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ABSTRACT
The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2b), which
hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6
are associated with a number of neurodegenerative disorders including neurodegeneration with
brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism,
collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al.
demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is
associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they
were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which
reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly
ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant
fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect
the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine
the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been
used to study some of the other genetic causes of NBIA, and here we also describe what is known
about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects
in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in
some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.
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Introduction

The PLA2G6 gene and its functions

Mutations in the PLA2G6 gene are associated with a
number of neurological disorders, including neurode-
generation with brain iron accumulation (NBIA) and
infantile neuroaxonal dystrophy (INAD).1,2,3 The
PLA2G6 gene encodes an 85-to 88-kDa group VIA
calcium-independent phospholipase A2 (iPLA2b),
which is a member of the PLA2 superfamily.4 This
enzyme is responsible for the selective hydrolysis of
the sn-2 ester bond of glycerophospholipids to release
free polyunsaturated fatty acids (PUFAs), usually
arachidonic acid, and lysophospholipids.5 PLA2G6 is
expressed throughout the mammalian brain and is
usually considered to reside in the cytosol.6 However

it is present in rabbit cardiac inner mitochondrial
membranes 7 and localization and translocation to
mitochondria have been demonstrated in rat insuli-
noma cells.8 It also exhibits variable subcellular locali-
zation to the nucleus, Golgi and endoplasmic
reticulum (ER) in mammalian cells and is found at
dendritic and axon terminals in primate brains.9,6 The
iPLA2b isoforms contain 8 N-terminal ankyrin
repeats, a serine lipase consensus sequence (GXSXG),
a caspase-3 cleavage site, a putative ATP-binding
domain, a bipartite nuclear localization signal
sequence, and a C-terminal calmodulin-binding
domain,10 in addition to its ability to form a signaling
complex with CamKIIb.11 iPLA2b plays an important
role in a number of cellular functions, including the
maintenance, repair and remodeling of phospholipid
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membranes via a cycle of deacylation and reacylation
in concert with other enzymes including lysophospho-
lipid acyltransferases. Specifically, it acts to deacylate
phospholipids to release fatty acids from peroxidized
phospholipids, with the replacement with new fatty
acids by acyltransferases.12,13,14,15,16 It is thus an
important mediator of membrane remodeling and
hence membrane homeostasis. The enzyme is also
important in a number of other cellular processes
such as signal transduction, cell proliferation and
apoptosis.10,17,18

The clinical syndromes associated with PLA2G6
mutations

As mentioned above, the PLA2G6 gene, at the
PARK14 locus, has been implicated in a number of
neurodegenerative disorders such as NBIA, INAD and
Karak syndrome, as well as early adult onset dystonia-
parkinsonism.1,19 Furthermore, PLA2G6 mutations
have more recently been associated with early onset
Parkinson disease, in addition to other neurological
conditions such as bipolar disorder20 and autism.21

Collectively these syndromes are referred to as
PLA2G6-associated neurodegeneration (PLAN).

PLA2G6 mutations have been identified in up to
92% of cases of INAD.2,3,22 INAD is characterized by
infantile onset of psychomotor regression with a rap-
idly progressive course. Infants develop symptoms
such as hypotonia, weakness and areflexia with pro-
gression to dementia, ataxia, optic atrophy and spas-
ticity. Death usually occurs before puberty.23,3 More
rarely, neuroaxonal dystrophy caused by PLA2G6
mutations can present later and patients can survive
into adulthood with slower disease progression. Such
cases are referred to as atypical neuroaxonal dystrophy
(ANAD).3,24 The neuroradiological hallmark of INAD
is the presence of cerebellar atrophy and cerebellar sig-
nal hyperintensity on T2-weighted magnetic reso-
nance (MR) imaging, although a case of INAD caused
by a PLA2G6 mutation with isolated cerebellar atro-
phy has been described.25 Iron accumulation within
the globus pallidus on T2-weighted MR imaging is
found in a significant proportion of patients.3,26,22

