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This paper investigates the inflection-point instability
that governs the flow disturbance initiated in the
entrance region of a pulsating pipe flow. Under such
a flow condition, the flow instability grows within
a certain phase region in a pulsating cycle, during
which the inflection point in the unsteady mean
flow lifts away from the viscous effect-dominated
region known as the Stokes layer. The characteristic
frequency of the instability is found to be in
agreement with that predicted by the mixing-layer
model. In comparison with those cases not falling
in this category, it is further verified that the flow
phenomenon will take place only if the inflection point
lifts away sufficiently from the Stokes layer.

1. Introduction
The well-known Reynolds experiment [1] is concerned
with the laminar–turbulent transition phenomenon in a
pipe flow for which the mean flow is steady. In this study,
our main interest is focused on the laminar–turbulent
transition process in a pulsating pipe flow. This situation
is relevant to many areas of application, including fluid
flows in bio-systems and the transportation of fluid in
industrial pipe lines.

An important feature of the laminar–turbulent
transition process in a pulsating pipe flow is that the
flow disturbance becomes intermittently unstable in
every pulsating cycle [2–5]. Notably, this intermittent
flow behaviour has been found in the fully developed
region [6–12]. According to Ohmi et al. [2] and
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Figure 1. An illustration of the growth of flow instability in the pulsating pipe flow for (ReU , Rem,α)= (1.07× 104, 5.26× 103,
9.2) at x/D= 25 (a), 27 (b), 28 (c) and 29 (d). [15] The definitions of the experimental parameters of ReU , Rem andα are given in
§2. Here x denotes the streamwise distance from the inlet of the straight pipe, x= 0. D and R denote the diameter and radius of
the pipe, respectively. The phase-averaged velocity traces shown span two pulsating cycles, whereψ = 0 refers to the phase
when flow pulsation reaches the maximum velocity at the centre of the pipe, r= 0.

Einav & Sokolov [12], the flow transition in the fully developed region of pulsating pipe flows
can be categorized into three types: (i) laminar, in that the flow remains stable throughout the
entire cycle; (ii) conditional or transitional turbulent, in that the flow becomes unstable within a
certain phase region of one pulsating cycle and (iii) turbulent, in that the turbulent state prevails
throughout the entire cycle. These flow types can be characterized by three parameters, namely,
the mean and pulsating Reynolds numbers and the dimensionless pulsating frequency [2].

Recently, Miau & Dai [13] and Miau & Jian [14] studied the flow instability that develops
in the pipe’s entrance region. The Reynolds numbers based on the time-mean velocity were of
the order of 104, which is substantially higher than the cases of flow transition taking place in
the fully developed region, for which the Reynolds numbers were of the order of 103 [7,8,12].
Figure 1 presents a case of the initial disturbance developed in the entrance region reported in a
previous work [15]. The most upstream location where the unstable disturbance was found is at 27
pipe diameters downstream from the inlet. As seen, the initial disturbance appears as a packet of
waves. Within a streamwise distance of two pipe diameters downstream, the disturbance grows
and appears as turbulent fluctuations. Meanwhile, it is noted that the disturbance is diminished
at certain times in later phases of the pulsating cycle period, signifying that the disturbance is
damped and the flow regime returns to a stable state. This is referred to as a relaminarization
process [2].

As noted in figure 1, the unstable disturbance initially appears as waves of small amplitude
within a certain phase region of a pulsating cycle. This is typical of flow instability that develops
in an unsteady mean flow. A similar appearance can be seen in an oscillating boundary layer [16].

In considering the physical mechanism associated with instability in a pulsating pipe flow,
previous works frequently refer to Rayleigh’s inflection-point theorem [17] as a theoretical ground
for explanation since the velocity measurements show that the instantaneous velocity profiles
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might possess one or more inflection points. Sarpkaya [6] showed the existence of inflection
points in the velocity profiles of the unsteady pipe flow obtained at different phases. Einav &
Sokolov [12] analysed the velocity signals obtained in the fully developed region and postulated
that the presence of an inflection point in the instantaneous velocity profile played a key role in
the transition of the flow from a laminar to turbulent state. Nerem et al. [18] conducted hot-film
velocity measurements in the thoracic aorta of dogs and noted that the fluctuations first appeared
during the deceleration phase. Nerem et al. [18] commented that the fluctuations originated from
flow instability could be due to the presence of an inflection point in the velocity profile. Moreover,
it is worthwhile to mention the work of Gad-el-Hak et al. [19] on flow instability in a decelerating
boundary layer. They commented that the inflection point in the decelerating boundary layer
velocity profile promoted flow instability at a Reynolds number lower than the critical one
corresponding to the steady boundary-layer flow. Both their experimental and theoretical results
showed a consistent trend that the flow instability in the decelerating boundary layer developed
as the inflection point lifted away from the wall.

