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The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interac-
tion studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze
an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features
from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quanti-
tative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least
50% positive cells in an image is sufficient to detect a protein interaction. Based on this criterion, the automated system presents
100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the
software developed is available on request from the authors.
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1. INTRODUCTION

Functional and location proteomics with their high con-
tent information are revolutionizing current research in the
postgenomic era [1]. However, high-throughput imaging
studies produce large volumes of information, rich data that
can be both time consuming and cumbersome to analyze
manually. Such studies would benefit from an effective pro-
cessing/analytic system that can automatically exploit the co-
pious information available in the acquired data.

The datasets generated by image acquisition systems can
be analyzed using various image processing techniques to
uncover vital information. Until recently, significant efforts
have been channeled towards automating image analysis for
applications involving machine vision and medical imaging
modalities such as MRI, PET, and SPECT [2, 3]. However,
fewer application examples exist in the field of optical mi-
croscopy of biological samples. Though image acquisition in
this field has been automated for quite some time, the analy-
sis domain typically relies on independent scorers to perform
the task [4]. This is due to a variety of factors such as the in-
ability of generic image processing algorithms to discover the

rich information embedded in microscopy images and, more
importantly, the risk of improper interpretation [5].

With the advent of high-throughput image collection and
analysis tools, the field of systems biology has the potential
to explore new dimensions. Fluorescence microscopy, along
with the advances made in the software industry, has led to
novel approaches for elucidating a wide range of features in
the field of proteomics [1, 6]. Considering the large number
of proteins, the study of protein localization is an application
where automated image analytic solutions could enhance the
speed and efficiency of the procedure.

In this paper, we evaluate and apply advanced image
processing techniques targeted at identifying protein inter-
actions by detecting patterns of protein localization within
a bacterial cell. For this interaction assay, as illustrated in
Figure 1, proteins of interest are fused to either green flu-
orescent protein (GFP), or DivIVA, a bacterial cell division
protein from Bacillus subtilis that localizes to the cell poles
[7] and co-expressed in E. coli cells [8, 9]. Upon induction
of DivIVA-fusion protein expression, the GFP-fusion protein
localizes to the cell poles if a positive interaction occurs. In
the case of a negative result,the GFP-fusion protein remains
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diffusely localized in the cell. The objective of this work is
to automate image analysis of protein localization patterns
from a set of differential interference contrast (DIC) and flu-
orescence images. The decision rule for a positive interaction
is known from results described in [8, 9].

Simultaneous assessment of multiple cells in a single field
of view is needed to derive the statistical information re-
quired to confidently assign a positive or negative interaction
score to each experiment. According to experimental studies
fields containing at least 50% of cells displaying a localization
pattern consistent with a positive interaction between the
two proteins of interest are sufficient for assigning a positive
score [10]. However, this procedure creates significant chal-
lenges for automated analysis. For example, closely spaced
cells can be difficult to differentiate and lead to erroneous cell
counts. Moreover, cells on the verge of dividing have unusual
shapes which can confuse the assessment of GFP-fusion pro-
tein localization patterns. Another common problem with
fluorescence microscopy images is the presence of unwanted
fluorescence. This is sometimes referred to as “bleeding” and
can lead to ambiguous results. Finally, the presence of in-
clusion bodies1 needs to be distinguished from true sites of
GFP-fusion protein localization. This paper discusses vari-
ous techniques employed to overcome such problems in or-
der to achieve unambiguous results from automated image
analyses. Murphy and colleagues have described a set of sub-
cellular location features for microscopy images aimed at au-
tomated classification of protein localization patterns in eu-
karyotic cells [11]. A few pertinent features from these stud-
ies along with a set of DIC images are used to identify positive
interactions according to the decision rules reported in [8, 9].
We use a set of 16 DIC and corresponding fluorescence im-
ages to evaluate the proposed automated image analysis algo-
rithm. Results from the automated algorithm are compared
with the decisions made by an expert scorer. This evaluation
further validates the effectiveness of the proposed system and
its potential in analyzing a wide range of complex protein lo-
calization studies.