NBIA encompasses a genetically and phenotypi-
cally heterogeneous group of disorders with high basal
ganglia iron deposition. It is most commonly associ-
ated with mutations in the PANK2 gene, when it is
referred to as NBIA type I, as well as mutations in fatty

acid hydroxylase 2 (FA2H), coenzyme A synthase
(COASY), C9orf12, ferritin light chain and caerulo-
plasmin genes among others.27 PLA2G6 mutations are
found in approximately 20% of patients with NBIA
and are associated with onset earlier in childhood
than PLA2G6 mutation-negative cases. Neurological
deficits include ataxia, dystonia, dysarthria and neuro-
behavioral disturbances. The majority of cases have
cerebellar atrophy, in addition to brain iron accumula-
tion in the globus pallidus on neuroimaging.3

Paisan-Ruiz et al. first described homozygous
PLA2G6mutations in adult and childhood onset dysto-
nia-parkinsonism without brain iron deposition on
imaging.28 Moreover a new homozygous PLA2G6
mutation has recently been identified in an Italian fam-
ily causing adult-onset dystonia-parkinsonism.19 A
number of reports have also implicated PLA2G6 muta-
tions in early onset Parkinsonism, lacking additional
features such as supranuclear gaze palsy, dystonia and
dementia.29,30,31

The neuropathological hallmarks of PLAN

Axonal swellings known as spheroids and tubulovesic-
ular structures are often, but not invariably, seen in
the nervous system of patients with PLAN.1,2,3 They
are distributed widely throughout the peripheral and
central nervous systems and are thought to represent
membrane-rich inclusions including mitochondria,
lysosomal compartments, vacuoles and endoplasmic
reticulum, as well as ubiquitin and other proteins.32,33

In addition, progressive white matter disease consis-
tent with demyelination has also been described.2

Given the interesting link between PLA2G6 muta-
tions and parkinsonian disorders, it is not surprising
that the neuropathology observed in patients with
PLA2G6 mutations is similar to that seen in more
common forms of neurodegeneration, such as Parkin-
son and Alzheimer diseases. Indeed widespread Lewy
body pathology and tau accumulation was observed in
the post-mortem brains of patients with childhood
and adult-onset dystonia-parkinsonism.34 Tau and
Lewy body pathologies were also visualized in a
patient with INAD and compound heterozygous
PLA2G6 mutations, in addition to numerous axonal
spheroids and brain iron deposition.24 Moreover,
Gregory et al. described a patient with PLA2G6-posi-
tive ANAD with pathological features consistent with
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classic Lewy bodies, dystrophic neurites, as well as
neurofibrillary tangles.3

The mechanisms of pathogenesis of PLAN

The exact pathological mechanisms linking mutations
in PLA2G6 with neurodegeneration is not known.
However, insights from clinical data, cell and mouse
models suggest that it is loss of the normal iPLA2b
function that leads to abnormalities in lipid homeosta-
sis, resulting in the abnormal accumulation of cellular
and mitochondrial lipid membranes.35 Support for a
loss of function of iPLA2b enzymatic activity in caus-
ing PLAN came from a study on the recombinant
mutant and wild type iPLA2b proteins. This demon-
strated that PLA2G6 mutations associated with INAD
and NBIA were associated with a low level of phos-
pholipase activity, which was not seen with mutations
associated with the less severe dystonia-parkinsonism
phenotype. Engel et al. explained that the lack of a
change in catalytic activity in mutations linked to dys-
tonia-parkinsonism may be due to a mechanism not
detected by the in vitro assays used, such as modula-
tion of iPLA2b activity due to calmodulin binding.36

Additional support for a loss of function hypothesis
came from a Chinese study, which identified novel
PLA2G6 mutations that occurred in the heterozygous
state, and which were associated with a decrease in
phospholipid-hydrolyzing functions.37 Furthermore,
Gregory and colleagues noted a genotype-phenotype
correlation in patients with PLAN. Patients with
PLA2G6 mutations and INAD, that would be pre-
dicted to lead to an absence of protein production,
were associated with more severe clinical phenotypes,
than those with compound heterozygous missense
mutations and NBIA, characterized by a later age of
onset. In the latter cases the PLA2G6 mutations would
be predicted to lead to protein with some residual
enzyme activity.3

