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INTRODUCTION

Kawakawa Euthynnus affinis, also known as eastern little tuna or mackerel tuna, is a species of tuna
(Thunnini tribe, subgroup Pelagiaria clade) (Sanciangco et al., 2016). Tuna includes 15 species:
eight of genus Thunnus (true tuna) and seven “tuna-like” of four genera: Allothunnus, Auxis,
Euthynnus, and Katsuwonus.

E. affinis is widely distributed throughout the tropical and subtropical waters of the continental
shelf areas of the Indo-Pacific region (Collette, 2001). The fish reaches a length of 45–60 cm and
matures at approximately 3 years of age. It inhabits almost exclusively the upper layers of the
ocean (Bernal et al., 2017) and feeds mainly on small pelagic fish (Griffiths et al., 2009). E. affinis
makes up a substantial proportion of the commercial and artisanal fishery in many countries of
the Indo-Pacific region. The meat of E. affinis is of high quality (Mukundan et al., 1979) with a
comparatively high level of docosahexaenoic acid (Saito et al., 1999), but deteriorates rapidly if
not properly handled (Mukundan et al., 1979). E. affinis exhibits the swimming mechanics of true
tunas (Donley and Dickson, 2000) but has no swim bladder and differs from true tunas in red
muscle distribution, allometry, and vascular anatomy (Bernal et al., 2017). The ability to maintain
an elevated temperature in eye, brain, and red muscle has been suggested for the genus Euthynnus
(Dickson et al., 2000), but reports specific to E. affinis are lacking.

Compared to true tunas, E. affinis has received scant attention from researchers, and little is
known about its biology and physiology. This is likely to change, as E. affinis has recently become
of interest in marine aquaculture. E. affinis is the second tuna species whose full-life cycle culture in
captivity has been developed so far, including spawning, egg collection, incubation, larval rearing,
and grow-out to marketable size (Yazawa et al., 2015, 2016).

Aquaculture in general is currently facing significant challenges to increasing production while
maintaining sustainability (Bridson et al., 2020). Genetic improvement, via selective breeding and
genetic engineering, is a major focus of research and can yield rapid benefits to efficient production
in fish farming (Lu and Luo, 2020). To these ends, a high-quality species genome assembly is critical.
Despite recent advances in sequencing technologies and genomics that, in addition to basic fish
science (Lien et al., 2016; Hughes et al., 2018; Yuan et al., 2018; Du et al., 2020), have applications
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to aquaculture practices (Lu and Luo, 2020) and fisheries
(Benestan, 2020), genomic information of tuna species is
limited. To date, the genomes of only three tuna species are
available in the public repositories, none of which are assembled
to chromosome level. This situation exists within the entire
Pelagiaria clade that, along with tuna, includes the economically
important mackerel (Scombrini tribe) and bonito (Sardini tribe).

Here, we report the chromosome-level genome assembly of
kawakawa E. affinis (NCBI:txid8227). To our knowledge, this
is the first available chromosome-level assembly within the
Pelagiaria clade. The reported genome assembly is accompanied
by transcriptome assembly, genetic linkage map, annotation of
transposons, repetitive elements, and 23,059 genes. The dataset
provides a solid genome resource not only for further study of
E. affinis basic biology and genome-scale selective breeding but
also for enhancing both basic and applied research within the
Pelagiaria clade.

MATERIALS AND METHODS

Genome Sequencing and Assembly
The tissue sample was obtained from a single wild E. affinis
female caught off the coast of Ainan, Ehime Prefecture, Japan.
High-molecular-weight genomic DNA was isolated from fin
using NucleoBond R© AXG columns with NucleoBond R© Buffer
Set IV (Macherey-Nagel, Düren, Germany). The quantification
of gDNA was performed by Quant-iTTM dsDNA Broad-Range
Assay Kit (Invitrogen, Carlsbad, CA, USA), and molecular
weight was estimated on 0.75% agarose gel by pulsed-field
electrophoresis. The whole-genome sequencing library was
prepared using Chromium Genome Library & Gel Bead Kit v.
2 (10x Genomics, Pleasanton, CA, USA) as described in the
ChromiumGenome Reagent Kit v. 2 User Guide. The library was
sequenced on Illumina HiSeq X sequencing system using pair-
end (2 × 150 bp) sequencing. The sequencing generated 920.3
million (M) reads of total 138.04 Gb with 93.8% and 87.7% of
base having quality score Q> 30 in R1 and R2 reads, respectively.