2. SYSTEMS AND METHODS

2.1. Sample preparation and image acquisition

E. coli strain BL21-DE3 (Invitrogen, Carlsbad, CA) was co-
transformed with two vectors based on pBAD24 [12] and
pACYC184 (New England Biolabs, Beverly, MA) encoding
pairs of potentially interacting proteins from Rhodopseu-
domonas palustris fused to either DivIVA or GFP. Con-
struction of these vectors will be described in detail else-
where [10]. Briefly, the Gateway cassette from pDEST17
(Invitrogen) including the T7 promoter was PCR ampli-
fied and cloned into the HindIII site of pACYC184. GFP
was then amplified and cloned into the unique NdeI site
of the pACYC184-DEST17 modified plasmid to produce an
N-terminal GFP-fusion protein after an LR recombination

1 Intracellular protein aggregates that are usually observed in bacteria upon
protein over expression.

DivIVA

GFP-interacting

GFP-noninteracting

Figure 1: Cartoon of the assay under study; DivIVA directs local-
ization of protein of interest 1 (POI1) to the poles. GFP-POI2 relo-
cates to the cell poles if POI1 and POI2 directly interact. GFP-POI2
remains diffusely localized if no interaction occurs.

reaction (Invitrogen). Similarly, the Gateway cassette from
pDEST14 and DivIVA from Bacillus subtilis genomic DNA
were PCR amplified and cloned in frame into pBAD24 to
produce an N-terminal DivIVA-fusion protein following an
LR recombination reaction. The R. palustris gene products
tested in this study are GroES2 (RPA2165) and GroEL2
(RPA2164) [13]. Cotransformed cells were grown for at least
6 hours at 30◦C or 37◦C in LB medium containing 50 μg/ml
ampicillin and 15 μg/ml chloramphenicol to maintain plas-
mid selection and then imaged using a Leica SP2 confocal
laser scanning microscope to determine the localization pat-
tern of the GFP-fusion protein. After assessment of the base-
line pattern of GFP localization, arabinose was added to the
medium to a final concentration of 0.2% to induce expres-
sion of the DivIVA-fusion protein. The cells were incubated
for an additional hour at 30◦C or 37◦C. Following induction
of the DivIVA-fusion protein, the cells were imaged again
to determine if a change in the pattern of GFP-fusion pro-
tein localization occurred. If the GFP-fusion protein was re-
cruited to the cell poles following expression of the DivIVA-
fusion protein, the data was interpreted as showing a posi-
tive interaction between the two proteins of interest. Images
were collected using Leica confocal software (LCS). The basic
methodology of sample handling and image acquisition are
outlined in Figure 2.

To stain cell membranes, E. coli cells were grown in liq-
uid LB medium as described above. Approximately 15 min-
utes prior to harvesting the cells, 200 ng/ml FM5-95 (Molec-
ular Probes, Eugene, OR) was added directly to the cul-
ture to stain the membranes. The cells were then harvested
by centrifugation, washed two times with 0.01 M phosphate
buffered saline (pH 7.4), and prepared for microscopy.

2.2. Image processing algorithm development

Figure 3 shows a block diagram that describes the flow of dif-
ferent image processing steps implemented in our analyses.
Owing to the visual similarity between images of inclusion
bodies and those of a positive interaction, the same set of im-
age processing and feature extraction steps are used to iden-
tify inclusion bodies before induction of DivIVA-fusion pro-
tein expression. Inclusion body identification will be further
discussed in Section 3.



S. Venkatraman et al. 3

Sample preparation and image
acquisition

Image preprocessing and
segmentation

Feature extraction

Presence of
inclusion bodies?

Induce cells and
acquire images

Yes

No

Figure 2: Basic methodology for sample handling and image acqui-
sition.

The image preprocessing and segmentation block in
Figure 2 can be further divided into three general procedures:
image enhancement (preprocessing), image segmentation,
and postprocessing, and connected component labeling, as
illustrated in Figure 3.