The lack of normal iPLAb2 activity has been
hypothesized to cause neurodegeneration through the
lack of the normal repair and remodeling of phospho-
lipid membranes. In particular, the inner mitochon-
drial membrane contains a high proportion of
cardiolipin, which is particularly susceptible to attack
by ROS due to the high content of fatty acids.38 This
in turn is predicted to lead to a downstream patho-
genic cascade of events involving release of cyto-
chrome c and apoptosis.39 In support of this, work in

a rodent cell line demonstrated that expression of
iPLA2b protects mitochondria, prevents loss of mito-
chondrial membrane potential and attenuates cyto-
chrome c release in response to stress-induced
apoptosis.8

A number of mouse models of INAD have been
developed, including complete genetic ablation of
Pla2g6 and expression of Pla2g6 pathogenic point
mutations.33,35,40 Such models have demonstrated an
in vivo disturbance in phospholipid metabolism,41

abnormal astrocyte calcium signaling,42 as well as
marked cerebellar atrophy.43 In addition, mice lacking
Pla2g6 showed conserved neuropathology with wide-
spread degeneration of axons and synapses, with
spheroid formation and accumulation of ubiqui-
tin.33,44 A detailed study of the pathology at the ultra-
structural level in Pla2g6 knockout mice revealed
significant mitochondrial and presynaptic membrane
degeneration.35

New insights into PLAN using novel models

In order to further study how mutations in PLA2G6
lead to neurodegeneration and mitochondrial mem-
brane degeneration, Kinghorn et al. used a Drosophila
model.45 Flies lacking the PLA2G6 ortholog, iPLA2-
VIA, displayed locomotor deficits, reduced lifespan
and organismal hypersensitivity to oxidative stress.
Examination of the brains of these flies revealed wide-
spread vacuolation representing neurodegeneration in
the fly. Ultrastructural examination also demonstrated
similar changes to those seen in Pla2g6 knockout
mice,35 with widespread mitochondrial membrane
degeneration and loss of the normal cristae structure
(Fig. 1).

In order to confirm that mitochondrial dysfunction
plays a role in the pathogenesis of PLAN, Kinghorn
et al. studied the mitochondrial respiratory chain
activity of the iPLA2-VIA knockout flies. They dem-
onstrated that at a very young age (2 d old), when no
ultrastructural mitochondrial abnormalities were seen
using electron microscopy, that there were significant
respiratory chain abnormalities in mitochondria from
iPLA2-VIA deficient flies compared with age-matched
controls. They also observed reduced mitochondrial
membrane potential in flies lacking iPLA2-VIA activ-
ity. In accordance with these mitochondrial abnormal-
ities, they showed that iPLA2-VIA knockout flies are
sensitive to oxidative stressors such as hydrogen
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peroxide (H2O2) and paraquat, and had significantly
reduced ATP levels when compared to control flies.

The role of mitochondrial lipid peroxidation in PLAN

As described above, oxidation of cardiolipin within
the inner mitochondrial membrane is predicted to be
an important toxic event in PLAN. Kinghorn et al.
therefore used the fly model of PLAN to address
whether indeed toxic oxidized cardiolipin is accumu-
lating within the mitochondrial membranes. To their
surprise they could not detect oxidized cardiolipin or
significant changes in cardiolipin composition in the
heads of iPLA2-VIA knockout flies. They did however
show that loss of iPLA2-VIA activity leads to signifi-
cant elevation in lipid peroxidation within the fly
brain. To further confirm their findings they demon-
strated increased lipid peroxidation levels in

fibroblasts taken from 2 patients with pathogenic
PLA2G6 mutations. Furthermore they showed that
this lipid peroxidation was largely derived from the
mitochondria within the cell, further supporting a role
for mitochondrial lipid peroxidation in PLAN. These
results are also supported by previous work in Pla2g6
knockout mice showing an age-dependent increase in
4-HNE immunostaining in the spinal cord, suggesting
increased lipid peroxidation.35

Although cardiolipin composition was not changed
in the iPLA2-VIA knockout flies, caution should be
taken when interpreting these results, as it may be
related to the nature of cardiolipin in Drosophila. Pal-
mitic acid is the main fatty acid side chain in Drosoph-
ila cardiolipin and is more resistant to oxidation than
linoleic acid, which is the predominant side chain in
mammalian cardiolipin. The possibility of redundancy
must also be considered, as there are a number of
enzymes involved in cardiolipin remodeling in the
fruit fly, such as tafazzin.46 Indeed Beck et al. demon-
strated changes in cardiolipin composition in pla2g6
knockout mice, but did not comment on oxidized car-
diolipin.35 Further study is therefore warranted to
establish precisely whether cardiolipin is the main oxi-
dized phospholipid in PLAN in humans.