Oxford Nanopore Technology (ONT) sequencing was used
to obtain long reads for scaffolding. Libraries were generated
using standard protocols from ONT with the SQK-LSK108
ligation sequencing kit (Oxford Nanopore Technologies,
Oxford, United Kingdom). GridION X5 sequencing was
performed according to the manufacturer’s guidelines using
three independent FLO-MIN107 (R9.5) flow cells. Base-calling
was done by Albacore v. 1.2.4. (Oxford Nanopore Technologies,
Oxford, United Kingdom). Raw reads were filtered by quality
value QV9 (--minqual 9), and heads and tails were 50 bp
trimmed each (--headtrim 50; --tailtrim50) in Yanagiba v. 1.0.0
(Taranto, 2017). The ONT sequencing generated 1.56M reads
with a total of 15.02 Gb, an average length of 9,650 bp, and N50
= 18,747 bp.

Prior to genome assembly, genome characteristics were
estimated based on Illumina reads. Jellyfish v. 2.2.6 (Marçais
and Kingsford, 2011) was applied to generate k-mer counting
and frequency distributions of 19-, 21-, and 23-mers. Genome
size, heterozygosity, and repeat content were estimated based
on the generated k-mer count distributions using GenomeScope

(Vurture et al., 2017) with high frequency k-mer cutoff= 10,000.
The estimate in GenomeScope is based on an equation that
models four evenly spaced negative binomial distributions of the
k-mer profile to measure the relative abundances of heterozygous
and homozygous, unique, and two-copy sequences (Vurture
et al., 2017). The genome size estimate ranged from 745.82Mb
(k = 19) to 755.80Mb (k = 23), heterozygosity rate was roughly
estimated to be 0.67% (67 SNPs per 10Kb), and repeat content
estimate ranged from 137.00Mb (k = 23) to 170.35 (k = 19;
Supplementary Table 1).

Assembly of Illumina reads was performed in Supernova
assembler v. 1.1.5 (10x Genomics, Pleasanton, CA, USA),
with default parameters, except maximum reads (--maxreads),
set at 386M input reads to achieve 56× raw coverage, as
suggested in the Supernova protocol. Assembled scaffolds were
loaded together with filtered ONT reads into PBJelly v. 15.8.24
(English et al., 2012) where identification of gaps >25 bp, gap
filling, and scaffolding were performed using default parameters.
In total, 11.31Mb of gaps (34.8% of initial gap size) were
successfully closed. The 787.60-Mb initial draft genome assembly
was presented in pseudohaplotype format and consisted of
19,850 scaffold sequences (>1Kb), of which 21.17Mb (2.69%)
represented unknown bases.

The redundancy of the genome assembly was reduced in
three steps: First, 8,191 duplicated scaffolds (24.24Mb) were
removed using dedupe.sh from BBTools v. 38.87 (Bushnell,
2014). Furthermore, scaffolds < 2Mb were clustered in CD-
HIT v. 4.8.1 (Li and Godzik, 2006) with identity threshold ≥

99% (-c 0.99) and word size -n 10. This step removed 1,044
scaffolds (5.1Mb). Finally, retained scaffolds were self-aligned in
LastZ v. 1.04 (Harris, 2007) with alignment identity threshold
≥ 99% (--identity = 99) and query coverage threshold ≥ 95%
(--coverage = 95). If two different scaffolds were self-aligned,
the longer one was retained and the shorter one was discarded.
In total, 9,250 scaffolds (29.4Mb; 3.7%) were removed from the
initial assembly because of potential duplication or redundancy.
The final scaffold-level assembly consisted of 10,600 scaf-folds
of 758.20Mb (19.89Mb gaps), N50 = 24.78Mb, and the longest
scaffold= 35.13 Mb.

