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Abstract. Thrombotic microangiopa-
thy (TMA) is a rare but severe complica-
tion of tumors and their chemotherapeutic 
treatment. We report on two patients with 
chemotherapy-induced TMA who were suc-
cessfully treated with a short course of the 
terminal complement inhibitor eculizumab. 
Both patients quickly achieved remission of 
microangiopathic hemolytic anemia and re-
covery of renal function. After withdrawal 
of eculizumab, remission was stable over 
an observation period of 47 months and 15 
months, respectively. Our data show that 
eculizumab is effective in treating chemo-
therapy-induced TMA. Discontinuation of 
eculizumab is feasible once the comple-
ment-activating condition is controlled and 
the trigger is eliminated. Additional studies 
need to determine the optimal duration of 
complement-directed therapies and validate 
effective monitoring strategies after discon-
tinuation of such therapy.

Introduction

Thrombotic microangiopathy (TMA) 
encompasses a group of disorders present-
ing with microangiopathic hemolytic anemia 
(MAHA), thrombocytopenia, and ischemic 
organ damage, most frequently of the kid-
neys and the central nervous system [1, 2].

Atypical hemolytic uremic syndrome 
(aHUS) is a complement-mediated TMA 
caused by dysregulation of the alterna-
tive complement pathway. At least 50% 
of patients have an underlying inherited or 
acquired complement abnormality, exacer-
bated by complement-activating conditions, 
like infections, drugs, pregnancy, or cancer 
[3, 4].

Drug-induced TMA has been reported 
with antineoplastic agents including gem-
citabine, docetaxel, and doxorubicin [5, 6, 
7]. Direct cytotoxic and immune-mediated 
endothelial damage have been proposed as 
underlying pathologies [5]. While immune-
mediated damage generally shows acute 
onset within 2 – 3 weeks of drug exposure, 
the clinical manifestation of cytotoxic dam-
age is either acute or slowly progressive with 
cumulative dose-dependent toxicity [5, 8, 
9]. Distinguishing cancer-related TMA as a 
consequence of cancer itself from cases of 
chemotherapy-induced TMA can be chal-
lenging. However, metastatic disease is more 
common in cancer-related TMA, whereas 
in chemotherapy-induced TMA, little or no 
active malignancy is detectable [10]. While 
discontinuation of the offending drug and 
supportive care are the primary treatment 
options in drug-induced TMA, in some cases 
this intervention is unable to limit the al-
ready dysregulated complement activity and 
requires therapeutic complement inhibition.

Eculizumab, approved as therapy for 
aHUS in 2011, is a humanized monoclonal 
antibody that binds to the complement com-
ponent C5, preventing its cleavage into C5a 
and ultimately the formation of the mem-
brane attack complex (SC5b-9) [11].

While the contributory role of comple-
ment dysregulation in drug-induced TMA is 
increasingly acknowledged, data on the ef-
ficacy of eculizumab, the duration of such 
therapy, and the incidence and type of de-
tected complement abnormalities are sparse.

Here, we report on two patients with 
chemotherapy-induced TMA, who were suc-
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cessfully managed with temporary eculizum-
ab therapy and remained relapse free for a 
follow-up of 47 and 15 months, respectively.

Case reports

Patient 1

A 52-year-old woman admitted with 
acute onset of altered mental status, bloody 
diarrhea, and anuric acute kidney injury. Six 
months prior to admission, chemotherapy 
with docetaxel, doxorubicin, and cyclophos-

phamide was started for invasive ductal 
breast cancer. The last dose of chemotherapy 
was administered 3 days before symptoms 
started. Admission laboratory showed serum 
creatinine of 480 µmol/L, Coombs-negative 
hemolytic anemia with schistocytes on pe-
ripheral blood smear and thrombocytopenia 
of 64/µL. Lactate dehydrogenase (LDH) was 
1,658 IU/mL and haptoglobin < 0.10 g/L. Co-
agulation tests were within the normal range, 
international normalized ratio (INR) 1.3 and 
partial thromboplastin time (PTT) 35 sec-
onds, ruling out disseminated intravascular 
coagulation. Shiga toxin producing E. coli 

Figure 1. A: Case 1, induction therapy with 6 doses of eculizumab. Serum creatinine and thrombocytes 
from admission to last follow-up (week 211). Breast-conserving surgery was performed 7 weeks after 
withdrawal of eculizumab, followed by radiation therapy 3 months later. TPE = therapeutic plasma ex-
change; CVVHD = continuous veno-venous hemodialysis; HD = hemodialysis. B: Case 2, induction thera-
py with 8 doses of eculizumab. Serum creatinine and thrombocytes from admission to last-follow up (week 
42). FFP = fresh frozen plasma.
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associated hemolytic uremic syndrome 
(STEC-HUS) was excluded by negative stool 
cultures for Shiga toxin-producing E. coli 
strains. Stool cultures for shigella, salmo-
nella, campylobacter, and yersiania as well 
as PCR for Clostridium difficile were nega-
tive. Thrombotic thrombocytopenic purpura 
(TTP) was excluded by  ADAMTS13 activity 
of 37% of control values. No  ADAMTS13 
antibodies were detected.