The potential therapeutic benefits of reducing lipid
peroxidation in PLAN

Finally, given the presence of abnormally oxidized
mitochondrial membrane lipids in the fibroblast and
fly models of PLAN, Kinghorn et al. assessed the
potential beneficial effect of PUFAs. Natural PUFAs
such as linoleic acid undergo autoxidation by reactive
oxidative moieties (ROS), resulting in the production
of toxic reactive carbonyl species, which lead to DNA
damage and inflammation among other effects. How-
ever, deuterated PUFAs (D-PUFAs), such as deuter-
ated linoleic acid, arrest this autoxidation and are
therefore protective against oxidative stress. Accord-
ingly D-PUFAs protected yeast from lipid peroxida-
tion induced toxicity,47,48 and in vivo they successfully
reduced nigrostriatal degeneration in a Parkinson dis-
ease mouse model.49 In keeping with the ability to
reduce lipid peroxidation, deuterated linoleic acid was
able to partially rescue the locomotor abnormalities of
aged iPLA2-VIA knockout flies. Moreover, reduced
lipid peroxidation levels in response to treatment with
deuterated linoleic acid, was confirmed in 2 different

Figure 1. The brains of aged flies lacking the iPLA2-VIA gene
show degenerate mitochondria with abnormal cristae at the
ultrastructural level (lower panel), compared with age-matched
control (top panel).
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sets of PLA2G6 mutants fibroblasts. This reduction in
oxidized lipids was also associated with reversal of the
abnormal mitochondrial membrane potential, a
marker of mitochondrial health.

PANK2, CoASY and the role of CoA biosynthesis in
NBIA

There is mounting evidence that aberrant oxidation
of phospholipid membranes and subsequent mito-
chondrial dysfunction may play a role in a number
of neurodegenerative diseases, particularly in NBIA.
For example, in pathonate kinase-associated neuro-
degeneration (PKAN), mutations in the PANK2
gene also lead to oxidative damage and mitochon-
drial dysfunction.50,51 PANK2 is an enzyme local-
ized to mitochondria 52 and is involved in the

biosynthesis of coenzyme A (CoA),53 a crucial
cofactor in all organisms, which is involved in
diverse cellular processes including the citric acid
cycle, fatty acid, cholesterol and sphingolipid bio-
synthesis. The CoA biosynthetic pathway is con-
served across taxa from prokaryotes to eukaryotes
and utilizes ATP, panthonate (vitamin B5) and cys-
teine (Fig. 2). Loss of normal PANK2 activity leads
to accumulation of the substrates N-pantothenyl
cysteine and free cysteine. Cysteine in its free state
can oxidise lipids in the presence of iron and pro-
duce ROS, leading to widespread oxidative dam-
age.54 Indeed human fibroblasts harboring PANK2
mutations have increased levels of carbonylated
proteins and elevated expression of antioxidant
enzymes.50 Moreover a mouse model of PANK2
deficiency demonstrated reduced mitochondrial
membrane potential, swollen mitochondria at the
ultrastructural level, as well as defective mitochon-
drial respiration.51 Mitochondrial dysfunction and
elevated protein oxidation were also observed in a
Drosophila model of PKAN, in addition to
decreased levels of CoA and reduced longevity.55

Interestingly, supplementation with pantethine (a
dimeric form of pantothenic acid) was able to res-
cue the neurotoxic phenotypes in this Drosophila
model of PKAN, including the reduced CoA, mito-
chondrial abnormalities and neurodegeneration.56 It
was also shown in Drosophila and human cell
models of PKAN that defects in CoA biosynthesis
cause abnormalities in histone and tubulin acetyla-
tion, leading to an impaired response to DNA
damage and locomotor abnormalities.57