Linkage Mapping and Chromosome-Level
Scaffolding
We obtained two types of linkage evidence: diploid, based on
full-sib family linkage analyses, and haploid, based on linkage
analyses of interspecific hybrids (Yoshitake et al., 2018) of
E. affinis female and T. orientalis male. Based on a genome
coordinate of each marker in the linkage maps, we anchored and
oriented scaffolds into pseudochromosomes.

To construct a diploid linkage map, DNA was extracted
from fin clips of parents and 94 of their progeny using
NucleoSpin R© Tissue (Macherey-Nagel, Düren, Germany). All
specimens were assessed for body weight, standard length, head
length, and body depth (Supplementary Table 2). Genotyping
by random amplicon sequencing-direct (GRAS-Di R©) libraries
of each specimen were prepared according to the protocol of
Hosoya et al. (2019). The final PCR products were pooled,
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purified using the MiniElute PCR Purification Kit (Qiagen,
Hilden, Germany), and applied for pair-end (2 × 76 bp)
sequencing on the IlluminaNextSeq 500. Library preparation and
sequencing were done by Bioengineering Lab. Co., Ltd., under
a license agreement, as GRAS-Di R© is patented by the Toyota
Motor Corporation (Aichi, Japan) (patent ID P2018-42548A).
The sequencing generated ∼160M (12.17 Gb) raw reads. These
were trimmed in TrimGalore v. 0.6.4 (Krueger, 2019) to remove
residues of indexes, nucleotides with quality ≤ Q20, and reads ≤
20 bp after trimming. In total, 64.81M reads in pairs (675,154
reads per sample on average) with a total length of 9.67 Gb
(100.72Mb per sample on average) were retained after trimming
(Supplementary Table 2). Trimmed reads of each sample were
mapped onto reference assembly using Bowtie2 v. 2.4 (Langmead
and Salzberg, 2012) allowing no mismatches in the read seed
(-N 0). The overall mapping rate was 92.2% with 74.9% of
reads mapped only once (Supplementary Table 2). Sorted BAM
files were created using samtools v. 1.10 (Danecek et al., 2021).
Variants were called in bcftools v. 1.10.2 (Danecek et al., 2021)
by mpileup and call commands using multiallelic-caller and
variants-only flags (-mv). Filtering of SNPs was performed in
vcftools v. 0.1.16 (Danecek et al., 2011) removing indels (--
remove-indels), SNPs with quality ≤ 30 (--minQ 30), SNPs not
in HWE (--hwe 0.05), and genotypes with depth ≤ 10 (--minDP
10). Minor allele frequency was set to 0.05 (--maf 0.05), retaining
5,853 SNPs of 368,265 raw variants. Genotypes were phased,
and both female and male linkage maps were constructed in
TMap v. 1.1 (Cartwright et al., 2007). All segregating markers
that showed polymorphism in at least one parent were used.
The ratio of marker segregation was calculated by chi-squared
test. Markers showing significantly distorted segregation (p-
value < 0.001) were excluded from the map construction. A
minimum logarithm of odds (LOD) threshold of 5.0 was selected
to assignmarkers to 24 linkage groups. Recombination rates were
calculated by the multipoint-likelihood maximization, and map
distances were converted by Kosambi mapping function. A total
of 852 of 1,332 polymorphic loci were assigned to 24 linkage
groups covering a total length of 1,554.7 cM of the E. affinis
genome (Supplementary File 1).