Although the importance of the presence of an inflection point in unsteady mean flow to the
occurrence of flow instability is well recognized, our understanding of its physical mechanism
is far from complete. It is the purpose of this study to verify the role of inflection-point
instability in the development of flow instability. To do so, the experimental data obtained were
examined with a mixing-layer model, which is a physical case complied with the inflexion point
instability theory.

2. Experimental method
Experiments were conducted in an open-circuit pipe flow system featuring a straight pipe section
of 85 D in length, where D = 50 mm denotes the diameter of the pipe. See figure 2 for a schematic
diagram of the pipe facility. A convergent section was situated immediately upstream of the pipe
inlet to reduce the turbulence intensity of the flow at the inlet. The turbulence intensity measured
at the core of the inlet is less than 1%. Two pressure taps at the inlet and outlet of the convergent
section, respectively, were connected to a diaphragm-type pressure transducer for differential
pressure measurement, by which the velocity was reduced for reference, denoted as Ua. Under
steady pipe flow conditions, Ua could vary over a range of 3–50 m s−1.

Pulsating flow was produced by a rotating disc situated 82.5 D downstream from the inlet of
the straight pipe section. As shown in figure 2, the disc was driven by a servo motor through a
vertical shaft. A photo sensor was installed near the rotating disc to record the instant in time the
disc passed over the sensor. The output signal was referenced for segmenting the simultaneously
measured signal traces into individual sample records for ensemble-averaging. This process is
known as phase-averaging. One revolution of the rotating disc actually generated two pulsating
cycles of the pipe flow.

In this study, the pulsating flow condition can be described in terms of three independent
parameters as follows. The mean Reynolds number ReU based on the time mean of Ua and D.
The pulsating Reynolds number Rem based on the amplitude of velocity modulation, �U, and
D, where �U denotes the pulsating amplitude corresponding to the difference between the
maximum and mean velocities measured at the core of the inlet of the pipe flow. The non-
dimensional pulsating frequency, α, which is the Womersley number defined as R/δ, where
R denotes the radius of the pipe, R = D/2, and δ= (υ/ω)1/2, characterizes the viscous diffusion
thickness due to pulsation, where υ and ω denote the kinematic viscosity and the frequency of
pulsation in radian/s, respectively. Here δ is also known as the thickness of the Stokes layer for
an oscillatory flow [20,21].

Velocity measurements in the pipe flow were made with a boundary-layer type hot-wire
probe. At a selected streamwise location, the hot-wire probe could be traversed from the centre
of the pipe, r/R = 0, to a radial location very close to the wall, r/R = 0.98, where r denotes the
radial distance from the centre of the pipe. The raw signals measured were sampled at a rate
of 4 kHz over a time length of at least 30 revolutions of the rotating disc. Thus, referencing the
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Figure 2. A schematic diagram of the pipe flow facility. (Online version in colour.)

optical sensor output, one could perform phase-averaging with regard to the velocity signals
simultaneously measured.

3. Technique for resolving the disturbance frequency
The technique developed in previous studies [13,14] used to resolve the frequency of the
intermittent flow disturbance seen in a pulsating cycle is briefly described below.

For illustration,the phase-averaged velocity traces obtained at x/D = 26 for r/R from 0 to 0.98,
(ReU, Rem, α) = (1.1 × 104, 4.3 × 103, 12), are shown in figure 3, where x denotes the streamwise
distance from the inlet of the pipe, called x = 0. As one can see, the flow disturbances appear most
pronouncedly at r/R = 0.8–0.9 during the phase region of ψ = 1.1–1.3π . Moreover, it should be
mentioned that the intermittent disturbance is fairly repeatable from one pulsating cycle to the
other. Therefore, in figure 3 the wave form is preserved after the ensemble-averaging process.
Meanwhile, the disturbance amplitude is so small that it can be treated as linear, mathematically
speaking. The maximum amplitude of the disturbance in the individual pulsating cycle was
confirmed within the order of 1% of the pulsating amplitude �U.

