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The yeast Saccharomyces cerevisiae is a powerful model system
for systems-wide biology screens and large-scale proteomics meth-
ods. Nearly complete proteomics coverage has been achieved owing
to advances in mass spectrometry. However, it remains challenging to
scale this technology for rapid and high-throughput analysis of the
yeast proteome to investigate biological pathways on a global scale.
Here we describe a systems biology workflow employing plate-based
sample preparation and rapid, single-run, data-independent mass
spectrometry analysis (DIA). Our approach is straightforward, easy
to implement, and enables quantitative profiling and comparisons
of hundreds of nearly complete yeast proteomes in only a few days.
We evaluate its capability by characterizing changes in the yeast pro-
teome in response to environmental perturbations, identifying dis-
tinct responses to each of them and providing a comprehensive
resource of these responses. Apart from rapidly recapitulating previ-
ously observed responses, we characterized carbon source-dependent
regulation of the GID E3 ligase, an important regulator of cellular
metabolism during the switch between gluconeogenic and glycolytic
growth conditions. This unveiled regulatory targets of the GID ligase
during a metabolic switch. Our comprehensive yeast system readout
pinpointed effects of a single deletion or point mutation in the GID
complex on the global proteome, allowing the identification and val-
idation of targets of the GID E3 ligase. Moreover, this approach
allowed the identification of targets from multiple cellular pathways
that display distinct patterns of regulation. Although developed in
yeast, rapid whole-proteome–based readouts can serve as compre-
hensive systems-level assays in all cellular systems.

yeast systems biology | mass spectrometry | proteomics | stress | GID E3
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Proteome remodeling has repeatedly proven to be a vital
cellular mechanism in response to stress, changes in envi-

ronmental conditions, and toxins or pathogens. Cells must both
synthesize proteins which enable them to adapt to the new envi-
ronmental condition and inactivate or degrade proteins which are
detrimental or no longer needed. For each environmental
perturbation, the proteome must be precisely and distinctly
remodeled to ensure healthy and viable cells (1). Indeed, de-
creases in proteome integrity are hallmarks of many human
diseases, including cancer, Alzheimer’s disease, muscular dystro-
phies, and cystic fibrosis (2–4). Despite the importance of cellular
stress responses, our understanding of how cellular pathways in-
teract during adaptation remains incomplete. Therefore, knowing
precisely how the proteome changes at a global level in response to
environmental cues is crucial for identifying the underlying mo-
lecular mechanisms that facilitate cellular adaptation.
The yeast Saccharomyces cerevisiae is a powerful model system

that is widely used to probe biological pathways, due to its ease
of manipulation and rapid growth compared to mammalian
models. In addition, the availability of extensive genetic re-
sources in yeast, including deletion libraries (5, 6), green fluo-
rescent protein–tagged libraries (7, 8), overexpression libraries
(9), and the recently developed SWAp-tag library (10–12), has

made yeast a premier model system for conducting transcriptomics,
proteomics, interactomics, or metabolomics screens (13–19). In-
deed, systems-wide biology screens and large-scale proteomics were
both pioneered in the yeast model. Furthermore, the cellular in-
teraction networks and molecular mechanisms ascertained in yeast
can be readily applied to other systems (20–22).
Early genome-wide studies showed that over 4,000 proteins are

expressed during log-phase growth in yeast and this organism was
the first whose entire proteome was mapped by mass spectrometry
(MS)-based proteomics (23). Subsequently, yeast has served as a
model of choice for the development of ever-more-sensitive and
faster proteomics workflows (23–34). Remarkably, the optimized
sample preparation coupled with MS analysis performed on the
Orbitrap hybrid mass spectrometer allowed identification of
around 4,000 yeast proteins over a 70-min liquid chromatography
(LC)-MS/MS run (24, 30). However, the necessity of technological
expertise and lengthy analysis times for high-quality, in-depth
yeast proteome measurements has so far precluded the wide-
spread adoption of cutting-edge proteomics workflows in the yeast
research community. With further advances in technology and
new acquisition modes, such as data-independent acquisition
(DIA) (35, 36), we hypothesized that it would now be possible to
obtain accurate and high yeast proteome coverage by a straight-
forward and rapid single-run approach, enabling researchers to
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easily study biological processes on a global scale. Such a system
could then serve as a template for more complex proteomes, in-
cluding the human proteome.
One mechanism of maintaining proteome integrity is the

marking and degradation of proteins that are damaged or no
longer needed with ubiquitin. The conjugation of ubiquitin to its
targets is catalyzed by E3 ubiquitin ligases, a diverse group of
enzymes that recognize and bind target proteins and facilitate
ubiquitin transfer together with an E2, ubiquitin-conjugating
enzyme. Ubiquitination relies on a variety of cellular signals to
direct E3 ligases to their target proteins, and tight regulation of
this process is crucial for cellular viability (37). For instance,
during carbon starvation, yeast cells induce expression of the
inactive GID (glucose-induced degradation) E3 ligase, which is
subsequently activated upon glucose replenishment. Following
its activation, the GID E3 ligase targets gluconeogenic enzymes,
leading to their degradation and sparing the yeast from ener-
getically costly metabolic pathways that are unnecessary in fer-
mentable carbon sources (38–40). In addition, ubiquitin ligases
also serve as crucial regulators in response to oxidative, heavy
metal, and protein folding stresses (41–43). Despite the impor-
tance of ubiquitination during cellular adaptation, our knowl-
edge of the E3-dependent responses to cellular perturbation
remains incomplete.
Here, we describe a systems biology approach employing

