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Abstract: Interactions between proteins and DNAs play essential roles in many biological processes.
DNA binding proteins can be classified into two categories. Double-stranded DNA-binding proteins
(DSBs) bind to double-stranded DNA and are involved in a series of cell functions such as gene
expression and regulation. Single-stranded DNA-binding proteins (SSBs) are necessary for DNA
replication, recombination, and repair and are responsible for binding to the single-stranded DNA.
Therefore, the effective classification of DNA-binding proteins is helpful for functional annotations
of proteins. In this work, we propose PredPSD, a computational method based on sequence
information that accurately predicts SSBs and DSBs. It introduces three novel feature extraction
algorithms. In particular, we use the autocross-covariance (ACC) transformation to transform
feature matrices into fixed-length vectors. Then, we put the optimal feature subset obtained by
the minimal-redundancy-maximal-relevance criterion (mRMR) feature selection algorithm into the
gradient tree boosting (GTB). In 10-fold cross-validation based on a benchmark dataset, PredPSD
achieves promising performances with an AUC score of 0.956 and an accuracy of 0.912, which are
better than those of existing methods. Moreover, our method has significantly improved the prediction
accuracy in independent testing. The experimental results show that PredPSD can significantly
recognize the binding specificity and differentiate DSBs and SSBs.

Keywords: SSBs (single-stranded DNA-binding proteins); DSB (double-stranded DNA-binding
proteins); protein sequence; gradient tree boosting; binding specificity

1. Introduction

Protein–DNA interaction is a crucial prerequisite for cell function, such as gene replication,
transcription, and protein expression translation [1–4]. DNA can be categorized into single-stranded
DNA (ssDNA) and double-stranded DNA (dsDNA). Accordingly, double-stranded DNA-binding
proteins (DSBs) specifically bind with dsDNA, while single-stranded DNA-binding proteins (SSBs)
specifically bind with ssDNA [5,6].

Knowledge about DNA-binding residues and binding specificity are important references for
rational drug design [7–10]. The availability of binding specificity encourages researchers to focus
on analyzing the specific binding sites of DSBs [11–15], the classification prediction of DNA-binding
proteins [16–18], the function prediction of DNA-binding proteins [19–22] and the specificity of a protein
to DNA binding [23,24], etc. However, the few existing methods for large-scale identification of DSBs
and SSBs need further improvement. There are three main classification methods: (1) experimental
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techniques [25,26], (2) structure-based methods [27], and (3) sequence-based methods [28–30]. However,
there are few large-scale identification methods for DSBs and SSBs.

In many earlier studies, biological functions have been mainly studied by X-ray crystallography,
NMR, and filter binding assays [31–33]. However, the use of these experimental techniques for
identifying DSBs and SSBs require expensive experimental setups and massive human resource
allocations and are time-consuming. Hence, the development of computational methods has been
emphasized by several investigators in the field. Initially, Wang et al. [27] proposed a support vector
machine (SVM) method (Wang, 2014) with structure-based features related to surface clefts and
OB-folds [30,34] as the input features. The results showed that this method achieved an accuracy of
0.8251 and an MCC of 0.6632. Because the gap between available sequences and structures of DNA
binding proteins in UniProtKB/Swiss-Prot (www.uniprot.org) and the PDB (www.rcsb.org/pdb/) has
been growing exponentially, structure-based methods can no longer meet the needs of high-throughput
research [35,36]. Subsequently, Wei Wang et al. [37] developed a machine learning method (Wang,
2017) with only single sequence information such as overall amino acid composition (OAAC) features,
dipeptide compositions, and position-specific scoring matrix profiles (PSSMs). The results showed an
accuracy of 88.7% and an AUC (area under the curve) of 0.919 on the benchmark datasets.

Although these computational prediction methods have been gradually developed, there are
still some problems that make DSB and SSB classification prediction a very challenging task. On the
one hand, the performance of commonly used feature extraction methods is still unsatisfactory, and
the sequence information cannot be fully utilized to extract more effective features. On the other
hand, novel feature selection algorithms and high-performance ensemble learning algorithms, such as
gradient tree boosting (GTB), are rarely used in this field.