In figure 3, each of the ensemble-averaged velocity traces spans over two pulsating cycles,
corresponding to one revolution of the rotating disc. In this analysis, only the ensemble-averaged
trace in the first pulsating cycle is considered.

The phase-averaged velocity trace at r/R = 0.88 in figure 3 is selected to illustrate how the
embedded intermittent disturbance component was extracted for analysis. First of all, a procedure
called empirical mode decomposition (EMD) [22] was used to decompose the trace into a set of
mono-components, each of which is called an intrinsic mode function (IMF). A mono-component
contains the fluctuations of the trace within a certain band of frequency. Ideally, the mono-
components are mutually orthogonal [22]. The advantage of this procedure over the conventional
band-pass filtering technique, as seen in figure 4, is that the disturbance component resembling
a wave packet is well preserved in IMF 4. For more details concerning the EMD procedure, one
may refer to Huang et al. [22].
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Figure 3. The phase-averaged pulsating velocity patterns measured at r/R= 0–0.98 for (ReU , Rem,α)= (1.1× 104,
4.3× 103, 12), x/D= 26. (Online version in colour.)
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Further analysis on IMF 4 was carried out to find the characteristic frequency of the
disturbance. The techniques of Hilbert [22] and Wavelet [23] transformations were considered,
both of which are able to provide the instantaneous frequency for the disturbance component. As
a result, figure 5a,b presents the instantaneous frequency of the disturbance resolved by the two
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Figure 5. The disturbance frequency obtained by (a) Hilbert and (b) Wavelet transformations. The raw signal was obtained
at (ReU , Rem,α)= (1.1× 104, 4.3× 103, 12), x/D= 26, r/R= 0.88. (Online version in colour.)

techniques. Namely, by using the Hilbert transformation, the frequency is 19.1 ± 1.8 Hz; by using
the Wavelet transformation, it is 19.6 ± 0.32 Hz. The uncertainty intervals mentioned refer to the
95% confidence interval [24] of the frequency values in the phase region where the disturbance is
pronouncedly present. Since the uncertainty interval associated with the Wavelet transformation
is significantly smaller than that which is associated with the Hilbert transformation, the
Wavelet transformation technique was chosen for analysis. The larger scattering of the Hilbert
transformation frequencies is partly due to the fact that the frequency resulted from the time
differentiation of the instantaneous phase [22].

4. Considerations with Rayleigh inflection-point instability criterion
Reyleigh’s inflection-point theorem [17] states that the presence of an inflection point in mean
flow is necessary for the development of flow instability, assuming that the flow is inviscid. This
theorem has been successfully applied to explain the linear instability growth in a mixing layer
flow, for which an inflection point is identified in the mean velocity profile. As known, a mixing
layer is formed at the interface of two parallel streams of different speeds. The inflection velocity
profile actually results from the viscous action; however, the flow instability has been identified
as an inviscid one.

To consider the formation of the inflection point in the present pulsating pipe flow,
conceptually it can be explained as being due to the phase lag of the pulsating flow in the viscous
boundary layer. Figure 6 shows a plot depicting the phase lag of the pulsating mean flow against
r/R as reduced from the phase-averaged velocity data in figure 3. The phase lag was determined
by referencing the phase of the unsteady mean flow at r/R = 0.98. Note that r/R = 0.98 is the
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measured location closest to the wall. This figure reveals that all the phase lag values are positive,
inferring that flow pulsation away from the wall is always lagging behind flow pulsation near the
wall. In addition, one can easily locate the outer edge of the viscous boundary layer. For instance,
as shown in the figure, the outer edge is near r/R = 0.7. For r/R less than 0.7, the phase lag is
approaching a constant value, indicating that potential flow prevails. On the other hand, one
should be aware that a viscous effect-dominated layer caused by pulsation exists near the wall
indicated in the figure. The thickness of this layer, which is called the Stokes layer, is estimated as
δ= (υ/ω)1/2 that is R/α. Physically speaking, the phase lag in the Stokes layer is small, as the flow
motion in this layer is dominated by the viscous force.