rapid, single-run, data-independent (DIA) mass spectrometric
analysis, which we use to comprehensively map changes to the
yeast proteome in response to a variety of yeast stresses. We
investigate growth conditions commonly used in yeast research,
including growth media, heat shock, osmotic shock, amino acid
starvation, and nitrogen starvation. Our DIA-based approach is
sufficiently sensitive and robust to detect quantitative proteome
remodeling in response to all these stresses. We then apply this
methodology to probe a specific biological question to identify
novel regulation by the GID E3 ligase during a metabolic switch.
We use a combination of a core subunit deletion and a structure-
based catalytic mutant to identify all of the known substrates of
the GID E3 ligase and discover two previously unknown targets
which display distinct patterns of regulation.

Results
Streamlined and Scalable Yeast Proteome Analysis Employing DIA. In
order to establish a fast and scalable single-run analysis approach
for yeast proteome profiling, we explored a DIA strategy on an
Orbitrap mass spectrometer. Unlike data-dependent acquisition
(DDA), a DIA method isolates coeluting peptide ions together
in predefined mass windows, fragmenting and analyzing all ions
simultaneously (36). This strategy overcomes the limited se-
quencing speed of sequential DDA, enabling fast and scalable
single-shot analysis workflows. On Orbitrap-based mass ana-
lyzers, it yields substantially higher number of identified proteins
with unprecedented quantitative accuracy (44). To generate a
yeast-specific and comprehensive spectral library that is generally
used for this approach, we cultured yeast under various growth
and stress conditions. After extraction and digestion of proteins,
we separated peptides obtained from each condition by basic
reversed-phase (RP) chromatography into eight fractions. The
resulting 64 fractions (8 fractions × 8 conditions) were measured
using a DDA method with a 23-min LC gradient and analyzed
with the Spectronaut software (Fig. 1A). Together with LC
overhead time this took about half an hour, allowing for the
analysis of 45 samples per day—almost half a 96-well plate. Our
library comprised more than 74,103 precursors which mapped
into 4,712 unique proteins, covering 87% of the expressed yeast
proteome according to a previous report that computationally
aggregated 21 different large-scale datasets (45). The median
sequence coverage was 27% and on average 12 peptides were
detected per protein.

Combined with our own comprehensive spectral library, the
23-min DIA method on average identified 33,909 peptides and
3,413 distinct proteins in single measurements of six replicates
(Q-value less than 1% at protein and precursor levels; Fig. 1 B
and C). This implies that ∼73% of proteins in the deep yeast
spectral library were matched into the single runs. Note that the
single runs represent only yeast grown in rich media (yeast extract
peptone dextrose [YPD]), whereas the library combines the pro-
teomes of yeast grown under several growth conditions and
therefore contains proteins which are not expressed during growth
in YPD. Therefore, the degree of proteome completeness is likely
much higher than 73%. Measurements were highly reproducible
with Pearson coefficients greater than 0.92 between replicates (SI
Appendix, Fig. S1A) and coefficients of variation <20% for 68% of
all common proteins between the six replicates. In comparison, a
single-run, data-dependent acquisition strategy with the same LC
gradient quantified only 11,883 peptides and 2,289 distinct pro-
teins on average (Fig. 1 B and C). To more directly compare the
performance of the 23-min DIA method to the DDA method we
analyzed the same sample with increasing gradient lengths. We
could only reach the same depth using the DDA method with at
least 180-min-long LC gradients (33,425 peptides and 3,435 pro-
teins) (Fig. 1 B and C). Thus, the DIA method allows us to obtain
coverage comparable to DDA in a high-throughput and in-depth
fashion while taking considerably less MS time.

Large-Scale and Quantitative Analysis of Yeast Stress Response in
Half a Day. Using this DIA-based systems biology approach, we
next comprehensively and quantitatively analyzed proteome
changes in response to various stresses in yeast. Each condition
was processed in three biological replicates and—after tryptic
digestion—the peptides were analyzed in single runs using the
rapid DIA method. We quantified 3,506 distinct proteins in total
(Fig. 1D and Dataset S1). Reproducibility was high, with Pearson
correlations >0.93 between the three biological replicates (SI
Appendix, Fig. S1B). Strikingly, over 90% of all detected proteins
were consistently quantified at varying levels across all conditions
(Dataset S1). Principal component analysis (PCA) demonstrated
that the first component accounted for 13% of the variability and
segregated with the different conditions and growth media as the
major effectors (Fig. 1E).
We first looked more closely at the differences in protein