To obtain haploid linkage evidence, interspecific hybrids of
E. affinis and T. orientalis were produced. Briefly, eggs of a
single E. affinis female were mixed with cryopreserved sperm
of T. orientalis provided by the Aquaculture Research Institute,
Kindai University, Japan. Seawater was immediately added to
activate gametes and induce fertilization. After 1–2 h, eggs with
proceeding cleavage were selected and transferred to the hatching
tank at 24◦C. After 36–40 h, 202 individuals that hatched or died
after reaching somite formation were separately transferred to
a 1.5-ml tube and stored in 100% ethanol. DNA was extracted
from parents and F1 hybrids using a NucleoSpin Tissue XS
kit (Macherey-Nagel, Düren, Germany). A sequencing library
was prepared from 135 specimens, which provided sufficient
DNA for use of the Nextera DNA Library Preparation Kit
and Nextera Index Kit (Illumina) following the manufacturer’s
protocols. The library was sequenced on two lines of Illumina
HiSeq X sequencing system. The sequencing resulted in 2,274M
sequencing reads with a total of 342 Gb. Reads were mapped

onto a reference obtained by combining E. affinis scaffold-level
assembly and T. orientalis genome (Suda et al., 2019) using BWA
mem v. 0.7.15 (Li and Durbin, 2009). Mapped reads were sorted
in samtools v. 1.10 (Danecek et al., 2021), and variants were called
in bcftools v. 1.10.2 (Danecek et al., 2021) by mpileup and call
commands. Linkage evidence of scaffolds was obtained through
linkage analysis of hybrids in SELDLA v. 2.0.9 (Yoshitake et al.,
2018) using 13,403,357 SNPs specific to E. affinis.

Female and male linkage maps and scaffold linkage evidence
were transformed to BED files and merged. Pseudochromosomes
were then reconstructed using ALLMAPS v. 1.1.7 from the JCVI
utility libraries v. 0.7.5 (Tang et al., 2015) with inter-scaffold gaps
set to a fixed size of 100 Ns. The package was used to merge bad
files and to anchor, order, and orient genomic scaffolds using
default parameters. Overall, 387 scaffolds with total length of
685.79Mb (90.7% of scaffold-level assembly) were anchored onto
24 pseudochromosomes leaving 10,213 scaffolds of total length
72.42Mb unplaced. Only two unplaced scaffolds had length >

1Mb (Supplementary Figure 1). The final assembly contained
10,237 scaffolds of 758.24Mb (19.96Mb gaps), N50 = 29.18Mb,
and longest scaffold= 35.73Mb (Table 1).

mRNA Sequencing and Transcriptome
Assembly
Total RNA was extracted from eight tissues (brain, liver, kidney,
ovary, testis, spleen, gill, muscle, and intestine) using TRIzol
(Invitrogen, Carlsbad, CA, USA) and the NucleoSpin R© RNA
Plus extraction kit (Macherey-Nagel, Düren, Germany) following
the manufacturer’s protocols for each tissue. RNA extracts were
quantified using a NanoPhotometer N50 (Implen, München,
Germany) and subsequently combined in equimolar quantities
into a single pool for sequencing. RNA sequencing library
was prepared by MGIEasy RNA Directional Library Prep Set
(MGI Tech Co Ltd.). Pair-end (2 × 150 bp) sequencing was
performed on a DNBSEQ-G400 sequencer (MGI Tech Co Ltd.).
All procedures were conducted according to the manufacturer’s
protocols. The sequencing generated ∼682M (102.53 Gb)
raw reads. Quality metrics for sequencing reads were initially
examined in FastQC v. 0.11.9. (Andrews, 2020). Rare, possibly
erroneous, k-mers were removed in Rcorrector v. 1.0.4 (Song
and Florea, 2015) with default parameters, and adapters and low-
quality bases were trimmed in TrimGalore v. 0.6.4 (Krueger,
2019) with parameters --length 36 -q 5 --stringency 3 -e 0.1
retaining ∼614M (92.18 Gb) pair-end reads. The FastQC results
revealed deviation from normal distribution of GC content,
and a high number of overrepresented sequences, possibly due
to incomplete polyA capture during library preparation. Thus,
trimmed reads were mapped against ribosomal RNA (rRNA)
sequence database SILVA release 128 (Quast et al., 2012) using
Bowtie2 v. 2.4 (Langmead and Salzberg, 2012) with parameters
--nofw --quiet -D 20 -R 3 -N 0 -L 20 -i S,1,0.50 to remove
rRNA contaminants. The 359.6M (53.9 Gb) reads that did not
map (--un-conc-gz) to the SILVA database were processed for de
novo assembly in Trinity v. 2.11.0 (Grabherr et al., 2011) with
default k-mer size 25 and --SS_lib_type RF --min_contig_length
300 flags. Initial transcriptome assembly resulted in 271,656
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TABLE 1 | Descriptive statistics of kawakawa Euthynnus affinis genome