A direct consequence of pulsating flow phase lag in the boundary layer is that the
instantaneous velocity profile is distorted and the inflection point may be formed. To demonstrate
this possibility, the phase-averaged velocity profiles, U(r), corresponding to a number of phases
ψ over one pulsating cycle, were reconstructed from the data in figure 3 for examination. The
velocity profiles, each of which is actually a sixth-order polynomial curve fitting the phase-
averaged data in figure 3, are shown in figure 7. In the figure, each velocity profile has been
normalized by Uce, which denotes the phase-averaged velocity at r/R = 0 at the respective phase.
However, the fitting curves are limited in the boundary layer region, because our main interest
is the mean flow in the region. The correlation coefficient between each fitting curve and the
corresponding phase-averaged velocity data was required to be at least 0.999 in value.

Figure 8 presents a plot of the first derivative of each fitting curve in figure 7. In the figure,
dU/dr has been normalized by Uce/R. While each curve reveals the presence of an inflection
point, where a local maximum value appears, those of ψ = 1.1–1.3π indicated by the solid curves
unveil that the inflection points are situated further away from the wall. Referring to the phase-
averaged velocity traces in figure 3, the phase ψ = 1.1π coincidentally is the instant when the
disturbance initially appeared. At this phase, the inflection point is located near r/R = 0.84,
whereas the edge of the Stokes layer is at r/R = 0.917, as indicated by a dashed line in figure 3.

To explain this observation, a physical model is proposed in figure 9. It is intended to show that
the presence of an inflection point in the instantaneous velocity profile is due to the inconsistency
of phase lag radially in the boundary layer. At the onset of the flow instability, an inflection point
is formed in the mean flow at r = rmax.
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Subsequently, a discussion can be carried out with the mixing-layer model described below.
Monkewitz & Huerre [25] conducted a numerical study on the linear instability of the hyperbolic
tangent and Blasius mixing layers. They found that the non-dimensional frequency of the most
unstable disturbance fell in the range of 0.2–0.25. Also noted is that this frequency range is
rather insensitive to the basic flow profiles given. In Monkewitz & Huerre [25], the characteristic
frequency of flow instability was normalized by the momentum thickness of the shear layer and
the mean velocity of the two streams. Applying this mixing layer model to the present flow, as
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the case shown in figures 3–8, one postulates that the flow instability initiated at ψ = 1.1π was
induced by a shear flow in the neighbourhood of the inflection point r = rmax. As the characteristic
frequency of the disturbance has been found to be 19.2 Hz, one can non-dimensionalize the
frequency with the method described by Monkewitz & Huerre [25]. In figure 8, the velocity profile
at ψ = 1.1π shows that an inflection point occurred near r/R = 0.84 with the dU/dr value about
−3.0. Hence, the vorticity thickness equivalent to that of the mixing layer in the neighbourhood
of the inflection point can be estimated as the absolute value of R divided by dU/dr. Further,
following Monkewitz & Huerre [25], the momentum thickness can be estimated as a quarter of
the vorticity thickness. Finally, by a rough estimation from taking the characteristic velocity of
the equivalent mixing layer around the inflection point as 0.5 Uce, the disturbance frequency is
non-dimensionalized to a value of 0.16, denoted as Ω herein. Qualitatively speaking, this value
is close to the range of 0.2–0.25 mentioned for the mixing-layer model [25]. This agreement gives
a strong support to our postulation that the development of the flow instability can be explained
with the mixing-layer model.

It should be mentioned that the estimation above was made possible with a quasi-steady
assumption that the flow instability was induced by the instantaneous velocity profile. This
assumption can be justified by arguing that the time scale associated with mean flow pulsation
is actually much longer than the time scale associated with the characteristic frequency of the
unstable disturbance. For instance, in the case discussed in figures 3–8, the pulsating pipe flow
was produced by a rotating disc at 17 r.p.m. Thus, one cycle of pulsation is equivalent to about
1.76 s. In comparison with the discovered disturbance frequency of 19.2 Hz, the characteristic time
scale of unsteady mean flow is more than 30 times that of the disturbance.