In this work, we have developed a novel approach, PredPSD, for classifying DSBs and SSBs
through a more complete combination of sequence features, such as local structural entropy (LSE),
NetSurfP, and DisEMBL. The results show an accuracy of 91.2% and an AUC (area under the curve) of
0.956 on benchmark datasets and indicate that the GTB algorithm and novel feature combinations are
essential determinants in the classification of DSBs and SSBs. Furthermore, our algorithm achieves a
significantly improved overall performance on an independent dataset. The workflow of our method
is shown in Figure 1.

www.uniprot.org
www.rcsb.org/pdb/
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2. Results

2.1. Analysis of mRMR Results

We calculated a total of 1510 sequence features for each protein, including local structural entropy
(LSE), NetSurfP, DisEMBL, overall amino acid composition (OAAC), dipeptide composition, PSSM
profiles, and physicochemical properties. The maximum correlation between feature and category is
computed. Different subsets of characteristics are obtained by setting different thresholds. The number
of features changes with the threshold value, as shown in Figure 2.

Through the verification of the machine learning algorithm in terms of time complexity and
accuracy, we finally set the threshold as 0.005. Therefore, we obtained an optimal set of 207 features.
These selected features are shown in Supplementary Table S1. We also compared the experimental
performance before and after using the feature selection algorithm. Specific experimental performance
comparison results are shown in Supplementary Table S2 and S3.

To evaluate the mRMR method, we calculated the ratio of the number of selected features
to the number of candidate features. A pie chart of the selected feature extraction methods and
the corresponding ratios is illustrated in Figure 3, which shows that the total probability of the
selected features obtained by NetSurfP, LSE, and DisEMBL is 43%. As expected, the introduction
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of sequence-based features has a strong correlation between the classification of two different types
of proteins.
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Figure 2. Taking the maximum correlation score as a threshold, the number of feature columns changes
with the threshold value.
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Figure 3. Probability of each feature being selected.

Through the analysis of 207 optimal features, we found that most of the top 10 selected features
are obtained by NetSurfP and PSSM. Among the 207 features, the cumulative score of dipeptide
composition features was close to that of PSSM features, ranking third. This shows the importance of
global sequence information. The average score of NetSurfP was much higher than other features,
suggesting that the binding specificity of single-stranded and double-stranded DNA-binding proteins
is closely correlated with structural information. The average value of the maximum correlation scores
of each feature is shown in Figure 4.
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Figure 4. The top five maximum correlation scores of features obtained by different feature extraction
methods were calculated.

2.2. Feature Extraction Results Analysis

DisEMBL is a method for predicting disordered regions in protein sequences with high accuracy.
It profits from predicting protein disorder according to multiple definitions, including COILS, REM465,
and HOTLOOPS [38]. To observe the prediction of the above three concepts more intuitively, we used
a histogram to compare the prediction results processed by ACC algorithm, as shown in Figure 5.
By observing the chart, we can easily find that the average scores of the three properties on SSBs are
slightly higher than those on DSBs. This specificity is what we use to distinguish the two proteins.
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Figure 5. Average scores of DisEMBL’s three properties on SSBs and DSBs.

In addition, the feature matrix of each protein obtained by NetSurfP contains five properties in
total, and 30-dimensional row vectors are obtained after five iterations of ACC transformation. Overall,
it can be concluded that the scores of three of the properties of DSBs (relative surface accessibility
(RSA), absolute surface accessibility, and probability for beta-strand) are significantly higher than those
of SSBs. Although SSBs and DSBs have many similar properties, proteins can specifically recognize
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single and double-stranded DNA and bind to the right place. The essential reason may be related to
their structural characteristics. Therefore, NetSurfP plays a crucial role in the prediction.