assembly, transcriptome assembly, repetitive DNA annotation, gene prediction,

and functional annotation with completeness assessment results.

Genome assembly

Number of sequences 10,237

Total length (bp) 758,243,246

N50 (bp) 29,176,746

Max scaffold length (bp) 35,734,308

GC content (%) 39.78

Gaps (bp) 19,960,513

BUSCO (%) C = 97.1; S = 96.1;

D = 1.0; F = 1.0; M = 1.9

Transcriptome assembly

Number of sequences 49,510

Total length (bp) 94,582,375

N50 (bp) 3,622

Max contig length (bp) 56,879

BUSCO (%) C = 91.7; S = 90.3;

D = 1.4; F = 1.3; M = 7.0

Repeat annotation

SINEs (bp) 1,061,850 (0.14%)

LINEs (bp) 22,627,927 (2.98%)

LTR elements (bp) 6,260,411 (0.83%)

DNA transposons (bp) 44,033,659 (5.81%)

Small RNA (bp) 570,727 (0.08%)

Satellites (bp) 101,725 (0.01%)

Simple repeats (bp) 19,817,678 (2.61%)

Low complexity (bp) 3,166,036 (0.42%)

Unclassified (bp) 94,139,074 (12.42%)

Total (bp) 194,013,215 (25.59%)

Gene annotation

Number of predicted genes 23,059

Mean length (bp)

Gene 10,511

Exon 244

Intron 939

CDS 1,592

Mean exon per gene 10

% of genome covered by genes 32.0

% of genome covered by CDS 4.8

BUSCO C = 89.1; S = 87.8;

D = 1.3; F = 3.4; M = 7.5

Functionally annotated total 21,313 (92.4%)

Swissport 19,750 (85.6%)

trEMBL 21,310 (92.4%)

NCBI NR 21,077 (91.4%)

InterPro 17,718 (76.8%)

BUSCO = benchmarking universal single copy orthologs; C = complete; S = complete

and single copy; D = complete and duplicated; F = fragmented; M = missing; LINEs

= long interspersed nuclear elements; LTR = long terminal repeat; SINEs = short

interspersed nuclear elements.

contigs of 242.43Mb, N50 = 1.20Kb. These were transferred to
super transcripts (Davidson et al., 2017) by Trinity’s v. 2.11.0
Trinity_gene_splice_modeler.py, and further redundancy was
reduced by Bellerophon pipeline v. 1.0 (Kerkvliet et al., 2019),

removing minimally expressed (transcripts per million cut off =

1) and highly identical (95%) contigs (CDHIT-EST -c 0.95). Final
transcriptome assembly consisted of 49,510 contigs of 94.58Mb,
N50= 3.62Kb, with the longest contig= 56.88Kb (Table 1).