5. Cases studied
The flow instability of concern varies strongly with time and space. Temporally, the flow
instability grows and decays within a certain phase region of a pulsating cycle; spatially, as
evidenced in figure 1, the flow instability is initiated at some streamwise location in the entrance
region and leads to chaotic fluctuations within a few pipe diameters downstream. Therefore,
to study the flow instability in the present flow, as the first step one needed to search for the
streamwise location pertaining to the onset of flow instability. Namely, the discovered disturbance
had to be so small in amplitude that it could be regarded as linear. Owing to this concern,
in the following cases presented it was verified in advance that the maximum amplitude of
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the disturbance component at the selected streamwise location was comparable to 1% of the
amplitude of mean flow pulsation at the core, �U.

(a) Cases in agreement with the mixing-layer model
Figure 10 presents a plot that includes the locus of the inflection point and the intensity of the
disturbance with respect to ψ based on the same set of the data shown in figure 3. Note that the
intensity values of the disturbance shown in the figure are actually the square of the disturbance
component of IMF 4 in figure 4, as reduced from the EMD procedure. As seen, the most
pronounced intensity takes place at r/R = 0.86–0.88 and ψ = 1.1–1.2π . Coincidentally, the locus of
the inflection point shows that at ψ = 1.2π the inflection point reaches the farthest point from the
wall, that rmax/R = 0.84. At later phases, the intensity of the disturbance decays as the inflection
point moves towards the wall. As shown above, this case has been verified to be in agreement
with the proposed mixing-layer model.

Table 1 lists five cases in this category. For these cases, the values ofΩ , i.e. the non-dimensional
frequencies of the onset of the disturbances, fall in the range of 0.13–0.2, which is comparable
to the frequency range of the mixing-layer model mentioned [25]. Moreover, in the last column of
the table, the non-dimensional quantity, l/δ, indicates how far the inflection point at the onset
of the flow instability is situated from the wall, where l = R − rmax. For these cases, the l/δ values
are about two: the inflection point is situated two times the thickness of the Stokes layer from
the wall. This information supports that the development of flow instability is attributed to the
inviscid mechanism: namely, the mean flow in the neighbourhood of the inflection point modelled
as a mixing-layer.

(b) Other cases
It should be pointed out that there are cases found in the experiment with disturbance
characteristics that cannot be explained by the mixing-layer model proposed above. A case in this
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Figure 11. Results of (ReU , Rem,α)= (2.7× 104, 9× 103, 10), at x/D= 21. (a) Phase-averaged velocity patterns for r/R= 0–
0.98; (b) the fitting curves representing the phase-averaged velocity profiles, U/Uce, in the boundary layer region; (c) the
normalized dU/dr curves; (d) a comparison of the locus of the inflection points, r= rmax(ψ ), and the fluctuation intensity
of the disturbance with respect toψ . (Online version in colour.)

Table 1. Five cases in agreement with the mixing-layer model.

case X/D α ReU Rem f D (Hz) Ω l/δ

(i) 26 12 1.1× 104 4.3× 103 19.6 0.16 1.92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) 26 12.6 1.2× 104 4.1× 103 20.1 0.13 2.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) 26 13 1.4× 104 4× 103 22.3 0.15 2.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) 31 10.9 1× 104 3.7× 103 15.3 0.2 1.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(v) 31 12 9.9× 103 3.4× 103 17.3 0.19 1.92
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

category is presented in figure 11 for illustration. For (ReU, Rem, α) = (2.7 × 104, 9 × 103, 10) and
the velocity measurements made at x/D = 21 in the entrance region, figure 11a presents the phase-
averaged velocity traces, from which it is seen that the disturbances developed when the flow was
decelerating. In figure 11b, the normalized velocity profiles in the boundary layer corresponding
to a number of phases over one period of pulsation look similar, unlike the case shown in figure 7.
In figure 11c, one can realize that the inflection points of the unsteady mean flow profiles in
figure 11b stay close to the wall even when the disturbance grows. Moreover, figure 11d reveals
that a pronounced disturbance appears at the radial positions of r/R = 0.9–0.92, just inside the
Stokes layer marked in the figure.