Shortly after admission, she developed 
seizures with respiratory failure requiring in-
tubation. With the diagnosis of TMA, thera-
peutic plasma exchanges (TPE) were started. 
Daily TPE over 12 days and steroid therapy 
showed no effect on clinical symptoms and 
hemolysis. She had persistent seizures and 
required renal replacement therapy. Ecu-
lizumab was eventually initiated 20 days 
after admission. Immediately after the first 
dose of eculizumab, we observed a rapid 
and dramatic improvement of neurological 
symptoms. Renal replacement therapy could 
be discontinued 2 weeks later. Eculizumab 
was administered 6 times over a period of 
5 weeks (Figure 1A). Breast-conserving sur-
gery was performed 7 weeks after termina-
tion of eculizumab, followed by radiation 
therapy. During 47 months of follow-up, 
renal function continued to improve (eGFR 
68 mL/min), and no relapse of TMA has oc-
curred (Figure 1A) (Table 2).

Next-generation sequencing identified a 
homozygous polymorphism in complement 
factor H (CFH) gene (synonymous variant 
c.1419 G>A, p.Ala473Ala). CFH autoanti-
bodies were not detected.

Patient 2

A 57-year-old woman admitted with 
hypertensive urgency, progressive decline 
of renal function, and MAHA. She was di-
agnosed with pancreatic cancer 30 months 
prior to admission and since then treated 
with gemcitabine and Nab-paclitaxel. Che-
motherapy had been discontinued 6 weeks 
earlier when a decline in renal function, he-
molytic anemia, and mild thrombocytopenia 
(130/µL) was first noted.

Admission laboratory showed serum 
creatinine of 363 µmol/L (eGFR 11 mL/min), 
Coombs negative hemolytic anemia with Ta
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schistocytes on peripheral blood smear, and 
thrombocytopenia of 108/µL. LDH was 
760 IU/mL, haptoglobin < 0.10 g/L, and co-
agulation tests were within the normal range 
(INR 1, PTT 31 seconds). Stool cultures 
were negative for Shiga toxin-producing 
E. coli, and ADAMTS13 activity was 61% 
of control values. Urinalysis showed protein-
uria with a protein/creatinine ratio of 0.8 g/g. 
Several plasma infusions were given without 
improvement of hemolysis or renal function. 
The patient received eculizumab 7 days after 
admission, followed by prompt resolution of 
hemolysis and improvement of renal func-
tion. Eculizumab was discontinued after a 
total of 8 doses over a period of 10 weeks. 
During 15 months of follow-up, renal func-
tion remained stable (eGFR 36 mL/min), and 
no relapse of TMA occurred (Figure 1B) (Ta-
ble 2). The patient died of pancreatic cancer 
18 months after initial hospital admission.

Next-generation sequencing identified a 
heterozygous polymorphism in CFH gene 
(synonymous variant c.1419 G>A, p.Ala473 
Ala).

Discussion

We report on two patients with chemo-
therapy-induced TMA, persistent after dis-
continuation of the culprit drug and TPE/
plasma infusion. In both patients, the clini-
cal response to therapy with eculizumab was 
prompt and remission stable after cessation 
of treatment. Treatment with eculizumab 
was well tolerated, and no adverse events 
were reported.

Due to limited clinical experience, the 
optimal strategy for treatment of chemo-
therapy-induced TMA, especially the role of 
eculizumab, is not yet clear. Discontinuation 
of the offending drug and supportive care are 
the primary treatment options. Due to the 
long turnaround time for us to receive the 
results of the ADAMTS13 activity plasma 
infusions (case #2) and therapeutic plasma 
exchange (case #1) was initially used.

In agreement with others we found that 
TPE/plasma infusion was not effective in pa-
tients with chemotherapy-induced TMA [12, 
13, 14, 15, 16, 17, 18].

Patient 1 presented, among other symp-
toms, with bloody diarrhea. However, the Ta
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presence of diarrhea is not sufficient to ex-
clude other forms of TMA as ~ 30 – 40% of 
aHUS and TTP cases involve gastrointestinal 
symptoms, including bloody diarrhea [19, 
20].

Genetic mutations leading to dysregula-
tion of the alternative complement pathway 
or autoantibodies against complement regu-
latory proteins are identified in ~ 50% of 
aHUS patients [4]. However, genetic vari-
ants in complement regulatory proteins are 
also detected in patients with secondary, e.g., 
chemotherapy-induced, TMA [3]. In such 
patients, the underlying dysregulation of 
the alternative complement system may be 
unmasked by the applied drug, acting as a 
complement-activating trigger. Given the in-
complete penetrance of the genetic defects, 
complement-activating conditions play an 
important role for the development of TMA 
[3, 21, 22].