Repeat and Gene Annotation
A de novo repeat library was generated using RepeatModeler
v. 2.0.1 (Flynn et al., 2020) and MITE Tracker v. 1.0.0
(Crescente et al., 2018) with default parameters. The genome
was then screened for repeats and low complexity regions by
RepeatMasker v. 4.1.1 (Smit et al., 2015) in two runs using (i)
de novo-generated repeat library and (ii) a Dfam database of
interspersed repeats, release 3.3 (Storer et al., 2021). Results of
the runs were analyzed together to generate final non-redundant
repeat annotation. Repetitive regions accounted for 25.59%
(194.01Mb) of genome assembly (Figure 1A; Table 1). These
included 12.42% unclassified repeats, 3.95% retrotransposons,
5.81% DNA transposons, 0.08% small RNAs, 0.01% satellites,
2.61% simple repeats, and 0.42% low complexity regions
(Supplementary File 2).

Gene models were predicted in MAKER v. 3.01.03 (Holt
and Yandell, 2011) in three successive runs. Prior to the first
run, complex repeats were retrieved from the repeat annotation
file and submitted to MAKER as pre-identified repeat elements
(rm_gff) while still enabling the software to identify and soft
mask simple repeats internally (Card, 2017). In this approach,
complex repeats are hard masked so that they do not confound
the ability to identify coding genes, while simple repeats remain
available for inclusion in gene annotations, as many protein-
coding genes contain runs of low-complexity sequence (Toll-
Riera et al., 2011). During the first run, the E. affinis transcripts
were aligned to the genome by BLASTN (Camacho et al., 2009)
and protein sequences of Danio rerio, Gasterosteus aculeatus,
Hippocampus comes, Oreochromis niloticus, Oryzias latipes,
Seriola dumerili, Sparus aurata, and Takifugu rubripes from the
Ensembl database v. 103 (Yates et al., 2019) along with Thunnus
orientalis (Yasuike et al., 2016) by BLASTX (Camacho et al.,
2009). Subsequently, BLAST hits were polished by Exonerate v.
2.4.7. (Slater and Birney, 2005) est2genome and protein2genome.
All filtering statistics for BLAST and Exonerate were as the
default by MAKER. The second and third runs of MAKER
utilized gene models from the first, followed by the second,
runs to train ab initio gene prediction tools SNAP v. 2013-
02-16 (Korf, 2004) and Augustus v. 3.3.3. (Stanke and Waack,
2003). This bootstrap process allows to iteratively improve the
performance of ab initio gene predictors as they require existing
gene models on which to base prediction parameters. SNAP was
retrained using gene models with an annotation edit distance
(Holt and Yandell, 2011) (AED) ≤ 0.25 and amino acid length of
≥ 50. BUSCO v. 5.1.2 (Simao et al., 2015) with --long argument
and actinopterygii_obd10 lineage dataset was used to retrain
Augustus using genomic regions of RNA annotations from the
previous run including an additional 1,000 bp on each side
as input file. Both SNAP and Augustus were run with default
parameters specified in MAKER. Only gene models with AED <

0.5 were retained in the final annotation set.
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FIGURE 1 | Characterization of the draft genome assembly of kawakawa Euthynnus affinis. (A) Summary of the genome annotation of kawakawa Euthynnus affinis.

The tracks from inside to outside: GC content (%), negative-strand gene abundance (blue), positive-strand gene abundance (red), negative strand repetitive DNA

abundance (green), positive-strand repetitive DNA abundance (orange), 24 pseudochromosomes (colors within each pseudochromosome denote different scaffolds).

Window size = 1Mb. (B) Chromosome level synteny between kawakawa Euthynnus affinis (right) and Japanese rice fish Oryzias latipes (left) based on 2,989

single-copy orthologs. (C) Number of orthogroups shared between each species pair of eight fish. (D) UpSet plot of intersections between orthogroups in different

species. The bars show the number of common orthogroups for a given species or a group of species (dots connected by lines below the x-axis). In total, 10,586

orthogroups are common to all species, while 1,129 orthogroups are unique to E. affinis and T. orientalis (blue). Euthynnus affinis–specific orthogroups (109) are

shown in yellow. The species lacks 892 orthogroups found in all other species (red). Intersections with fewer than 100 orthogroups are not shown. (E) Orthogroup size