expression during growth in YPD (rich media) and SC (synthetic
complete media), the two most common growth media used in
yeast research. YPD and SC media differ in their nutrient
composition as well as their pH. During growth in YPD, the
three most significantly up-regulated proteins (Sit1, Ctr1, and
Enb1) are regulators of copper and iron transport (Fig. 1 F, Right
and G), consistent with the fact that copper and iron are limiting
factors for the growth of yeast at more alkaline pH (46). Con-
versely, during growth in SC, many mitochondrial proteins were
up-regulated compared to YPD (Fig. 1 F, Left and G), including
the cytochrome c oxidase subunits Cox8, Cox2, and Cox5a, the
mitochondrial adenosine 5′-triphosphate (ATP) synthase Atp20,
and the mitochondrial aminopeptidase Icp55. Yeast mitochon-
dria reproduce through fission and must be inherited by
daughter cells during cell division (47). The up-regulation of
many mitochondrial proteins is thus consistent with the faster
growth rate of our yeast strains in SC compared to YPD. Be-
cause the choice of media is often considered crucial in experi-
mental design, these data on differentially regulated proteins in
pathways of interest provide an important resource for yeast
biologists.
Next, we investigated proteome changes in yeast grown under

various stress conditions. Here, we focused on those commonly
utilized in yeast research: heat shock, osmotic shock, carbon
starvation, amino acid starvation, and nitrogen starvation. Each
produced a discrete stress response, resulting in synthesis or
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degradation of a distinct set of proteins (Fig. 2A). For example,
yeast cells grown under heat shock induce expression of chap-
erones and stress-response proteins, a well-characterized re-
sponse that allows the cell to quickly recover from global heat-
induced protein misfolding (48–50). Importantly, our data also
revealed that the heat-shock response is dose-dependent, with
higher induction of the stress response at 42 °C compared to
37 °C (Fig. 2 A, green cluster and B). Yeast experiencing osmotic
shock, on the other hand, induced distinct proteome changes,
with the most enriched Gene Ontology (GO) term under this
condition being actin-cortical patch (SI Appendix, Fig. S2 A and
B). This is consistent with the fact that yeast cells rapidly disas-
semble and remodel the actin cytoskeleton during osmotic stress
and favor the formation of actin patches over filaments, a
mechanism that lowers the turgor pressure and allows continued
growth of yeast under high osmolarity (51, 52). In addition, one
of the most up-regulated proteins during osmotic stress is Ena1
(SI Appendix, Fig. S2A), a sodium efflux pump that plays a cru-
cial role in allowing salt tolerance (53). Growth during amino
acid or nitrogen starvation primarily resulted in the induction of
amino acid biosynthetic pathways, with arginine and cysteine

synthesis being particularly up-regulated (SI Appendix, Fig.
S2 C–F).
In addition to temperature and nutrient availability, carbon

source is a crucial determinant of yeast growth. We compared
the proteomes of yeast grown in the aerobic carbon source,
glucose, with the nonfermentable carbon source, ethanol. Yeast
will preferentially metabolize aerobic carbon sources, such as
glucose, when they are present in the media. When only non-
fermentable carbon sources, such as ethanol, are present, yeast
cells will instead metabolize them through several pathways, in-
cluding gluconeogenesis to generate glucose and conversion of
ethanol into pyruvate to allow for ATP generation in the mito-
chondria via the tricarboxylic acid cycle (54, 55). Consistent with
this, we observe a general up-regulation of mitochondrial pro-
teins and those involved in the tricarboxylic acid cycle during
growth in ethanol (Fig. 2 A, light blue cluster, C, and D). In
addition, many proteins involved in carbon metabolism are dif-
ferentially regulated in glucose and ethanol-containing media.
For example, we see a greater than 16-fold up-regulation of the
gluconeogenic enzymes Fbp1, Pck1, and Icl1 (Fig. 2C). In the
absence of glucose, both Hxt7, a glucose transporter, and Hxk1,
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a hexokinase, are up-regulated (Fig. 2C), allowing the cell to
quickly import and metabolize any glucose in the environment.
These results are consistent with the idea that yeast have “an-
ticipatory” programming, which not only allows them to adapt to
the current stressor but also facilitates a rapid response to shifts
in environmental conditions (40, 56). Moreover, apart from
identifying proteins that have altered levels in response to a shift
in environmental conditions, we also accurately determined their
fold changes, giving valuable insight into the protein content
under different stress and growth conditions that is indispensable
for systems-level modeling.
Taken together, our results indicate that the fast and robust DIA-

based approach described here can reliably and quantitatively re-
trieve the known differences and even reveal new and biologically
meaningful regulation of protein expression, thereby providing a
near-comprehensive resource for yeast researchers and a valuable
platform to support future studies in quantitative biology.

Global Regulation of the Yeast Proteome during Glucose Starvation
and Recovery. To gain better insights into how yeast regulate
metabolism in response to a change in carbon source, we next
expanded our analysis to investigate glucose starvation and glu-
cose recovery. Yeast cultures were first grown to logarithmic
phase in glucose then switched to media containing ethanol as a
nonfermentable carbon source. Following 19 hours of growth in
ethanol, glucose was replenished and the yeast were allowed to
recover for 30 minutes or 2 hours (Fig. 3A). In these growth
conditions, we quantified 3,602 distinct proteins in total (Dataset
S2). The first PCA component segregated the growth conditions,
with glucose being largely separated from the ethanol and re-
covery conditions (Fig. 3B and SI Appendix, Fig. S3A). To further
investigate the regulation of metabolism in alternate carbon
sources, we compared the proteome changes with those of the
transcriptome. PCA analysis of the transcriptome also showed
that the first component separated the growth conditions.