Upon acquiring the DIC and fluorescence images (GFP),
the images are processed through two slightly different pro-
cedures because of their different intrinsic features. Prepro-
cessing of DIC images consists of enhancing edge-based in-
formation along cell boundaries. Since we are interested in
cell boundary information, we adopt the effective morpho-
logical operation, that is, finding the bottom-hat2 version
of the original image and subtract the same from the orig-
inal. This would give us a steeper contrast along cell bound-
aries. To further improve this, we run it through a second-
order Butterworth high-pass filter in the frequency domain.
Finally, to enhance this contrast along cell boundaries and to
make it sensitive enough for the following segmentation pro-
cedure, an adaptive histogram equalization function is used.
We adopt the function provided by MATLAB which divides
the image into tiles (size determined by the user); a mono-
tonic, non-linear mapping is applied that reassigns intensity
values of pixels in the input tile to create an output tile that
contains a uniform distribution of intensities. This step re-
sults in a flat histogram. The tiles are then combined using
bi-linear interpolation to form an output image. The advan-
tage of using adaptive histogram equalization over tradition
histogram equalization is that it avoids highlighting noise de-
tails in the image, thus improving the intensity difference
along the boundaries. In order to avoid oversegmentation, an
average filter with a 3 × 3 mask is used to connect segments

2 Imbothat is a morphological filter provided by MATLAB and uses mor-
phological closing operation to output image troughs.
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Figure 3: Image processing flow chart.

of close distance. After enhancing the DIC images, a Canny
edge detector (Canny, 1986) is used to identify the edges of
individual cells. The standard deviation of the Gaussian filter
(σ) determines the thickness of edges detected and is the only
free parameter in the process of identifying cell contours. An
evaluation is conducted in Section 3 to study the effect of σ
on the overall performance of the system. The cell contours
are then filled using a binary fill option in MATLAB. We now
apply morphological operators of opening and closing to re-
move any speckle noise from the binary image.

The fluorescence image, different from the DIC image,
often contains background noise (Figure 4(a)), which can be
mostly removed by keeping just the area occupied by the cell
(Figure 4(b)). This can be obtained from the corresponding
DIC image as explained above. An automated global thresh-
old algorithm described by Otsu [14] is applied on the de-
noised fluorescence image to obtain a binary image. To in-
clude weak signals during thresholding, a value equal to one-
thirds the value obtained by Otsu’s method is used. This
threshold is another free parameter that affects the algorithm
sensitivity in determining the presence of positive localiza-
tion patterns within the identified cell. This effect is evalu-
ated in Section 3. This binary image is then passed through
a combination of opening, closing, and a median filter to
group neighboring pixels and to remove any speckle noise
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(a)

(b)

Figure 4: Images of E. coli cells expressing a GFP-fusion protein (a)
before and (b) after fluorescence denoising.

that might be present, respectively. A disk-shaped structur-
ing element with radius of 1 pixel is used as a structuring
element for these operations.

The clean binary images generated from both DIC and
fluorescence image processing are divided into three labeled
binary images, containing the cell edge information, the
filled contour area of the cells, and the sites of GFP-fusion
protein localization. A labeling function provided by MAT-
LAB as bwlabel that tags independent groups of objects in
the image with a unique label is used.

2.3. Feature extraction

A list of relevant features that can be obtained from fluores-
cence microscopy images of cells is described by Boland and
Murphy [11]. We select a subset of features relevant to this
study which include the following.

(i) Number of cells in an image: calculated by counting the
number of labels obtained from the DIC image using
the function bwlabel provided in MATLAB.

(ii) Area of individual cells: calculated by counting the
number of pixels under each filled contour label.

(iii) Area of GFP localization sites within a cell: calculated by
counting the number of pixels of the GFP-localization
image within a cell bounded by the cell edge informa-
tion image and is used for detecting inclusion bodies.