and proportion of genes assigned to orthogroups per species. Yellow = number of genes; blue = number of genes in orthogroups; orange = number of orthogroups

containing a given species; gray = number of unassigned genes.
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For functional annotation of predicted genes, predicted
protein sequences were mapped against UniProtKB/Swiss-Prot
(The UniProt Consortium, 2021) and NCBI non-redundant
(O’Leary et al., 2016) protein databases using BLASTP (Camacho
et al., 2009) with an e-value threshold of 1e−6. Additionally,
protein motifs, domains, and signatures were annotated using
Interproscan v. 5.48 (Jones et al., 2014), and Gene Ontology
(GO) terms were obtained from the corresponding InterPro
entry. Kyoto Encyclopedia of Genes and Genomes Orthologs
(KOs) were assigned to predicted proteins using KofamKOALA
(Aramaki et al., 2019) with an e-value threshold of 1e−3.

In total, 23,059 putative genes spanning 32.0% of the genome
were predicted (Figure 1A; Table 1). We found 21,313 (92.4%)
predicted genes to match at least one of the databases (Table 1),
and at least one GO and/or KO term was retrieved for 11,429 and
14,796 predicted genes, respectively.

DATA VALIDATION

To validate the structural accuracy of the genome assembly
and transcriptome assembly, Illumina and DNBSEQ pair-end
sequencing reads were mapped back to the draft genome and
transcriptome, respectively, using Bowtie2 v. 2.4 (Langmead and
Salzberg, 2012) with default parameters. A total of 98.59% of
the Illumina reads mapped to the genome with 97.4% of bases
being covered >5 times. Mapping rate of clean DNBSEQ reads
mapped to the transcriptome was 91.14% with 93.77% of bases
being covered >5 times.

Completeness of both assemblies was accessed by two
approaches. First, a total of 227 (97.42%) and 230 (98.71%)
core vertebrate genes (CVGs) from the complete set of 233
CVGs (Hara et al., 2015) were identified in the genome and the
transcriptome, respectively, by gVolante (Nishimura et al., 2017).
Then, BUSCO v. 5.1.2 (Simao et al., 2015) was used to assess
the presence of 3,640 actinopterygian single-copy orthologs
(actinopterygii_odb10 lineage dataset) in both assemblies. In the
genome, 3,534 (97.1%) single-copy orthologs were identified,
of which 3,498 (96.1%) were complete and single copy. In
the transcriptome, 3,338 (91.7%) single-copy orthologs were
identified, of which 3,288 (90.3%) were complete and single copy
(Table 1).

To verify the accuracy of the scaffold arrangement in
24 pseudochromosomes, the genomic locations of single-
copy orthologs in E. affinis and O. latipes were compared
and visualized in shinyCircos v. 1.0 (Yu et al., 2018). Only
unduplicated orthologs co-identified in both species by BUSCO
v. 5.1.2 (Simao et al., 2015) were used for comparison.

In summary, 2,561 of 2,989 single-copy orthologs
were localized on the same chromosomes in both species
(Figure 1B), revealing the high consistency of their genomes.
Based on this result, the first 24 scaffolds of E. affinis
genome assembly were numbered in concordance with
O. latipes chromosomes.

The predicted gene set was assessed for completeness by
the method used for genome and transcriptome assembly. The
predicted gene set contained 215 (92.3%) of 233 CVGs (Hara

et al., 2015) and 3,245 (89.1%) of 3,640 actinopterygian single-
copy orthologs (Table 1). The predicted genes were clustered
with those of seven fish species A. testudineus, D. rerio, G.
aculeatus, H. comes, O. latipes, S. lalandi, and T. orientalis
in OrthoFinder2 v. 2.3.8 (Emms and Kelly, 2015) to identify
orthologous groups, i.e., a set of genes descended from a single
gene in the last common ancestor (Emms and Kelly, 2015). The
results were visualized in TBtools (Chen et al., 2020) and ggplot2
(Wickham, 2016).