For this case, the disturbance component embedded in the ensemble-averaged velocity traces
was extracted by the EMD procedures mentioned. Subsequently, the characteristic frequency of
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Table 2. Five cases not in agreement with the mixing-layer model.

case X/D α ReU Rem f D (Hz) Ω l/δ (2π fDν)/U2ce Reδ∗
(i) 21 10 2.7× 104 9× 103 8.94 0.018 0.8 1.25× 10−5 1440

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) 21 12 2.5× 104 7.4× 103 6.44 0.021 0.79 1.05× 10−5 1250
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) 26 12 2.6× 104 7.6× 103 6.63 0.02 0.99 1× 10−5 1560
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) 31 10 2.7× 104 9.3× 103 6.4 0.011 0.96 8.95× 10−6 1800
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(v) 31 12 2.7× 104 8× 103 6.19 0.016 1.01 8.66× 10−6 1575
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the flow disturbance was resolved by the Wavelet analysis. If the disturbance frequency non-
dimensionalized in accordance with the mixing-layer model mentioned, the Ω-value would be
0.018. It is noted to be one order smaller than that predicted by the mixing layer model. Thus, this
finding rather suggests that this case does not comply with the mixing layer model. In fact, based
on the facts unveiled in figure 11 that the inflection point of the unsteady mean flow actually
stay close to the Stokes layer over the entire pulsating cycle and the flow instability be developed
within the Stokes layer, there is no justification of applying the inviscid argument in this case.

There are five cases of the category listed in table 2, whoseΩ-values are consistently one order
smaller than those of the cases in table 1. Also noted is that the corresponding l/δ values stay
around one or even less. This indicates that these cases are not relevant to the inviscid instability
model, contrary to the cases in table 1.

6. Discussion
Further discussion is made below concerning the flow instabilities of the cases presented in
tables 1 and 2. At first glance, one may quickly note that in table 1 the cases were performed
at lower ReU in comparison with those in table 2. On the other hand, one may also note that the
characteristic frequencies of the flow instability of the cases in table 1 are significantly higher those
in table 2. Without knowing the physical mechanisms of the flow instabilities, this contradiction
might create confusion.

As mentioned, the physical mechanism associated with the cases in table 1 is attributed to
the inflection-point of the mean flow that is inviscid in nature. In fact, during the experiment
these cases were produced with the same rotating disc whose area blockage was 85% of the cross-
sectional area of the pipe. By varying the Reynolds number ReU, one can see that the streamwise
location where the initial disturbance was observed varied accordingly. Namely, the lower
the Reynolds number ReU, the further downstream the initial disturbance appears, as seen in
cases (iv) and (v). On the other hand, it should be mentioned that the flow instability was
also dependent upon the pulsation amplitude in terms of the Reynolds number Rem. In the
experiment, the Reynolds number Rem could be lowered by employing a rotating disc of smaller
size: for instance, an area blockage ratio of 70%. However, by doing so, one found no flow
instability in the entrance region at the same ReU and α.

The cases shown in table 2 were produced by the rotating disc with a blockage ratio of 70% at
ReU significantly higher than the ReU in table 1. During the experiment, these cases were viewed
by increasing the pipe flow velocity in a stepwise fashion until the flow instability was discerned
in the entrance region. As seen, the Reynolds numbers ReU of the cases in table 2 are more than
two times those shown in table 1, while the α values of these cases are comparable.

The flow instability associated with the cases of table 2 can be attributed to the viscous
mechanism, as explained below. Literally speaking, the flow instability seen is in the unsteady
boundary layer developed in the entrance region. Referring to Obremski & Fejer [16] and
Gad-el-Hak et al. [19], one may consider their viewpoint and adopt the stability theory of a
steady laminar boundary layer to examine the present flow instability. Following Gad-el-Hak
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Figure 12. The marginal stability curve of a Blasius boundary layer [16]. The open symbols correspond to the oscillatory
boundary layer [16]; the solid symbols correspond to the cases in table 2. (Online version in colour.)