Interestingly, in this case cells grown in ethanol were largely
separated from the glucose (never starved) and glucose recovery
conditions (Fig. 3C and SI Appendix, Fig. S3B), suggesting that
during this metabolic shift yeast cells remodel their gene ex-
pression first through rapid changes in transcription, which fa-
cilitates production of new proteins, and then remove proteins
that are no longer required.
Several regulatory mechanisms contribute to carbohydrate

metabolism, including allosteric regulation, reversible enzyme
inactivation through covalent modifications, and irreversible loss
of enzyme activity through proteolysis (reviewed in ref. 57).
Importantly, we observed that protein turnover during glucose
recovery occurs rapidly and in less than one cell division, sug-
gesting an active mechanism of protein degradation. One such
mechanism that has been well-characterized by our group and
others is the ubiquitination and degradation of gluconeogenic
enzymes by the GID E3 ubiquitin ligase. GID E3 ligase subunits
are present at low levels in all growth conditions. However, during
growth in ethanol, most of the GID subunits are induced, leading
to the formation of a yet-inactive anticipatory complex: GIDAnt.
Following glucose replenishment, the substrate receptor, Gid4, is
rapidly induced and joins the complex, allowing the recognition
and subsequent degradation of the gluconeogenic proteins Fbp1,
Mdh2, Icl1, and Pck1 via the Pro/N-degron pathway (Fig. 3D)
(38–40, 58–61). Indeed, our analysis confirmed that most com-
ponents of the GID E3 ligase are up-regulated around fourfold
during growth in ethanol, with the exception of Gid4, which is
rapidly and transiently up-regulated within 30 min of glucose
replenishment (Fig. 3E).
Intriguingly, PCA analysis of individual proteins revealed that

the known substrates of the GID E3 ubiquitin ligase, Fbp1, Pck1,
Icl1 and, to a lesser extent, Mdh2 are the major contributors to
the segregation based on growth condition (Fig. 3F). While the
GID E3 ligase is known to be an important contributor to the
regulation of yeast metabolism during the switch from
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gluconeogenic to glycolytic conditions, and is thought to have
additional substrates, the lack of an obvious phenotype in GID
mutants has made the identification of further substrates chal-
lenging. Thus, we applied a DIA-based workflow to search for
novel regulatory targets of the GID E3 ligase.

Identifying GID Ligase-Dependent Regulation during Recovery from
Carbon Starvation. The structure and molecular mechanism of the
GID E3 ligase are known, but the pathways it regulates are only
beginning to be elucidated (38, 40, 61). While the role of the
GID ligase in the regulation of gluconeogenesis is well-
characterized, the conservation of this multiprotein complex
throughout eukaryotes suggests that it likely regulates additional
pathways. For example, the GID/CTLH complex has a role in
erythropoiesis and spermatogenesis in human cells and in em-
bryogenesis in Drosophila (62–65). Thus, we set out to uncover
additional pathways regulated by the GID E3 ligase in yeast by
utilizing a combination of mutants. First, we used a deletion of
the substrate receptor, Gid4, which targets proteins with either
an N-terminal proline or a proline at position 2 via the Pro/
N-degron pathway (38, 59, 60, 66). Deletion of Gid4 therefore
should prevent substrate binding to the GID complex and
thereby inhibit degradation. However, Gid4, while conserved in
human cells, is not conserved throughout all eukaryotes. For
example, the GID complex in Drosophila lacks an identifiable
Gid4 homolog (65), suggesting an alternate mode of recognition.
In addition, in yeast, the protein Gid10 has been identified as an
alternate substrate receptor of the GID complex (40, 67), al-
though no Gid10-dependent cellular substrates have been iden-
tified to date. To identify pathways regulated by the GID
complex by an alternative recognition pathway, we used a
structure-based point mutant in the RING-domain-containing
subunit, Gid2K365A, which eliminates catalytic activity without
altering folding or complex assembly (40).
We compared the transcriptomes and proteomes of wild-type

yeast to yeast containing either a Gid4 deletion or a Gid2 mutant
(Gid2K365A) grown under the glucose starvation and recovery
conditions described previously. Each condition was measured in
triplicate using the rapid DIA method (Fig. 4A). Importantly,

there were no GID-dependent differences in messenger RNA
(mRNA) levels following glucose replenishment (SI Appendix,
Fig. S4A), demonstrating that the GID E3 ligase does not reg-
ulate protein synthesis but rather the fate of existing proteins. To
confirm that a DIA-based approach would be able to recognize
bona fide GID substrates, we first examined the expression
patterns of the well-characterized substrates Fbp1 and Mdh2.
Indeed, in wild-type cells, Fbp1 and Mdh2 protein levels are
induced during growth in ethanol and then turned over within
2 hours of glucose recovery, with Fbp1 and Mdh2 protein levels
reduced by around eightfold and 5.7-fold, respectively. As
expected, both proteins are also stabilized in the GID4-deleted
and gid2-mutant cells (Fig. 4 B and C), confirming that we can
robustly identify changes in expression of known substrates.
To identify novel targets, we searched for proteins with an