In total, 181,780 of 192,254 genes from eight species were
clustered into 21,003 orthogroups with 10,586 orthogroups
being shared by all species (Figure 1D). Of 23,059 predicted
genes of E. affinis, 20,749 were assigned to 16,595 orthogroups
(Figures 1C,E) with 109 (311 genes) being unique to E. affinis.
Species of the Thunnini tribe, E. affinis and T. orientalis,
possessed 1,129 unique orthogroups (Figure 1D). In contrast,
892 orthogroups not detected in E. affinis were identified in all
other species. This suggests that, although the genes belonging
to these orthogroups were not captured during gene annotation,
they are likely present in the E. affinis genome.

The present dataset was confirmed to be (i) accurate; (ii)
sufficiently complete by current standards; (iii) consistent with
genomic recourse of other closely related species; and (iv) reliably
reusable for cooperative applications within the Thunnini tribe as
well as within the entire Pelagiaria clade.

PHYLOGENETIC ANALYSES

Single-copy orthologs were identified in the de novo
assembled E. affinis genome and across genomes of
Danio rerio (GCF_000002035.6) and 15 representative
species of the Percomorpha clade: Anabas testudineus
(GCF_900324465.2), Brotula barbata (GCA_900303265.1),
G. aculeatus (GCA_000180675.1), Macroramphosus scolopax
(GCA_901007825.1), O. niloticus (GCF_001858045.2),
O. latipes (GCA_002234675.1), Paralichthys olivaceus
(GCA_001904815.2), Periophthalmus magnuspinnatus
(GCF_009829125.1), S. lalandi (GCA_003054885.1), S. aurata
(GCF_900880675.1), Syngnathus acus (GCF_901709675.1),
Thalassophryne amazonica (GCA_902500255.1), T. albacares
(GCA_900302625.1), T. orientalis (GCA_009176245.1), and T.
thynnus (GCA_003231725.1) by BUSCO v. 3.0.2 (Simao et al.,
2015). A total of 1,178 complete unduplicated BUSCO genes
identified across genomes of all the above species were separately
aligned in MAFFT v. 7.475 (Katoh and Standley, 2013) using the
BLOSUM62 matrix of substitutions (--bl 62). Each alignment
was trimmed in trimAl v. 1.4.1 (Capella-Gutiérrez et al., 2009)
to remove sites of unclear homology using the heuristic method
automated1. The resulting alignments were concatenated by
catsequences v. 1.3. (Creevey, 2021) (Supplementary File 3),
and the species tree was inferred in IQ-TREE v. 2.0.3 (Nguyen
et al., 2015) letting ModelFinder (Kalyaanamoorthy et al., 2017)
select the optimal substitution model for each partition prior to
running the tree interface with 1,000 ultrafast bootstrap replicates
(Hoang et al., 2018) and 1,000 replicates for the Shimodaira-
Hasegawa-like approximate likelihood ratio test (SH-aLRT)
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(Guindon et al., 2010). The divergence time was estimated
with MCMCTree in the package PAML 4.9j (Yang, 1997) using
parameters with independent clock rates. Calibration divergence
times of A. testudineus from S. lalandi (91–102 million years ago
[Mya]), T. orientalis from O. latipes (106–144 Mya), and D. rerio
from Percomorpha (206–252 Mya) obtained from TimeTree
database (Kumar et al., 2017) were used as time scales to estimate
the divergence time of E. affinis from other percomorph species.
The final tree was drawn in FigTree v. 1.4.4 (Rambaut, 2018).

Observed phylogenetic relationships were consistent
with recent studies of phylogeny of the Percomorpha clade
(Sanciangco et al., 2016; Friedman et al., 2019). The divergence
time of E. affinis from a common tuna ancestor was inferred to be
∼46.9 Mya (Supplementary File 4; Supplementary Figure 2).
This is more than twice the age estimated in the TimeTree
database (Kumar et al., 2017) but in agreement with the most
recent study by Friedman et al. (2019).
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