(iv) Diameter of individual cells: calculated as the value
of the greatest eccentricity, that is, longest distance

1

2

3

Figure 5: Single cell hypothetically divided into three segments.

between any two points in an edge image, or the length
of the major axis of the cell.

(v) Center of gravity (COG) of cells, COGc-(xc, yc), and
COG of GFP-fusion protein localizations, COG f -(x f ,
y f ): calculated by the average location of pixels within
the cell or the GFP localization spot.

(vi) Distance of GFP-fusion protein localization sites from the
COG of the cell: calculated as the Euclidean distance
between COGc and COG f . It provides a quantitative
measurement with respect to the distribution of the
GFP localization sites within the cell.

(vii) Number of GFP-fusion protein localization sites within
each cell: extracted by performing an AND operation
between the labeled DIC image and the labeled fluo-
rescence image by considering one cell at a time. This
gives the number of localization sites within each cell.
Ideally, this number would be 2 for growing cells and 3
for dividing cells in our test system. The possibility of
other values is discussed in the next section.

2.4. Pattern recognition

As mentioned earlier, the decision rule involved in identi-
fying a positive interaction is based on results described in
[8, 9]. The presence of two (one at each pole of E. coli cells)
or three GFP-fusion protein localization sites (both poles and
an extra medial localization site) is considered as a positive
interaction between the two proteins of interest. The deci-
sion rule for an interaction as stated in [8] was used by the
expert to interpret a positive interaction. The algorithm ap-
plied the same principle by using features that included the
position of localization.

The set of features described in Section 2.3 are used to
quantify the number of localization sites and their position
within the cell. Once the number of GFP-fusion protein lo-
calization sites in each cell is identified, the distance between
their respective COG’s is calculated and compared with the
diameter of the cell. We equally segment a cell into three parts
along the diameter, where the first and third segments are
considered to be the cell poles (Figure 5). Condition for a lo-
calization site in the first or third segment is shown in (1) and
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Table 1: Examples of GFP-fusion protein localization patterns and features used to derive a positive or negative decision.

Test case D/6 Localization d
Decision

(schematic) μm sites μm

0.67
1 1.45

Positive
2 1.68

0.89

1 2.31

Positive2 0.07

3 2.25

0.87
1 0.87

Negative
2 2.4

2.67

1 3.8

Negative2 5.08

3 6.7

0.9 1 — Negative

D: diameter of the cell.
d: distance between COG of the cell and localization sites.

the condition for the same in the second segment is shown in
(2):

√[(
xc − x f

)2
+
(
yc − y f

)2
]
> Diameter c/6, (1)

√[(
xc − x f

)2
+
(
yc − y f

)2
]
< Diameter c/6, (2)

where (xc, yc) and (x f , y f ) are COGc and COG f , respectively,
and Diameterc is the diameter of the cell. This information
regarding location of localization sites within individual cells
is used to arrive at a decision regarding a positive interac-
tion. Table 1 shows an example of how the pattern recogni-
tion procedure is carried out and how the decision is made.
We can see that in order to be identified as a positive inter-
action, the first criterion is that there must be two or three
localization sites within a cell. Based on that, the second cri-
terion follows (1) and (2) for further classification.

2.5. Algorithm evaluation

Since the algorithm first identifies the presence of a cell and
then identifies the presence of a positive interaction in the
identified cell, we have split the evaluation procedure, respec-
tively. Sensitivity of the algorithm to first identify a cell was
evaluated followed by the evaluation of sensitivity of the al-
gorithm to identify a positive interaction.

Performance of the algorithm is quantified by comparing
its ability to identify positive interactions within a given im-
age to the ground truth (laid down by an expert) of that spe-
cific image. With prior knowledge of the decision rule, there
was no training data involved. The localization patterns from
unprocessed images are studied by an expert in a totally in-
dependent event, and cells with positive localization patterns
are identified. Decisions on each cell within an image both by
the algorithm and the expert are compared, and the number

of true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) cases is calculated.