expression profile similar to the known substrates based on the
following criteria: 1) the protein should be expressed more highly
in ethanol than glucose, 2) its levels should decrease during
glucose replenishment, and 3) after 2 h of glucose replenishment
it should have a higher expression level in the GID4-deleted and/
or gid2-mutant cells, compared to wild type (SI Appendix, Fig.
S4B). This provided a list of 31 proteins, including all four known
GID substrates (Fbp1, Mdh2, Pck1, and Icl1) (SI Appendix, Fig.
S4C). To further prioritize candidates, we limited our search to
proteins with an N-terminal proline or a proline in the second
position, a genetic and structural requirement of all known cel-
lular substrates (38, 40, 60). The resulting list of seven proteins
consisted of the four known substrates, the transcription factor
Azf1, and the metabolic enzymes Aro10 and Acs1 (Fig. 4D).
Interestingly, Azf1 has already been implicated in regulation of
GID4 transcription (68), suggesting its up-regulation in the GID-
deficient cells may be a cellular compensation mechanism.
However, because we did not observe any GID-dependent
mRNA expression changes (SI Appendix, Fig. S4A), we elimi-
nated Azf1 from further analysis. Acs1 was significantly stabi-
lized in both the GID4-deleted and gid2-mutant cells, whereas
Aro10 was only significantly stabilized in the gid2 mutant.
In order to validate Aro10 and Acs1 as GID targets in vivo, we

used the promoter reference technique (38, 69), a transcription-
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independent method to examine protein turnover. In this
method, yeast cells are transformed with a plasmid expressing
the test substrate and the control protein DHFR from identical
promoters (Fig. 5A). The transcribed products carry tetracycline-
binding RNA aptamers which inhibit protein expression at the level
of translation following the addition of tetracycline to the media,
allowing the fate of the existing protein to be monitored. Impor-
tantly, this method selectively terminates synthesis of our test pro-
teins, and thus the induction of Gid4 and activation of the GID
complex is not impaired. In agreement with our proteomic findings,
the Acs1 protein is completely stabilized in both GID2-and GID4-
deleted cells (Fig. 5B), while the Aro10 protein is stabilized in
GID2-deleted but not GID4-deleted cells (Fig. 5C), indicating a
potential Gid4-independent regulation. Thus, Acs1 and Aro10 are
confirmed to be regulatory targets of the GID E3 ligase during the
switch from gluconeogenic to glycolytic conditions.

Discussion
Here, we described a straightforward, streamlined, and repro-
ducible systems biology approach for yeast proteome profiling
using DIA to analyze biological pathways much faster and with
greater depth. The minimalistic workflow employs plate-based
preparation of digested yeast cell lysate and requires only a few
micrograms of yeast as input and no labeling or special equip-
ment, making it especially amenable for application in non-
specialized research groups. Despite its simplicity, it robustly and
quantitatively profiles hundreds of largely covered yeast pro-
teomes [80% of the expressed proteome at normal growth con-
ditions (7)] within an unprecedented throughput (100 samples in
∼2.2 days).
The ability of cells to adapt to stress or changes in environ-

mental conditions relies on extensive proteome remodeling
(70–75). Understanding these changes provides broad insight
into the molecular mechanisms underlying many processes in-
cluding heat stress, adaptation to nutrient availability, and reg-
ulation of cell division. Applying the DIA-based approach to
profile protein levels during response to several stress and
growth conditions demonstrated its systems-wide robustness and
specificity. In addition, our work provides an in-depth resource

on stress mediators regulated at the protein level, which will
complement the widely available yeast transcriptome data and
further allow yeast researchers to probe numerous biological
pathways of interest, including stress response pathways, auto-
phagy, and nutrient signaling pathways.
In addition to identifying proteome changes during stress, we

used the DIA-based systems biology approach to identify proteins
that are regulated by the GID E3 ubiquitin ligase, a key regulator
in the switch from gluconeogenic to glycolytic conditions (54, 61,
76). Despite the importance of the GID complex in metabolic
regulation, identification of additional substrates has been hin-
dered by the lack of an obvious phenotype, variable kinetics of
protein degradation, and the necessity for a sensitive readout. Our
generic and unbiased approach, however, robustly identified two
protein regulatory targets of the GID complex, Acs1 and Aro10,
further highlighting the importance and need for quantitative
proteome datasets to provide a basis for functional studies.
Interestingly, both Acs1 and Aro10, while not considered