Furthermore, peroxidation of mitochondrial
membranes, due to a lack of normal membrane
homeostasis in PLAN, and possibly in PKAN, are
predicted to perturb mitochondrial membrane
structure, and alter ion permeability and surface
charge.58 This may in turn interfere with mem-
brane-fusion-reliant processes such as mitophagy.
Autophagy also decreases with age,59 and so the
autophagic clearance of damaged mitochondria
would also be predicted to decline with age, leading
to cellular build-up of abnormal mitochondria.
These defective organelles would then accumulate,
along with degenerated axon-terminal membranes
and other damaged organelles, as spheroids within
the nervous system, representing a common neuro-
pathological hallmark of NBIA.

Figure 2. De novo synthesis of CoA is a highly conserved path-
way that consists of 5 enzymatic steps: pathothenic acid phos-
phorylation, cysteine conjugation, decarboxylation, conjugation
to an adenosyl group and phosphorylation. In mammals the first
step is catalyzed by PANK2 and is the rate-limiting step, while
the last 2 steps are catalyzed by CoASY and involve 2 enzyme
activities: PPAT (40-phosphopantetheine adenylyltransferase) and
DPCK (dephospho-CoA kinase).
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CoASY encodes CoA synthase, which catalyzes the
final 2 steps of CoA biosynthesis, by coupling phos-
phopantetheine with ATP to generate dephosphoCoA,
followed by its subsequent phosphorylation to gener-
ate CoA 60 (Fig. 2). In humans there are 3 tissue-spe-
cific isoforms of CoASY: CoASY a, which is
ubiquitously expressed, the form predominantly
expressed in the brain, COASY b,61 and CoASY
gamma.62 The first 2 variants are localized in the mito-
chondrial matrix 63 or on the outer mitochondrial
membrane64 in contrast to PANK2, which is found in
the intramembrane space.65 Both homozygous and
compound heterozygous CoASY mutations have been
found in a small number of patients with NBIA, so-
called CoASY-protein associated neurodegeneration
(CoPAN).62 In vitro studies have shown that the mis-
sense mutation p.Arg499Cys in CoASY results in
reduced dephospho-CoA kinase (DPCK) activity, and
an 80% reduction in CoA production.62 Yeast deletion
strains expressing the Arg499 mutant DPCK displayed
reduced growth and the requirement for elevated lev-
els of pantothenate, the substrate for the CoA biosyn-
thetic pathway.62 Moreover, in keeping with the brain
iron accumulation, Arber et al. highlighted a possible
role of iron metabolism in CoPAN with the identifica-
tion, using a prediction tool, of an iron response ele-
ment in the CoASY gene.27

By virtue of the fact that CoASY operates in the
same pathway as PANK2 (Fig. 2), it is likely that
loss of its normal function causes NBIA through
mechanisms shared with PKAN. Certainly the pres-
ence of 2 mutations in the same biosynthetic path-
way supports the concept that abnormalities in
CoA synthesis may play a critical role in the patho-
genesis of NBIA. Indeed one study in Drosophila
dissected the entire CoA biosynthesis route, includ-
ing the study of PANK2 (dPANK/fmbl) and CoASY
(dPPAT-DPCK) mutants, and demonstrated that
this pathway is important in maintaining DNA and
cellular integrity. Both dPANK/fmbl and CoASY
mutants displayed locomotor abnormalities,
increased sensitivity to oxidative stress, altered lipid
homeostasis, in addition to impaired DNA integ-
rity. This work therefore demonstrated how defec-
tive CoA synthesis during development leads to
CNS abnormalities.55 Furthermore, in keeping with
the importance of CoA in many cellular metabolic
processes, one study on the serum of PKAN

patients demonstrated reduced lipid and cholesterol
biosynthesis, impaired bile acid metabolism, as well
as a reduction in the levels of certain sphingomy-
lein species, critical components of myelin.66

C19orf12 and mitochondrial membrane protein
associated neurodegeneration

Mutations in C19orf12 have recently been identified
in patients with NBIA,67,68 a variant referred to as
mitochondrial membrane protein associated neurode-
generation (MPAN). C19orf12 mutations have also
been implicated in a number of diseases, including
Behr syndrome,69 pallido-pyramidal syndrome,70 and
hereditary spastic paraplegia type 43 (SPG43).71 Com-
mon clinical features in patients with MPAN include
cognitive decline progressing to dementia, neuropsy-
chiatric abnormalities and motor neuronopathy.72