Definitions of terms indicated above are as follows:

(i) TP: the cell is identified by the expert and the auto-
mated system also identifies the cell;

(ii) TN: no cell is identified by the expert and the auto-
mated system does not identify one either;

(iii) FP: no cell is identified by the expert but the automated
system identifies one;

(iv) FN: the cell is identified by the expert but the auto-
mated system misses it.

Using the terminology in pattern recognition performance
evaluation, sensitivity is defined as the probability of the sys-
tem identifying an interaction when one is present, and speci-
ficity is defined as the probability of the system not identify-
ing an interaction when one is not present. Similarly, for eval-
uating the algorithm’s sensitivity towards identifying a pos-
itive interaction within an identified cell, “positive” stands
for an identification of a positive protein-protein interaction,
while “negative” stands for a negative protein-protein inter-
action; similar to the cell identification problem, “true” indi-
cates a consistency between the ground truth and the system
decision, while “false” represents an inconsistency.

3. EXPERIMENTS AND RESULTS

The test images used for evaluating the automated image
analysis consist of a set of 16 DIC and corresponding fluores-
cence images. These were captured over 2 experiments car-
ried out on different samples and imaged at different magni-
fications and cell population (a total of about 390 cells) in
order to avoid any amount of bias in the procedure. Two
problems are addressed in the automated system. Identi-
fying individual cell contours to quantify cell count is the
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Figure 6: Comparison of edge detection from images of E. coli cells
stained with a membrane dye and from DIC images. (a) E. coli cell
membranes stained with FM5-95. (b) Results of edge detection us-
ing the image in (a). (c) DIC image of E. coli cells. (d) Results of
edge detection using the image in (c).

first problem, and is obtained by using the DIC image. The
second problem is to use the fluorescence image to determine
if the identified cells have positive localization patterns.

3.1. The image processing algorithm evaluation

The essential information obtained from the DIC image is
the cell boundary. Experimentally, the cell boundaries can be
visualized by several techniques, such as the use of a mem-
brane dye and the DIC image. For this analysis, the use of a
DIC image is chosen over the use of images of membrane-
staining dyes.

Although the use of images with stained membranes gave
a fair indication of the cell boundaries for isolated cells (Fig-
ures 6(a), 6(b)), a similar analysis for a clump of cells pro-
duced inconsistent results (data not shown). The cell bound-
ary becomes difficult to extract when there are overlapping
cells or cells that lie in close proximity to each other. Care is
taken during image acquisition to avoid fields of overlapping
cells. In addition, objects in the image with very large (greater
than twice the mean area) or very small (less than one-third
of the mean area) areas can lead to ambiguous results and
thus are eliminated to provide more meaningful results. Be-
cause DIC images typically result in a thick cell boundary,
cells in close proximity were distinguished from each other
using the inner boundary contour. During the process of DIC
image analysis, a difference image is first generated from the

original image and its bottom-hat version to provide an im-
provement in the contrast along boundaries in the case of
closely spaced cells. A high-pass second-order Butterworth
filter in the frequency domain is then applied on this dif-
ference image to enhance the high-frequency (mostly edge-
based) information that improves segmentation results. This
step is followed by adaptive histogram equalization. The re-
sulting image is then processed through an averaging filter to
avoid oversegmentation.

The Canny filter is chosen to segment the edges from the
processed DIC image over other algorithms that include the
Sobel filter and the active contour algorithm [15].

The DIC image shows a thick boundary to the cells, thus
producing a ring-like binary image. Upon observation that
the inner side of the ring leads to more consistent boundary
determination, the weak outer edges are discarded by keeping
about 15% of the lowest intensity value using a high thresh-
old in the Canny detector (Figures 6(c), 6(d)).

While performing morphological operations, particular
attention is taken in choosing an appropriate structuring el-
ement. The shape and size of the structuring element are
defined by the object shape under study. Since these cells
possess smooth corners, a disk-shaped structuring element is
employed and a radius of 1 pixel is chosen, taking into con-
sideration the spatial dimensions (in pixels) of the cell.