gluconeogenic enzymes, are important regulators of metabolism
and cellular respiration during anaerobic growth. Acs1 encodes
one of two isoforms of yeast acetyl-CoA synthetase, which cat-
alyzes the formation of acetyl-CoA from acetate and CoA. Acs1
has a much higher affinity for acetate than its isoform Acs2,
making it more desirable for acetyl-CoA production when ace-
tate is limiting, as is the case during growth on nonfermentable
carbon sources (77). During glycolytic growth, however, the main
energy flux does not require Acs1/2 function, Acs1 expression is
suppressed, and existing Acs1 protein must be degraded. Aro10
encodes a phenylpyruvate decarboxylase that catalyzes an irre-
versible step in the Ehrlich pathway, which provides a more
energetically favorable means of NADH (reduced nicotinamide-
adenine dinucleotide) regeneration during anaerobic growth.
Following glucose replenishment, NADH is regenerated through
glycolysis, and thus Aro10 function is no longer required (78, 79).
Here, we show that both Acs1 and Aro10 turnover are depen-

dent on the catalytic activity of the GID complex, via its RING-
containing subunit, Gid2. Intriguingly, only Acs1 turnover is
dependent on the well-characterized substrate receptor, Gid4,
suggesting an alternate mode of recognition for Aro10. Indeed, an
additional substrate receptor, Gid10, has recently been identified
(40, 67), raising the possibility that Aro10 may be the first sub-
strate identified in this recognition pathway. Alternatively, Aro10
recognition may be facilitated by a yet-to-be identified substrate
receptor or an alternative mechanism. In either case, the regula-
tion of Aro10 suggests that the GID E3 ligase may function with
separable catalytic and substrate recognition elements, a mecha-
nism previously described for SCF (Skp1-Cullin-Fbox) E3 ligases
(80, 81) that provides a flexible means for linking a single E3 to a
greater number of substrates. Intriguingly, expression of the GID
substrate receptors is induced during several other cellular
stresses, including osmotic shock, heat shock, and nitrogen star-
vation (40, 67, 71), suggesting that the GID complex may play an
important role in rewiring metabolic pathways during adaptation
to a wide variety of stress conditions.
Taken together, the GID-dependent regulation of Acs1 and

Aro10, along with the previously known substrates, suggests that
the GID complex is a multifunctional metabolic regulator that
influences multiple cellular pathways simultaneously to allow for
an efficient switch from gluconeogenic to glycolytic conditions.
Moreover, our findings demonstrate that the DIA-based systems
biology approach is capable of simultaneously identifying changes
to multiple cellular pathways which are integrated to maintain
cellular homeostasis. While we here identified specific targets of
an E3 ligase, this workflow can be readily adopted by the com-
munity to probe numerous cellular pathways, including kinase
signaling pathways or cell-cycle-dependent changes. Furthermore,
its speed allows the analyzing of at least 15 conditions, in triplicate,
per day, making it particularly well-suited for screens. For
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example, the effect of each of the ∼80 yeast E3 ligases on the global
proteome could be ascertained in just 5 days, or each of the ∼117
yeast kinases in about 1 week. In addition, the DIA-based workflow
can be easily adapted to identify changes in posttranslational
modifications including phosphorylation, ubiquitination, and acety-
lation, when coupled with an enrichment step (44, 82–84).
Thus, the speed and reproducibility of the DIA-based ap-

proach presented here allows researchers to probe complex bi-
ological pathways and identify novel regulatory mechanisms. We
are currently integrating an HPLC system into our approach as it
eliminates the overhead time between sample pickup and start of
MS measurement by using preformed gradients (85). Simplified
workflows like the one described here could be extended to other
organisms, generating high-quality quantitative proteome data-
sets which are required to explain biological processes on a
system-wide level (86, 87). Furthermore, we believe that library-
free approaches using prediction tools will further increase the
speed of DIA-based proteome profiling workflows like the one
presented here. Given that the expressed human proteome
(around 15,479 proteins, https://www.proteomicsdb.org) is only
around three times larger than the expressed yeast proteome
[5,391 proteins, (45)], with only three fold increase in proteomic
depth, we anticipate fast single run DIA approaches will also be
suitable for rapid generation of human proteomes.

