PROUD-PV and
CONTINUATION-PV phase III clinical trials reported the complete hematologic response
and the molecular remission to be higher for R-2b than for hydroxyurea after 36 months of
treatment [117]. In another clinical trial, significantly improved control of hematocrit with
addition of R-2b to phlebotomy was observed [118].

5.3. JAK Inhibitors

Therapeutic approaches to PV (in case of failure of other available therapies) and
PMF include JAK2 inhibitor treatment, most notably ruxolitinib, and, more recently, fedra-
tinib [119]. Importantly, they are effective irrespectively of the presence of a JAK2V617F
mutation. A significant reduction in constitutional symptoms was reported by the land-
mark clinical trials for ruxolitinib in PMF and PV, as well as a significant improvement of
splenomegaly and prolongation of OS in PMF and control of hematocrit in PV [120–123]. In
the COMFORT-I trial, 41.9% of MF patients treated with ruxolitinib experienced a reduction
in spleen volume of at least 35% (versus 0.7% in the placebo group) and a 45.9% reduction
in general symptoms (versus 5.3%) [120]. Similarly, the COMFORT-II trial reported a
spleen volume reduction of at least 35% in 28% of patients, compared to 0% of patients
receiving best available treatment, and the responses were ongoing during a long-term
follow up [123,124]. For PV, in the RESPONSE trial, 21% of ruxolitnib-treated patients
reached the primary end point (control of hematocrit and a spleen volume reduction of
35%), compared to only 1% of patients with the best available treatment. In the RESPONSE-
II trial, hematocrit control was achieved in 62% with ruxolitinib versus 19% with the best
available treatment [121,122]. Currently, the role of JAK inhibitors in the treatment of PV is
minor compared to its role in treating MF.
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Fedratinib has been approved in ruxolitinib-resistant MF after the phase II JAKARTA-
2 trial had reported a decrease in spleen volume by one third in 55% of ruxolitinib-
pretreated patients [125]. Additionally, a significant improval of symptoms was de-
scribed [126]. Whereas fedratinib is a very selective JAK2 inhibitor, ruxolitinib inhibits
JAK1 and JAK2 [127].

Two novel JAK inhibitors are currently under investigation: Pancratinib (a JAK2 and
FLT3 inhibitor) is effective in the reduction in spleen volume and symptoms in MF, and is
especially promising in the treatment of patients with baseline cytopenias, which is usually
a major limitation for treatment [128]. It has been shown to be more effective in comparison
to the best available treatment, including ruxolitinib, and was also effective in cases of a
low JAK2V617F allele burden [129,130].

Momelotinib, apart from being an JAK1/2 inhibitor, antagonizes the effects of hep-
cidin; therefore, it is thought to become useful in MF with transfusion-requiring anemia.
Although it decreased transfusion dependency and was non-inferior to ruxolitinib regard-
ing spleen volume reduction, greater symptom control was achieved with ruxolitinib in
a phase III trial [131]. For ruxolitinib-pretreated patients, momelotinib significantly de-
creased transfusion dependency and symptoms, but did not decrease spleen volume when
compared to the best available therapy [132].

Although JAK2 inhibitors provide alleviation of symptoms, their ability to induce
complete hematologic remission is limited, and complete molecular remission is not ob-
served [133]. Additionally, disease progression (i.e., transformation into MF and AML)
can occur despite therapy. As reviewed by Greenfield and colleagues, an explaination for
the clinical benefit of ruxolitinib may lie in the reduction in ongoing inflammation rather
than selective inhibition of the disease’s driver mutation, and it has even been described as
lacking antitumor activity [47,133]. Unsurprisingly, JAK inhibitors have therefore proven
to be effective in a variety of other (auto-)inflammatory conditions [47]. These include
hemophagocytic lymphohistiocytosis, which is characterized by overproduction of proin-
flammatory cytokines and hyperactivation of macrophages, as well as graft-versus-host
disease (GvHD) [134]. JAK signaling has been demonstrated to be important for T-cell
activation and proliferation in GvHD via the production of proinflammatory cytokines
and activation of neutrophilic granulocytes [135]. Clinical trials have reported encouraging
results for ruxolitinib in steroid-refractory patients with GvHD [135,136].

The clinical presentation of patients with MPN depends, apart from the stage of disease
and comorbidities, on the underlying molecular biology of the disease. We have discussed
how mutations in JAK2, MPL, and CALR influence the phenotype of disease and how
additional mutations influence the course of disease. An increase in leukocytosis, largely
determined by the levels of neutrophils, is a risk factor for the development of thrombotic
and hemorrhagic complications [13,79,80]. Mechanisms have been described, according
to which neutrophils cause thrombotic events via NET formation and via interactions
with endothelial cells and thrombocytes [82,86,99]. Chronic inflammation is understood to
impact the initiation and progression of disease in a major way, and neutrophils appear to
contribute to bone marrow fibrosis [96]. A further dissection of the complex interactions
that neutrophils are involved in is necessary in order to establish novel treatment strategies
as the currently available options do not specifically influence these processes.
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Abbreviations

AML acute myleoid leukemia
CALR calreticulin
CEL, NOS chronic eosinophilic leukemia not otherwise specified
CHIP clonal hematopoiesis of indetermined potential
CML chronic myeloid leukemia
CNL chronic neutrophilic leukemia
CRP C-reactive protein
GvHD Graft-versus-Host Disease
FGF Fibroblast growth factor
HSC hematopoietic stem cell
EPO erythropoietin
ER endoplasmic reticulum
ET essential thrombocythemia
HGF hepatocyte growth factor
JAK Janus kinase
LDH lactate dehydrogenase
MF myelofibrosis
MPN myeloproliferative neoplasms
MPL myeloproliferative leukemia virus oncogene/protein
NG neutrophilic granulocyte
NGAL neutrophil gelatinase-associated lipocalin
PMF primary myelofibrosis
PV polycythemia vera
OS overall survival
R-2b ropeginterferon alfa-2b
TPO thrombopoietin
TNF-alpha Tumor necrosis factor-alpha
YKL-40 Chitinase-3-like protein 1
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