3.2. The inclusion bodies identification

Once the cell boundaries are extracted, the second prob-
lem is to use the fluorescence image to identify and label
the sites of GFP-fusion protein localization. Identification of
a positive protein-protein interaction using the DivIVA as-
say is based on recruitment of the GFP-fusion protein to the
cell poles following expression of the DivIVA-fusion protein
[8, 9]. Experimentally, DIC and fluorescence images are col-
lected from cells expressing the GFP-fusion protein before
and after induction of the DivIVA-fusion protein. The ex-
pected result is that the GFP-fusion protein will localize dif-
fusely throughout the cell before induction and to the cell
poles after induction of the DivIVA-fusion protein if there is
an interaction between the two proteins being tested. How-
ever, these expected results can be complicated by the pres-
ence of “inclusion bodies” caused by overexpression of the
GFP-fusion protein in bacterial cells. The aggregates of over-
expressed GFP-fusion protein tend to localize to the cell poles
thereby mimicking the localization pattern produced by a
positive protein-protein interaction. This is an experimental
problem inherent to the biological system under study and
complicates the automation of image analyses.

To distinguish between inclusion bodies and positive in-
teractions, we have employed the experimental solution of
identifying inclusion bodies in the sample before expression
of the DivIVA-fusion protein. The image processing block
detailed in Section 2.2 is applied to both the DIC and flu-
orescence images acquired before induction and three la-
beled images are generated. Based on the labeled images,
the percentage area occupied by the localized fluorescence
within each cell is calculated, which after experimentation
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Figure 7: Examples of localization patterns displayed by E. coli cells expressing GFP-fusion proteins. (a) Cells with GFP-fusion protein
localization at the poles corresponding to a positive protein-protein interaction. (b) Cells displaying inclusion bodies before induction of the
DivIVA-fusion protein. (c) Cells showing cytoplamic GFP-fusion protein localization before induction. Note the visual similarity between
the image in (a) and (b).

and observation is found to be less than 60% for images with
inclusion bodies. Thus, if inclusion bodies are present before
induction of the DivIVA-fusion protein, the sample will not
be further analyzed. Representative images of bacterial cells
displaying a diffuse GFP-fusion protein localization pattern,
inclusion bodies, or a positive protein-protein interaction are
shown in Figure 7.

3.3. The pattern recognition evaluation

Following the elimination of samples displaying inclusion
bodies and the induction of the DivIVA-fusion protein, a
second set of DIC and fluorescence images is acquired. The
number of distinct protein localization sites inside a given
cell is then quantified to determine whether the results are
consistent with a positive protein-protein interaction. Both
nondividing and dividing cells can reveal patterns of posi-
tive interaction. In nondividing cells, a positive result is char-
acterized by localization of the GFP-fusion protein at both
cell poles (2 sites). In dividing cells, a positive result is deter-
mined by localization of the GFP-fusion protein to the cell
poles and also to the center of the cell since DivIVA is known
to localize to the medial region during cell division (3 sites)
[9].

The statistical features extracted from data using various
algorithms discussed in Section 2.3 are used to characterize a
set of 16 sample test images. Results from one set of images
are shown in Figure 8.

The final image (Figure 8(e)) shows individual features in
different color channels generated by pseudocoloring the tar-
get locations. In this particular image set, 13 cells are present.

All of the nondividing cells (7 in total) displayed a pattern
of GFP-fusion protein localization consistent with a positive
interaction (localization at both poles). The remaining cells
in the image are undergoing division and all but one display
sites of GFP-fusion protein localization at both poles and the
medial region of the cell. In this test case, the algorithm iden-
tified 12 positive cells out of 13 total cells, consistent with re-
sults obtained by an expert scorer.