2.3. Predictive Performance of Features

To further verify the predictive performance of the seven features, we constructed a classification
model for each feature by combining the GTB algorithm with 10-fold cross-validation. Figure 6 depicts
the ROC curves for the different features.
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Different features have different abilities to identify SSBs and DSBs correctly. Consistent with
the analysis of the feature selection results, PSSM had the optimal predictive ability for positive and
negative samples, followed by NetSurfP. Overall, each feature plays an indispensable role in the
prediction. Because of the low dimension of the feature matrix of features AAindex, LSE, and DisEMBL,
they are not individually outstanding. However, they have functional complementarity and thus
can play better roles when combined. For performance evaluation, we used several widely used
measurement methods: accuracy, sensitivity (SN), specificity (SP), F1-score (F1), Matthew’s correlation
coefficient (MCC), and area under ROC curve (AUC). Table 1 shows that the three features with the
highest accuracies are PSSM, NetSurfP, and dipeptide, reaching 0.913, 0.874, and 0.836, respectively.
On the one hand, it shows that the feature extraction algorithm we selected is very effective. On the
other hand, it also reflects the fit between the GTB algorithm and this study.
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Table 1. Performance of classification models derived from different types of features

Features Accuracy SN SP AUC MCC F1

PSSM 0.913 0.814 0.968 0.968 0.809 0.870
AAindex 0.759 0.514 0.899 0.810 0.457 0.604
OAAC 0.778 0.572 0.895 0.843 0.503 0.649

NetSurfP 0.874 0.780 0.927 0.938 0.723 0.817
LSE 0.668 0.430 0.782 0.646 0.219 0.456

Dipeptide 0.838 0.645 0.948 0.912 0.644 0.741
DisEMBL 0.682 0.421 0.818 0.670 0.258 0.477

2.4. Comparison with Previous Work

To our knowledge, there is only one existing study on SSB and DSB prediction based on sequence
information, which uses two machine learning algorithms, SVM (Wang 2017_SVM) and RF (Wang
2017_RF). Furthermore, the accuracy of the two methods trains the model on Uniprot1065 dataset
with an accuracy of 0.860 and 0.887, respectively. Finally, due to the defects of high sensitivity and
low specificity in the performance of the model based on random forest, the SVM model was taken as
the optimal model. In this paper, based on our larger dataset, we compare PredPSD with the above
two methods. Overall, our method is superior to the existing methods in terms of accuracy, specificity,
and sensitivity.

The results are presented in Figure 7 and Table 2. In general, we can see that our PredPSD method
shows an advantage in all six metrics (Accuracy, SN, SP, F1, MCC, and AUC) on the training set. The
optimal predictive energy of our method in the training dataset after redundancy removal is as follows:
accuracy of 0.912, SN of 0.784, SP of 0.975, AUC of 0.956, and MCC of 0.799. By comparing with Wang
2017_SVM, we can see that the F1 score of our PredPSD approach has been significantly improved by
14.5%.
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Figure 7. Performance comparison between our method and three existing classification methods on
SSBs and DSBs from our training set. The existing classification methods are Wang 2017_SVM (based
on sequence information and an SVM algorithm) and Wang 2017_RF (based on sequence information
and an RF algorithm), all proposed by Wang W. et al. To our knowledge only these two methods are all
relevant to this study.
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Table 2. Performance of all feature descriptors with GTB algorithms based on our training set and
comparisons with existing methods

Features Accuracy SN SP AUC MCC F1

PredPSD 0.912 0.784 0.975 0.956 0.799 0.854
Wang 2017_SVM 0.855 0.585 0.972 0.927 0.643 0.709
Wang 2017_RF 0.784 0.578 0.902 0.827 0.518 0.661

2.5. Comparative Analysis of Independent Test Results

We used the trained model to complete the test on the independent dataset to further verify the
generalization ability of the model and avoid overfitting. The processing of the independent dataset is
consistent with that of the training set. The exception is that no additional feature selection is carried
out for the independent dataset, and the feature matrix of the independent dataset is reconstructed
directly using the feature selection results obtained from the training set. The experimental results
show that PredPSD presents the best predictability based on the combination of all features: accuracy
of 0.770, SN of 0.512, SP of 0.855, AUC of 0.708, and F1 of 0.525. The ROC curve is shown in Figure 8.
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The information in the figure indicates that PredPSD is superior to the existing optimal method
of predicting SSBs and DSBs based on sequence information in the independent dataset. Detailed
results of the comparisons between our approach and existing methods are shown in Table 3. From the
overall analysis of the method comparison table, it can be seen that PredPSD has the most prominent
comprehensive performance among the three methods. First, compared with method Wang 2017_SVM,
our accuracy improved by 6.7%, and other evaluation indexes are greatly improved. The specificity
and AUC values of the two methods are similar, but the sensitivity, MCC, and F1 are all improved by
more than 10%. In particular, the MCC value increased by 18.8%. Second, although the specificity
of Wang 2017_RF method is less than 0.05 different from our method, the sensitivity is only 0.341, so
it has low validity. Finally, by comparing the performance of the three algorithms on the training
set and the independent dataset, the results show that our model has stronger generalization ability.
Furthermore, we annotate all the SSBs we used for classification by using the InterProScan tool. Then,
proteins belonging to OB folds, KH domains, RRMs, and whirly domains were obtained by processing
annotation information. Finally, the prediction results show that PredPSD has higher recognition
ability for proteins with OB folds and whirly domains. However, the prediction accuracy of proteins