Materials and Methods
Yeast Strains and Growth Conditions. All yeast strains used in this study are
derivatives of BY4741 and are listed in Table 1. For rich conditions, yeast
cultures were grown in YPD (1% yeast extract, 2% peptone, and 2% glu-
cose) or SC (0.67% yeast nitrogen base without amino acids, 2% glucose,
containing 87.5 mg/L alanine, arginine, asparagine, aspartic acid, cysteine,
glutamine, glutamic acid, glycine, leucine, lysine, methionine, myo-inositol,
isoleucine, phenylalanine, proline, serine, threonine, tyrosine and valine,
43.7 mg/L histidine, tryptophan and uracil, 22.5 mg/L adenine, and 8.7 mg/L
para-aminobenzoic acid) media. Unless otherwise specified, yeast cultures
were grown at 30 °C. For heat-shock conditions, yeast cultures were grown
in YPD to an optical density at 600 nm (OD600) of 1.0 and then shifted to the
indicated temperature for 1 h. For osmotic shock conditions, yeast cells were
grown in YPD to and OD600 of 1.0, pelleted at 3,000 rpm for 3 min, and
resuspended at an OD600 of 1.0 in prewarmed YPD + 0.5 M NaCl. For glucose
starvation, yeast cells were grown in YPD to an OD600 of 1.0 to 2.0, pelleted
at 3,000 rpm for 3 min, washed once with YPE (1% yeast extract, 2% pep-
tone, and 2% ethanol), resuspended in prewarmed YPE at an OD600 of 1.0,
and grown at 30 °C for 19 h. For glucose recovery, yeast cells were pelleted
after 19 h of growth in YPE, resuspended to an OD600 of 1.0 in YPD, and
allowed to grow at 30 °C for 30 min or 2 h. For amino acid starvation, yeast
cells were grown in SC to an OD600 of 1.0 to 2.0, pelleted at 3,000 rpm for
3 min, washed once with SD-AA (0.67% yeast nitrogen base without amino
acids, 2% glucose, and 20 mg/L uracil), resuspended in SD-AA to an OD600 of
1.0, and allowed to grow for 1 h. For nitrogen depletion, yeast cells were
grown in SC to an OD600 of 1.0 to 2.0, pelleted at 3,000 rpm for 3 min,
washed once with SD-N (0.17% yeast nitrogen base without amino acids or
ammonium sulfate and 2% glucose), resuspended in SD-N to an OD600 of 1.0,
and allowed to grow for 1 h. For proteomics analysis, 50 ODs of cells were
pelleted at 3,000 rpm for 3 min, flash-frozen in liquid nitrogen, and stored
at −80 °C until lysis. For transcriptomes analysis, 10 ODs of yeast were pel-
leted, flash-frozen in liquid nitrogen, and stored at −80 °C.

Protein Degradation Assays (Promoter Reference Technique). Protein degra-
dation assays using the promoter reference technique were done as previ-
ously described (69). Plasmids used are listed in Table 2. Cells were

transformed with plasmid expressing a test substrate and DHFR from iden-
tical promoters containing tetracycline-repressible RNA-binding elements.
Yeast cells were then grown in SC media lacking histidine, starved in SE (2%
ethanol) media lacking histidine for 19 h, and then allowed to recover for
the indicated times in SC media lacking histidine. At each time point, 1.0 ODs
of yeast cells were pelleted, flash-frozen in liquid nitrogen, and stored
at −80 °C until lysis.

For lysis, yeast cells were resuspended in 0.8mL of 0.2MNaOH, followed by
incubation on ice for 20 min, and then pelleted at 11,200 × g for 1 min. The
supernatant was removed and the pellet resuspended in 50 μL HU buffer
and incubated at 70 °C for 10 min. The lysate was precleared by centrifu-
gation at 11,200 × g for 5 min and then loaded onto a 12% sodium dodecyl
sulfate polyacrylamide gel. Protein samples were transferred to a nitrocel-
lulose membrane and then visualized by Western blot using αFLAG (F1804;
Sigma) and α-hemagglutinin (H6908; Sigma) primary antibodies and Dylight
633 goat anti-Mouse (35512; Invitrogen) and Dylight 488 goat anti-rabbit
(35552; Invitrogen) secondary antibodies. Membranes were imaged on a
typhoon scanner (Amersham). Bands were quantified with ImageStudio
software (LI-COR).

mRNA Sequencing.Harvested and frozen cells were sent to Novogene Co., Ltd.
(Hong Kong) for RNA extraction, library preparation, mapping, and bio-
informatics analysis. Briefly, 3 μg of RNA was used for library generation
using NEB Next Ultra RNA Library Prep Kit for Illumina (NEB). The library
preparations were sequences on an Illumina Hi-Seq platform and 125-base
pair (bp)/150-bp paired-end reads were generated. Reads were indexed us-
ing Bowtie v2.2.3 and paired-end clean reads were aligned to the reference
genome using TopHat v2.0.12. HTSeq v0.6.1 was used to count the read
numbers mapped to each gene, and then FPKM (expected number of
fragments per kilobase of transcript sequence per millions base pairs se-
quenced) of each gene was calculated based on the length of the gene and
read counts mapped to the gene. The transcriptome data analysis was per-
formed as explained in Data Processing and Bioinformatics Analysis.

Sample Preparation for MS Analysis. Sodium deoxycholate (SDC) lysis buffer
(1% SDC and 100 mM Tris, pH 8.4) were added to the frozen cell pellets to
achieve a protein concentration of ∼2 to 3 mg per ml. Lysates were imme-
diately heat-treated for 5 min at 95 °C to facilitate lysis and to inactivate
endogenous proteases and transferred to a 96-well plate. Lysates were next
homogenized with sonication. Protein concentrations were estimated by
tryptophan assay (27) and then all samples were diluted to equal protein
concentrations in a 96-well plate. To reduce and alkylate proteins, samples
were incubated for 5 min at 45 °C with CAA and TCEP, final concentrations
of 40 mM and 10 mM, respectively. Samples were digested overnight at
37 °C using trypsin (1:100 wt/wt; Sigma-Aldrich) and LysC (1/100 wt/wt;
Wako). The following day, peptide material was desalted using SDB-RPS
StageTips (Empore) (27). Briefly, samples were diluted with 1% trifluoro-
acetic acid (TFA) in isopropanol to a final volume of 200 μL and loaded onto
StageTips and subsequently washed with 200 μL of 1% TFA in isopropanol
and 200 μL 0.2% TFA/2% ACN (acetonitrile). Peptides were eluted with 80 μl
of 1.25% Ammonium hydroxide (NH4OH)/80% ACN and dried using a
SpeedVac centrifuge (Concentrator Plus; Eppendorf). Samples were resus-
pended in buffer A* (0.2% TFA/2% ACN) prior to LC-MS/MS analysis. Peptide
concentrations were measured optically at 280 nm (Nanodrop 2000; Thermo
Scientific) and subsequently equalized using buffer A*. Three hundred
nanograms of peptide was subjected to LC-MS/MS analysis.