In most patients with TMA, a comple-
ment-activating trigger can be identified, and 
in 28% of patients with an activating trigger, 
a genetic risk mutation can be found [3].

The largest group of aHUS-associated 
mutations occurs in the CFH gene, and more 
than 60% of these mutations are clustered 
within the C-terminal recognition region [23, 
24, 25]. CFH is a central regulator of the al-
ternative pathway of complement by acting 
as a cofactor to factor I in the breakdown and 
inactivation of C3b [26].

In both of our patients, we identified 
a polymorphism in the CFH gene (c.1419 
G>A). This variant has a high allele frequen-
cy in the general population, and its isolated 
occurrence seems not to be associated with 
an increased aHUS risk [27].

The mechanism of gemcitabine-related 
TMA appears to be dose-related with a re-
ported incidence of 1%. Both immune-medi-
ated and cytotoxic injury have been proposed 
as underlying pathophysiology [12, 28]. Cy-
totoxic damage is the assumed mechanism in 
the few described cases of doxorubicin- and 
docetaxel-related TMA [5, 6, 29].

To date, several cases of the use of eculi-
zumab in chemotherapy-induced TMA have 
been reported, most of them regarding gem-
citabine (summarized in Table 1). Before 
the availability of eculizumab, a case series 
reported ~ 29 patients with suspected gem-
citabine-related TMA. Despite discontinu-

ation of gemcitabine, 7 (24%) patients pro-
gressed to end-stage renal disease (ESRD), 
and 3 (10%) patients developed chronic re-
nal failure [30]. These reports and our obser-
vation support induction therapy with eculi-
zumab in cases of persisting TMA.

Eculizumab is approved for lifelong 
therapy of aHUS. However, the possible side 
effects, especially the risk of meningococcal 
infection, the inconvenience of a bi-monthly 
application, and the significant costs have 
prompted interest in alternative dosing 
schedules and complete discontinuation. A 
recent review analyzed data from unpub-
lished cases, published case reports, clinical 
trials, and the Global aHUS Registry regard-
ing patient outcomes after eculizumab dis-
continuation [31]. Of the case reports, a sub-
sequent TMA manifestation was observed 
in 31% (16/52) of patients after eculizumab 
discontinuation. Data from five clinical tri-
als documented a relapse in 20% (12/61) of 
patients after cessation of therapy with eculi-
zumab with a median follow-up of 24 weeks. 
Terminal renal failure occurred in 5% (3/61) 
of the patients. Of note, relapse risk was in-
dependent of an identified genetic mutation, 
high-risk polymorphism, or autoantibody 
status. Data from the Global aHUS Registry 
found a relapse in 16% (12/76) of patients. 
In the cases described above, disease recur-
rence was unpredictable in both timing and 
severity [31].

The French aHUS Registry described a 
relapse rate after eculizumab discontinuation 
in 31% (12/38) of the patients [32]. The risk 
of recurrence was higher in the presence of 
complement gene variants. The highest risk 
was associated with CFH variants, whereas 
no relapse was seen in patients without iden-
tified mutations or negative CFH autoanti-
bodies. In case of relapse, early reinstitution 
(≤ 48 hours) of eculizumab resulted in rapid 
hematologic remission and a return of serum 
creatinine to baseline level [32].

While current evidence suggests a re-
lapse rate after eculizumab discontinuation 
of ~ 30%, there is little available clinical data 
for estimating the risk of relapse in chemo-
therapy-induced TMA [29].

In 2017, the KDIGO controversies con-
ference published recommendations for best 
treatment strategies in aHUS. No evidence 
was currently seen to support lifelong thera-
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py in all aHUS patients. The consensus sug-
gested that eculizumab withdrawal could be 
considered on an individual and risk-strati-
fied basis after a minimum treatment dura-
tion of 6 – 12 months to ensure recovery of 
endothelial damage [33]. Important risk fac-
tors for TMA relapses constitute an identi-
fied genetic mutation, former TMA episodes, 
or concomitant permanent or likely recur-
rent complement-activating condition. Close 
monitoring of renal function and hemato-
logical parameters after eculizumab with-
drawal is mandatory; however, there are no 
evidence-based data about the reliability of a 
specific parameter and the optimal frequency 
of testing [33].

In summary, our report supports the role 
of complement-directed therapy with eculi-
zumab as an effective therapeutic option in 
the management of refractory chemothera-
py-induced TMA. In our opinion, eculizum-
ab discontinuation is feasible in carefully 
selected patients after permanent removal of 
the complement-activating condition. Fur-
ther studies are needed to elucidate the role 
of genetic variants in complement-regulatory 
proteins in chemotherapy-induced TMA and 
to define parameters predictive of comple-
ment activation and likely TMA recurrence. 
Until then, the decision to withdraw eculi-
zumab has to be made on an individual basis.
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