Molecules 2020, 25, 98 9 of 16

with KH domains and RRMs structures is low. The reason may be that KH domain and RRMs
can also specifically bind ssDNA sequences specifically, but these domains generally have a smaller
ligand-binding site than OB folds and thus specify for fewer positions [39].

Table 3. Performance of all feature descriptors with GTB algorithms based on the independent dataset
and comparisons with existing methods.

Features Accuracy SN SP AUC MCC F1

PredPSD 0.770 0.512 0.855 0.708 0.373 0.525
Wang 2017_SVM 0.703 0.366 0.814 0.692 0.185 0.380
Wang 2017_RF 0.721 0.341 0.847 0.620 0.203 0.378

3. Materials and Methods

3.1. Datasets

For sequence-based feature calculation, we extracted 8833 DNA-binding proteins. Which contains
2136 DSBs and 339 SSBs obtained from the literature of Wang et al. [37] And the other part is collected
from UniProtKB/Swiss-Prot (www.uniprot.org). To eliminate redundancy, CD-HIT was used to remove
proteins with a sequence similarity > 70% [40]. Finally, we obtained a dataset of DNA binding proteins
containing 1271 SSBs and 2252 DSBs. We took SSBs as the positive sample dataset and DSBs as the
negative sample dataset.

Furthermore, to evaluate the classification performance and avoid overfitting, we obtained a
non-redundant independent set of 124 DSBs and 41 SSBs from the PDB (www.rcsb.org/pdb/), which
has the following characteristics: (1) sequence similarity with the training set is less than 40%; (2)
sequence length is greater than 40 residues; (3) structure of each DNA-binding protein is known, and
the resolution is better than 3 Å.

3.2. Feature Extraction

Selecting representative features is a crucial step because they directly determine prediction
performance [41,42]. Seven sequence-based feature extraction methods were used: local structural
entropy (LSE), NetSurfP, DisEMBL, overall amino acid composition (OAAC), dipeptide composition,
PSSM profiles, and physicochemical properties. These methods have proven to be associated with the
classification of DSBs and SSBs or have been used in similar fields. A more detailed description of how
to extract and encode these different sequence-based features is provided below.

3.2.1. Local Structural Entropy (LSE)

LSE describes the conformational isomeric degree sequence of small proteins [43,44], which can
provide useful information for protein classification. We used a method of computing LSE directly
from sequence information.

3.2.2. NetSurfP

NetSurfP [45] is a tool that has been used to predict the secondary structure and surface
accessibility of proteins based on sequence information [46]. It is an architecture composed of neural
network [47] training on proteins with known structures. Local structural features such as relative
surface accessibility, probability for alpha-helix, and probability for beta-strand play important roles in
revealing the function of proteins and can also be used for protein classification.