To generate the spectral library for DIA measurements cells were lysed in
SDC buffer, followed by sonication, protein quantification, reduction, and
alkylation and desalting using SDB-RPS StageTips (discussed above). Around
8 or 30 μg of peptides were fractionated into 8 or 24 fractions, respectively,
by high-pH reversed-phase chromatography as described earlier (88). Frac-
tions were concatenated automatically by shifting the collection tube during
the gradient and subsequently dried in a vacuum centrifuge, and resus-
pended in buffer A*.

LC-MS/MS Measurements. Samples were loaded onto a 20-cm reversed-phase
column (75-μm inner diameter, packed in-house with ReproSil-Pur C18-AQ
1.9 μm resin [Dr. Maisch GmbH]). The column temperature was maintained
at 60 °C using a homemade column oven. A binary buffer system, consisting
of buffer A (0.1% formic acid [FA]) and buffer B (80% ACN plus 0.1% FA),
was used for peptide separation, at a flow rate of 450 nL/min. An EASY-nLC
1200 system (Thermo Fisher Scientific), directly coupled online with the mass
spectrometer (Q Exactive HF-X, Thermo Fisher Scientific) via a nano-
electrospray source, was employed for nano-flow liquid chromatography.
We used a gradient starting at 5% buffer B, increased to 35% in 18.5 min,

Table 1. Yeast strains used in this study

Strain Genotype Source

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Euroscarf
CRLY12 BY4741 GID4::KANMX This study
CRLY30 BY4741 GID2::KANMX This study
CRLY131 BY4741 gid2::3xFLAG-GID2K365A Ref. 40
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95% in a minute, and stayed at 95% for 3.5 min. The mass spectrometer was
operated in Top10 data-dependent mode (DDA) with a full scan range of
300 to 1,650 m/z at 60,000 resolution with an automatic gain control (AGC)
target of 3e6 and a maximum fill time of 20 ms. Precursor ions were isolated
with a width of 1.4 m/z and fragmented by higher-energy collisional disso-
ciation (HCD) (normalized collision energy [NCE] 27%). Fragment scans were
performed at a resolution of 15,000, an AGC of 1e5, and a maximum in-
jection time of 60 ms. Dynamic exclusion was enabled and set to 30 s. For DIA
measurements full MS resolution was set to 120,000 with a full scan range of
300 to 1,650 m/z, a maximum fill time of 60 ms, and an AGC target of 3e6.
One full scan was followed by 12 windows with a resolution of 30,000 in
profile mode. Precursor ions were fragmented by stepped HCD (NCE 25.5,
27, and 30%).

Data Processing and Bioinformatics Analysis. Spectronaut version 13 (Bio-
gnosys) was used to generate the spectral libraries from DDA runs by com-
bining files of respective fractionations using the yeast FASTA file (UniProt,
2018). For the generation of the proteome library default settings were left
unchanged. DIA files were analyzed using the proteome library with default
settings and enabled cross-run normalization. The Perseus software package
versions 1.6.0.7 and 1.6.0.9 and GraphPad Prism version 7.03 were used for
the data analysis (89). Protein intensities and mRNA abundances were log2-
transformed for further analysis. The datasets were filtered to make sure
that identified proteins and mRNAs showed expression or intensity in all
biological triplicates of at least one condition and the missing values were
subsequently replaced by random numbers that were drawn from a normal
distribution (width = 0.3 and downshift = 1.8). PCA analysis of stress and

growth conditions and biological replicates was performed as previously
described in ref. 90. Multisample test (ANOVA) for determining if any of the
means of stress and growth conditions were significantly different from
each other was applied to both mRNA and protein datasets. For truncation,
we used permutation-based false discovery rate (FDR) which was set to 0.05
in conjunction with an S0-parameter of 0.1. For hierarchical clustering of
significant genes and proteins, median protein or transcript abundances of
biological replicates were z-scored and clustered using Euclidean as a dis-
tance measure for row clustering. GO annotations were matched to the
proteome data based on UniProt identifiers. Annotation term enrichment
was performed with either Fisher exact test or the 1D tool in Perseus. An-
notation terms were filtered for 5% FDR after Benjamini–Hochberg
correction.

Data Availability. All MS proteomics data have been deposited on Proteo-
meXchange via the PRIDE database with the dataset identifier PXD021559.
All other data supporting findings of this study are available within this
paper, SI Appendix, and Datasets S1 and S2.
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