Two post-mortem neuropathological studies demon-
strated iron-containing deposits, axonal spheroids,
Lewy bodies, and hyperphosphorylated tau-positive
inclusions, suggesting links to more common neuro-
degenerative diseases.67,72 There was also loss of mye-
lin in the pyramidal tract of the spinal cord and the
optic nerve.67 The C19orf12 gene encodes a 17-kDa
protein of unknown function bound to the mitochon-
drial membrane,67,73 as well as in the ER and Mito-
chondrial Associated Membrane.73 It is expressed
predominantly in the brain, adipocytes and blood
cells, and analysis of transcriptomic profiles in
MPAN, and C190rf12 co-regulated genes, has
highlighted the role of mitochondrial dysfunction and
CoA metabolism.67 Molecular modeling predicts that
the C19orf12 protein has transmembrane helices with
glycine-zipper motifs and a soluble domain, with
mutations hypothesized to structurally destabilize the
transmembrane motif and the soluble domain.73

Moreover C19orf12 mutations may result in mislocali-
sation of the mutant protein within the mitochondrial
matrix.73 Furthermore, work in fibroblasts from a
C19orf12-positive patient demonstrated high mito-
chondrial calcium concentration and increased apo-
ptosis in response to H202, while mutant C19orf12
protein re-localized to the cytosol following exposure
to oxidative stress in cell lines.73 C19orf12 has also
been predicted to play a role in autophagy, and in sup-
port of this it was shown that overexpression of wild-
type C19orf12 resulted in conversion of the autophagy
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marker LC3 and reduction of p62, which usually accu-
mulates when autophagy is blocked. C19orf12
mutants on the other hand failed to promote autoph-
agy induction, with no change in basal levels of
autophagy in response to oxidative stress.73 Given the
possible autophagy defects in MPAN, as with PKAN
and PLAN, reduced mitophagy may lead to the accu-
mulation of damaged mitochondria within spheroids.
More studies are therefore required to further define
the mitochondrial defects, as well as the role of
autophagy in NBIA.

Finally, a Drosophila model of MPAN also exists
with knockdown of the 2 Drosophila orthologues of
C19orf12 resulting in reduced survival, age-dependent
locomotor phenotypes, as well neurodegeneration.74

This model is therefore well placed to begin unravel-
ing the underlying biochemical and physiological
abnormalities, including lipid metabolism and mito-
chondrial function.

FA2H and lipid dyhomeostasis

The fatty acid hydroxylase (FA2H) gene, previously
implicated in hereditary spastic paraplegia75 and a
progressive familial leukodystrophy,76 has more
recently been identified as a rare cause of NBIA,
known as FA2H-associated neurodegeneration
(FAHN).77 Affected individuals display a step-wise
deterioration with an onset typically later and pro-
gression slower than in NAD, as well as atypical
features including confluent white matter lesions
and brainstem atrophy.77 FA2H encodes fatty acid
2-hydroxylase, involved in the formation of 2-
hydroxy galactolipids, which is important in lipid
metabolism and required for normal myelin pro-
duction.78 Unlike in the other forms of NBIA dis-
cussed here, this enzyme is not known to be
localized to mitochondria, rather this membrane-
bound 43-kDa protein is found in the ER.79 The
neuropathology linking mutations in FA2H to
NBIA remain unclear, but a number of possible
pathogenic mechanisms have been hypothesized.
One speculation is that abnormal myelin integrity
caused by defects in FA2H function leads to abnor-
mal iron homeostasis as a result of the disruption
of the normal association between myelin and ferri-
tin.27,80 FA2H is also involved in the regulation of
cell cycle and apoptosis 81,82 and is predicted to
have widespread effects through its modulation of

ceramide generation, decreasing 2-hydroxyceramide
production.83 This in turn may lead to abnormali-
ties in the composition of the ceramide pool with
possible downstream effects on lipid turnover.
Interestingly PANK2 and PLA2G6 are also pre-
dicted to affect ceramide signaling, via an inhibi-
tory effect on acyl-CoA production, and promotion
of sphingomyleinase activity respectively.84,85