3.2.3. DisEMBL

DisEMBL [38] is a method for predicting disordered regions in protein sequences. Disordered
regions of proteins usually contain short linear peptide motifs such as SH3 ligands and targeting
signals that are important for the classification of proteins by function.

www.uniprot.org
www.rcsb.org/pdb/


Molecules 2020, 25, 98 10 of 16

3.2.4. Overall Amino Acid Composition (OAAC)

Existing studies have shown that the overall amino acid composition of 20 standard amino acids
is a sequence feature widely used in the field of protein identification. Using the OAAC method, a
20-dimensional vector can be calculated, where each value describes the frequency of the amino acid
in the sequence. Previous literature has shown that the square root of probability is more conducive to
research [48]. Therefore, the following formula is used to define the probability

pi =

√
ni
L

(i = 1, 2, . . . 20) (1)

where ni refers to the number of times the ith amino acid in the protein sequence. Given a protein
sequence S with length L, its OAAC feature vector can be expressed as

SOAAC = [p1, p2, p3, · · · , p20] (2)

3.2.5. Dipeptide Composition

A dipeptide is a compound formed by the dehydration and condensation of two amino acids.
Here, it can be viewed as any combination of two amino acids. Since there are 20 kinds of amino
acids, a total of 400 dipeptide compositions are possible [49,50]. Dipeptide composition is obtained by
calculating the ratio of the number of occurrences of dipeptides in the sequence to the sequence length.
Dipeptides are spaced differently in protein sequences. In this paper, three common distributions
(0, 1, and 2) were selected [51]. Eventually, each protein will generate a vector of 1,200 dimensions.
Dipeptides probabilities are defined as

pab[i] =
Dab[i]
N − 1

(a, b = G, R, L · · · ; i = 0, 1, 2) (3)

where Dab[i] represents the number of dipeptides formed by two amino acids a and b at an interval of
i , and N is the length of the protein sequence.

3.2.6. PSSM

In this work, the practical significance of the position-specific scoring matrix (PSSM) is to find the
conserved features of specific conserved positions from the sequences of DSBs and SSBs that can be
used for the classification of the two types of proteins [52]. The PSSM of the residues is implemented by
the PSI-BLAST [53] program, which contains essential evolution information through three iterations.
A 20-dimensional vector with integer values represents each residue. These values represent the
frequency of mutations at various locations in the sequence, and the PSSM can be expressed as

PSSMS =


G1,1 · · · G1,20

...
. . .

...
GL,1 · · · GL,20

 (4)

where PSSMS represents a 20 × L matrix of protein S , and L represents the length of the protein
sequence. Gi,j is the probability score of the amino acid at position i of the S protein sequence being
replaced by the basic amino acid encoding j during evolution.

3.2.7. Physicochemical Properties

The physicochemical properties of proteins are intuitive and straightforward basic characteristics
with reliable physical and biological meanings [54,55]. We selected 28 typical numerical properties [56]
commonly used for DNA binding protein classification in the database AAindex [57] to encode amino
acids. A protein sequence of length L can be expressed as a matrix of 28 × L dimensions, where each
row represents the attribute value of the residue at that location. The list of AAindex physicochemical
properties we used can be found in Supplementary Table S4.
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3.3. Feature Transformation
Protein sequences usually have different lengths. However, machine learning-based methods such

as GTB require fixed-length vectors for training. Here, we introduce the autocross-covariance (ACC)
transformation to transform protein sequences into fixed-length vectors by measuring the correlation of two
properties along the protein sequence [58]. The ACC method contains two variables, AC and CC. AC is
used to calculate the correlation of two residues with a distance of lg in the same attribute. It is defined as

AC(i, lg) =
L−lg∑
j=1

(si j − si)(si j+lg − si) / (L− lg) (5)

where i is one of the columns corresponding to a residue, lg is the distance between the two residues, L
is the number of residues in the protein sequence, si j is the value of the ith row and the jth column in
the matrix, and si is the average score for L columns

si =
L∑

j=1

si j/L (6)

Therefore, the number of AC variables is obtained by multiplying the number of attributes by the
number of LG values. LG is the maximum of the intervals lg.

The CC variable calculates the relationship between two different attributes. The specific calculation is

CC(i1, i2, lg) =
L−lg∑
j=1

(
Si1, j − Si1

)(
Si2, j+lg − Si2

)
/(L− lg) (7)

where i1 and i2 represent the columns corresponding to two different attributes, and Si1 (Si2 ) is
the average value of the ith column. We finally choose the ACC variable, which is the result of the
combination of the AC variable and the CC variable.