The number of GFP-fusion protein localization sites and
their respective positions within individual cells is used to

identify cells with positive interaction patterns. The perfor-
mance of the automated system in identifying individual cells
and in identifying positive interacting cells is evaluated, re-
spectively. For the first case, only a single FP was observed,
thereby producing a specificity of 1 for 15 images and a mean
specificity of about 0.9995 (∼ 1) over the entire dataset. The
single FP was due to an image field containing cell debris
that was not eliminated by the mean area-based filter and
was therefore counted as a cell.

The free parameter used in the procedure of identifying a
cell is the σ , used in the Canny filter (Section 2.2). In Figure 9,
we use sensitivity to illustrate the performance of the auto-
mated system, and evaluate the effect of the free parameter
σ , used in the Canny filter (Section 2.2). We observe that ex-
cept for one image, a choice of σ = 0.85 generates the highest
sensitivity, averaged at 86% with the smallest standard devi-
ation of 0.11, indicating the best robustness.

Similar to the previous evaluation procedure, sensitivity
and specificity of the algorithm to identify a positive inter-
action within an identified cell was calculated for each im-
age. Mean sensitivity and specificity values were then cal-
culated over the entire dataset. From the 16-image dataset,
again only one image contained a false positive case, thereby
producing a specificity of 1 for all but one case (image). The
mean specificity of the algorithm over the entire dataset was
thus found to be about 0.9989 (∼ 1). Such false positives can
be attributed to the presence of inclusion bodies in the cells,
which localized in a pattern similar to that of a true posi-
tive interaction. Although our experimental design reduces
the number of images collected that show inclusion bod-
ies, this possibility cannot be completely eliminated. During
the process of recognizing interactions, the threshold applied
on the fluorescence image was another free parameter used
and its effect on the sensitivity of positive interaction iden-
tification within a cell is evaluated, as shown in Table 2. A
4-fold cross-validation was performed on the 16 images in
order to eliminate biased results. A threshold value equal to
one-thirds of that obtained by using the Otsu method was
observed to produce the highest sensitivity with the small-
est average standard derivation of 0.0959, indicating the best
robustness. Thus, the average sensitivity of the algorithm to
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Figure 8: Image processing steps leading to a final pseudocolored image from DIC and fluorescence images of E. coli cells expressing a
GFP-fusion protein. (a) Original DIC image. (b) Original fluorescence image. (c) Binary DIC image. (d) Binary GFP image before labeling.
(e) Pseudocolored image showing cell boundaries (red), cell diameter (blue), sites of GFP-fusion protein localization (green), and the COG
of individual cells (black).
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Figure 9: Effect of the different σ values in the Canny edge detector
on the sensitivity of system towards identifying a cell. Mean sensi-
tivity derived from 16 testing images: 0.8 when σ = 0.75; 0.86 when
σ = 0.85; and 0.67 when σ = 0.95.

identify a cell in an image was found to be 0.863 and the aver-
age sensitivity of the algorithm to determine the presence of
positive localization patterns in the identified cell was found
to be about 0.8439.

Table 2: Four-fold cross-validation results to determine the opti-
mum threshold value (STD—standard deviation). Mean sensitivi-
ties towards identifying a positive interaction derived from 16 test-
ing images: 0.57 when using the threshold value (x) from Otsu’s
method; 0.7 when using x/2 as the threshold; 0.84 when using x/3
as the threshold, and 0.58 for a threshold of x/4.

1 2 3 4

x
Sensitivity 0.4924∗ 0.5654 0.5078 0.7181

STD 0.0992 0.0869 0.2092 0.1362

x/2
Sensitivity 0.6803 0.6939 0.7078 0.7181

STD 0.1119 0.1206 0.1347 0.1831

x/3
Sensitivity 0.8388 0.8140 0.8563 0.8667

STD 0.0744 0.1085 0.0760 0.1247

x/4
Sensitivity 0.4894 0.4105 0.7174 0.7267

STD 0.2801 0.3967 0.1662 0.1640

∗: mean sensitivity of the algorithm to identify a positive
interaction at a threshold of “x” and the first four images as a
testing dataset.