Indeed, ceramide metabolism is hypothesized to
play a role in neurodegeneration and more specifi-
cally in Lewy body disease pathophysiology.84,86

Further research in these forms of NBIA will be
required to determine to what extent, if any,
changes in ceramide metabolism contribute to the
neuropathogenesis. Furthermore, the observed
changes in sphingolipids, downstream of altered
CoA biosynthetic pathways, in PKAN,66 and likely
in CoPAN, may be responsible for defective myeli-
nation within the brain. Indeed demyelination is a
shared neuropathological feature among the differ-
ent forms of NBIA.

Summary and discussion

PLAN is associated with mitochondrial dysfunction
and elevated mitochondrial lipid peroxidation

In summary, using a novel fly model of PLAN
Kinghorn et al. demonstrated that loss of normal
PLA2G6 activity is sufficient for mitochondrial dys-
function and neurodegeneration.45 In particular
they provided evidence that knockout of iPLA2-
VIA in the fly leads to elevated levels of lipid per-
oxidation, likely as a result of the failure of iPLA2b
to repair oxidative damage to membrane phospho-
lipids. This resulted in a reduction in mitochondrial
membrane potential, respiratory chain dysfunction
and reduced ATP levels. Furthermore, iPLA2-VIA
knockout flies showed frank degeneration of mito-
chondrial membranes. However, what is interesting
is that there were clear mitochondrial respiratory
chain abnormalities in very young day 2 iPLA2-
VIA flies, when no mitochondrial abnormalities
were seen at the ultrastructural level, confirming
that mitochondrial dysfunction precedes membrane
degeneration.45 It is most likely that the tubulove-
sicular structures seen in INAD, at least in part,
represent degenerated mitochondrial membranes
and other abnormal cellular membranes. Indeed
aged mice lacking Pla2g6 have spheroids containing
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periodic-shift-positive granules consisting of degen-
erate inner mitochondrial membranes, as well as
partial membrane loss at axon terminals.35 This is
consistent with oxidative damage to these mem-
branes and degeneration in response to insufficient
Pla2g6 activity. It will also be interesting to see
whether these membrane accumulations exist in
PLAN, at least to some extent, due to an additional
downstream failure of clearance of damaged mito-
chondria by autophagy. Furthermore, spheroids are
not present in all cases of PLAN,1,3 suggesting
therefore that mitochondrial dysfunction is suffi-
cient to cause neurotoxicity and disease in the
absence of mitochondrial membrane degeneration.

Currently there are no effective disease-modifying
treatments for PLAN and management is supportive,
aimed at palliation and symptom control. Kinghorn

et al. highlighted the potential therapeutic benefits of
lipid peroxidation-lowering strategies, such as D-
PUFAs, in both iPLA2-VIA knockout flies and mutant
PLA2G6 fibroblasts 45 (Fig. 3).

Lipid dyshomeostasis and mitochondrial dysfunction
as therapeutic targets in NBIA

Interlinking mechanisms in NBIA are emerging with
many of the enzymes discussed here being linked to
CoA biosynthesis, lipid metabolism and mitochon-
drial dysfunction. It is now becoming clearer how
mutations in CoA biosynthetic enzyme genes
(PANK2 and CoASY), associated with altered CoA
availability in the cell, cause not only effects such
reduced DNA intergrity,55 but also altered glycerol/
sphingophospholipid metabolism with predicted

Figure 3. Schematic showing the clinical phenotypes of PLAN, as well as the role of lipid peroxidation and mitochondrial dysfunction in
PLAN.
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defects in myelination and membrane remodeling.87

PLA2G6 and FA2H are predicted to act downstream
of CoA production, with specific abnormalities in
membrane remodeling, especially of inner mitochon-
drial membranes, and myelin production respec-
tively.45,78 Mitochondrial dysfunction is likely a
common feature of most forms of NBIA, consistent
with the mitochondrial localization of many of these
NBIA-associated enzymes. A number of processes are
predicted to lead to abnormal mitochondrial function,
including abnormal membrane remodeling, increased
mitochondrial lipid peroxidation and defective
mitophagy.45 Moreover, mitochondria play an impor-
tant role in cellular iron homeostasis, and therefore
mitochondrial dysfunction is likely to play a role in
the iron dysregulation and iron deposition seen in
neurodegenerative diseases such as NBIA and PD.88