In this work, ACC transformation was used on the matrix obtained by physicochemical, PSSM,
DisEMBL, and NetSurfP. The feature matrix of each protein is converted into a vector, where the
parameter LG is set to 5, and the visual description is shown in Figure 9.
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3.4. Feature Selection

A feature selection algorithm can help us understand the characteristics of features, and it plays
a vital role in further optimizing the algorithm and improving classification accuracy [59]. The
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candidate feature space selected by minimal-redundancy-maximal-relevance criterion (mRMR) is more
representative [60,61]. Therefore, based on the candidate features of 1520 columns, we further select
the optimal feature subset using the mRMR algorithm. The general process of mRMR feature selection
is as follows: first, the data are processed and stored with the appropriate data structure. Second, the
distribution and mutual information between features and between features and response variables
are calculated. Finally, the features are scored and sorted by mRMR. A score file maximum correlation
and minimum redundancy for each column feature are then obtained.

Specifically, the correlation between feature subset and category is calculated by the mean of the
information gain of each feature and category

maxD(S, c), D =
1
|S|

∑
xi∈S

I(xi; c) (8)

where S is a feature set, c is the target category, xi represents a feature in the feature set S, and
I(xi; c) indicates all the mutual information values between a single feature xi and class c. maxD(S, c)
represents that xi in S has the highest dependence on the target class c.

The redundancy between two features is calculated by the sum of mutual information between
two features and then divided by the square of the feature number in the subset

minR(S), R =
1

|S|2
∑

xi,x j∈S

I
(
xi; x j

)
(9)

where I
(
xi; x j

)
is the mutual information between two classes. If the two classes are highly dependent

on each other, removing one of them will not affect classification performance.

3.5. Classification Model and Performance Evaluation

Gradient tree boosting (GTB) [62] is an integrated base classifier decision tree algorithm that
can be used for classification and regression problems [63–67]. In this study, it is assumed that SSBs
and DSBs belong to a binary classification problem. We finally chose the gradient tree boosting of
‘sklearn.ensemble’ as the classification method, because it can better address mixed types of data
and is more robust to outliers. GTB produces a decision tree composed of J leaf nodes by reducing
the gradient direction of each sample point and its residuals [68–70]. In the experiment, the optimal
parameters of GTB were selected by 10-fold cross-validation on the benchmark dataset using a grid
search strategy. These performance evaluations we use are defined as

SN = TP/(TP + FN) (10)

SP = TN/(TN + FP) (11)

F1 =
2×Recall× Precision

Recall + Precision
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(14)

In these equations, TP (the number of SSBs correctly classified), TN (the number of DSBs correctly
classified), FP (the number of DSBs that are misclassified as SSBs) and FN (the number of SSBs that
are misclassified as DSBs) represent true positives, true negatives, false positives and false negatives,
respectively. Here, the category of SSBs is called a positive class, and the category of DSBs is called a
negative class. Among these evaluation indexes, MCC and F1 reflect the overall performance of the
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classifier and can better evaluate the performance of the classifier in the case of unbalanced data. The
classification performance was evaluated by 10-fold cross-validation.

4. Conclusions

In this work, we have proposed a novel method PredPSD for the classification prediction of SSBs
and DSBs. The method is based on the gradient tree boosting (GTB) algorithm [71], and the model
was trained on 1271 SSBs and 2252 DSBs non-redundant datasets. In the course of the experiment, we
introduced three feature extraction algorithms that have never been used in this research problem that
can extract a variety of features derived from multiple sequences. At the same time, we also combined
four commonly used algorithms. We comprehensively evaluated the effects of different sequence
extraction methods on prediction performance. Then, we used the ACC transformation algorithm to
solve the problem of inconsistent feature dimensions. The mRMR method was used to obtain a set of
optimal features with maximum correlation and minimum redundancy, and the strong specificity of
the new features to distinguish different types of proteins was verified.

PredPSD resulted in prediction accuracy of 91.2% and an AUC of 0.956 on the training set through
10-fold cross-validation. Furthermore, in the independent dataset, PredPSD can achieve an accuracy of
77.0% and an SP of 0.855. The results show that the prediction performance of PredPSD is better than
that of previous methods. Our study provides a complementary and effective method to predict SSBs
and DSBs more accurately.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/1/98/s1.
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