4. DISCUSSION AND CONCLUSION

Identifying protein-protein interactions is critical for under-
standing the function of proteins in cells and provides a
framework for understanding biological networks.
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As the field of proteomics expands, comprehensive stud-
ies of protein-protein interactions within an organism are
becoming possible. One obstacle in these studies is the diffi-
culty in processing large datasets, especially those containing
large sets of fluorescence images.

In this study, we described an algorithm that can be ex-
ploited for high-throughput screening of protein-protein in-
teractions in bacterial cells based on localization patterns.
We developed an automated image analysis package that can
quantify the number of cells in an image, recognize protein
localization patterns in individual cells, and produce a statis-
tical output to quantify the number of cells displaying a spe-
cific localization pattern. Unique solutions to solve problems
due to the ambiguity arising from adjoining cells, inclusion
bodies, and the problems caused by background fluorescence
were offered.

Different edge detection techniques were tried and tested
to identify cell boundaries. The Canny edge detector [16] was
used to obtain cell contours in the segmentation process as it
was a simpler, faster, and more effective method in this case,
compared to active contours [15], which is a popular tech-
nique in medical image analysis. Care was taken to remove
unwanted information (weak edges) and retain strong edge
information by varying σ . A very small value of σ resulted in
the inclusion of weak edges and a very high value resulted in
the loss of actual edge information.

A simple thresholding technique was used to segment
localization sites in fluorescence images. Results for differ-
ent threshold values were compared with one another. The
choices of parameters for all morphological operations were
made in accordance with the resolution of images. Care was
taken to avoid overlapping of closely spaced cells in the final
image.

In the DivIVA-based interaction assay, overexpression of
the GFP-fusion protein can lead to the formation of inclu-
sion bodies, which have a tendency to accumulate at the poles
of E. coli cells and look very similar to the sites of GFP-
fusion protein localization associated with a positive protein-
protein interaction. In order to reduce false positive cases,
experimental testing for inclusion bodies was conducted be-
fore computationally based assessment of subcellular protein
localization. This problem is specific to this particular assay
and may not be a consideration for other types of cells, labels,
or protein localization experiments. However, this potential
obstacle illustrates the importance of integrating image ac-
quisition and analysis with experimental design.

Identified cells are considered true positives, and cells
missed by the algorithm are considered as false negatives.
These definitions are used to calculate the sensitivity of the
algorithm to identify individual cells. Similarly, cells properly
identified by the algorithm are labeled as positive or nega-
tive results by an expert in accordance with the decision rule
discussed above. When these results are compared with the
results obtained by the algorithm, we arrive at true positive
and false negative values that help us calculate the sensitivity
of the algorithm to identify positive localization patterns.

For this study, we used a DivIVA-based assay to test two
well characterized proteins that are known to interact. Low
sensitivities in a few cases can be attributed to a number of

experimental and biological factors such as the focal plane
of the collected image and plasmid loss. In this situation,
the performance of the algorithm is acceptable since the fi-
nal output is a binary decision (there is or is not an interac-
tion between the proteins of interest). In practice, a threshold
level of 50% or more positive cells is considered a positive in-
teraction based on studies of pairs of known interacting pro-
teins [10].

Although the automated system was tested and evaluated
on sample images from a DivIVA-based interaction screen in
which cells display very specific localization patterns [8, 9], it
could be adaptable to a wider range of experimental stud-
ies, involving multiple fluorescent labels or other imaging
modalities with slight modifications. Such a system can also
be employed to reduce the size of image datasets by selecting
those that possess desired features, such as positive interac-
tions or specific localization patterns.

In summary, from the set of 16 images, the automated
system achieves, on average, 86% sensitivity in cell identifi-
cation and 84% sensitivity in identifying positive localization
patterns in cells. In addition, according to studies in [10], an
identification of at least 50% positive cells in an image is suf-
ficient to indicate a positive interaction between the two pro-
teins assessed in the assay. Based on this criterion, the auto-
mated system presents 100% accuracy in the identification of
positive interactions in this dataset.
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