To date there are no therapies available that modify
disease progression in PLAN, PKAN or other forms of
NBIA. Kinghorn et al demonstrated the first in vivo
rescue of PLAN in a Drosophila model, as well as in
PLA2G6 mutant fibroblasts, suggesting a potential
therapeutic role of PUFAs.45 Therefore future work is
required to further test the beneficial properties of D-
PUFAs, and other compounds predicted to reduce
lipid peroxidation, in order to develop disease-modify-
ing agents for patients with PLAN and NBIA. Deuter-
ated linoleic acid, the D-PUFA shown to rescue
cellular and fly models of PLAN, is an antioxidant
that reduces the autoxidation of natural PUFAs and
the subsequent production of reactive carbonyl com-
pounds,47,48 protecting mitochondria against oxidative
stress.89 More conventional antioxidants have not
been tested in PLAN, and despite the partial success
of antioxidant moieties such as vitamins C, E and
Coenzyme Q in experimental cellular and animal
models of PD, human clinical studies have not have
not shown conclusive benefits.90 It may be that for
antioxidants to be effective, they need to be targeted to
the mitochondria, the site where most of the reactive
oxygen species are produced.90,91 Indeed a number of
mitochondria-targeted antioxidants have been devel-
oped through the conjugation of the antioxidant moi-
ety to a lipophilic triphenylphosphonium cation,
including MitoQ,92 but clinical benefits have not yet
been proven.90 New and improved methods of deliver-
ing antioxidants to mitochondria are therefore
required and may involve the use of novel biologically
active nanomaterials.90 Moreover, combination

strategies using more than one antioxidant may be
required. It is also likely that effective antioxidants will
need to be administered to patients before or early in
the course of the disease, prior to the occurrence of
any overt neuronal loss. Effective therapeutic strate-
gies will therefore rely on the prompt and early diag-
nosis of these neurodegenerative syndromes.

As mentioned above pantethine was shown to res-
cue the neurodegenerative phenotypes in a Drosophila
model of PKAN56, and is a substrate for the CoA syn-
thesis pathway, in which both PANK2 and CoASY
act. It will therefore be interesting to see whether pan-
tethine also rescues CoASY Drosophila mutants and
other available models of CoPAN. Indeed, pantethine,
aided by the fact that it is a naturally occurring vita-
min that is already available for human consumption,
could be directly tested in patients wtih NBIA caused
by mutations in the CoA biosynthetic pathway genes
(PANK2 and CoASY).

Only through a detailed understanding of the path-
ogenic mechanisms involved in the different forms of
NBIA, will the overlapping and complex pathways in
lipid and CoA metabolism, as well the role of mito-
chondrial dysfunction, become fully understood. In
addition there are other genetic variants of NBIA that
have not been considered here, which are caused by
mutations in genes directly related to iron metabolism
(neuroferritinopathy and aceruloplasminaemia) and
lysosomal-autophagy defects (b-propellar-associated
neurodegeneration (BPAN) and ATP13A2-associated
NBIA).27,87 Indeed, it is very likely that these too will
also share common mechanisms of pathogenesis with
those discussed here.

Conclusions

Faithful Drosophilamodels of NBIA now exist and can
be used to further our knowledge of the in vivomecha-
nisms of pathogenesis associated with these diseases.
In particular, a more detailed study of mitochondrial
pathology and lipid homeostatic pathways in the
genetic variants of NBIA discussed here will lead to
further identification of new therapeutic targets. Spe-
cifically, the Drosophila models (including those of
PLAN, PKAN, CoPAN and MPAN)45,55,56,74 can now
be used as platforms of drug discovery, including the
identification of genetic modifiers and new therapeutic
targets.
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Finally, the study of NBIA, especially of PLAN and
PKAN, given the similarities to the more common
neurodegenerative disorders such as Parkinson and
Alzheimer diseases, may provide important insights
and therapeutic targets for these common forms of
neurodegeneration.
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