et al. [19], a quasi-steady assumption is also made here that the flow instability is induced by the
instantaneous velocity profile. With the characteristic frequencies of the initial disturbances given
in table 2, one can non-dimensionalize the frequency, f D, as (2π fDν)/U2

ce [16], where ν denotes
the kinematic viscosity. The non-dimensional values are found to be of the order of 1 × 10−6.
Meanwhile, the Reynolds numbers based on the displacement thickness of the boundary layers at
the streamwise locations measured are estimated to be in the range of 1500–2000. This estimation
was enabled by the boundary layer thickness obtained from the phase lag plot of pulsating flow
against ψ . Subsequently, the displacement thickness was taken as one-third the boundary layer
thickness like the Blasius boundary layer profile [26]. In table 2, these values from the five cases are
listed for reference. These cases are close to the marginal stability curve of the Blasius boundary
layer profile [16], which is shown in figure 12. Moreover, according to Gad-el-Hak et al. [19], the
region defined by the marginal stability curve corresponding to a decelerating boundary layer
could be enlarged, in comparison with that of the Blasius boundary layer. Therefore, the cases
in table 2 could be even closer to the marginal stability of a boundary layer in deceleration.
Nevertheless, more quantitative investigations on the marginal instability of the present flow
would be necessary in the future.

A case of inviscid flow instability is presented in figure 13 for discussion. This case was made
at (ReU, Rem, α) = (1.7 × 104, 6.4 × 103, 15.9). The initial flow instability was observed at x/D = 21.
In figure 13a, the ensemble-averaged velocity traces obtained at x/D = 21 over two pulsating
cycles indicate that the intermittent disturbance appears at the phase when the unsteady mean
flow near the wall is accelerating. With the fitting curves in figure 13b representing the velocity
profiles in the unsteady boundary layer, the first derivative curves are presented in figure 13c.
In the plot, the curves thicker in width correspond to the phases when the flow disturbances are
clearly visible. The curve of ψ = 0.9π is chosen in particular for examination. As noted, there are
two inflection points in this curve; one is immersed in the Stokes layer and the other is situated
about three times the thickness of the Stokes layer from the wall. The characteristic frequency of
the disturbance resolved is 28.5 Hz. Non-dimensionalizing the frequency in accordance with the
mixing-layer model with respect to the inflection point situated outside the Stokes layer gives the
Ω-value 0.178. This value is noted to be comparable to those shown in table 1. Furthermore, in
figure 13d, the locus of the inflection points deviating away from the Stokes layer, which is seen
in the solid curve, coincides with the development of the intermittent disturbance. Consequently,
it gives evidence that the disturbance grows outside the Stokes layer while the inflection point is
lifting away from the wall. Based on the observations above, one can state that the flow instability
is governed by the inviscid mechanism, although the unsteady mean flow has one more inflection
point existing in the Stokes layer that is marked by the dashed symbols.
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Figure 13. Results of (ReU , Rem, α)= (1.7× 104, 6.4× 103, 15.9), at x/D= 21. (a) Phase-averaged velocity patterns for
r/R= 0–0.98; (b) the fitting curves representing the phase-averaged velocity profiles, U/Uce, in the boundary layer region;
(c) thenormalizeddU/dr curves; (d) a comparisonof the locus of the inflectionpoints, r= rmax(ψ ), and thefluctuation intensity
of the disturbance with respect toψ . (Online version in colour.)

This case provides an example showing that an unsteady mean flow could have multiple
inflection points while the inviscid flow instability dominates. In figure 13c, it is seen that although
the inflection point away from the Stokes layer is only vaguely identified, it is so effective that
it governs the development of flow instability. Since the Reynolds number ReU of this case is
between those of tables 1 and 2, one would expect that if ReU were somewhat higher, the flow
instability could have a different result. In general, the flow instability seen at lower ReU is
triggered by the inviscid mechanism, and at higher ReU it is overtaken by the viscous mechanism.
Conceivably, a competition between the inviscid and viscous instability mechanisms would take
place if ReU falling in the intermediate range.

7. Concluding remarks
This study confirms a flow regime in pulsating pipe flow that the inviscid flow instability prevails
in the entrance region. In comparison with the cases governed by the viscous mechanism, the
inviscid flow instability regime is found at lower ReU and higher Rem, such that the inflection
point situated outside of the Stokes layer plays an effective role.

Comparing the present work with other research concerned with the flow transition in the
fully developed pipe flow region, one can see a major difference in that the Reynolds number ReU

considered in the present flow is of the order of 104, which is significantly higher than those of
studies in the fully developed region. For instance, the experiments of Shemer et al. [7] and Settler
& Hussian [8] were made with the Reynolds numbers in the range of 2000–4000. In the present
flow, higher ReU caused the flow instability to take place in the entrance region.

While the flow instability developed in the entrance region of the pipe flow is initiated in the
viscous boundary layer, the results of this study clarify that the mechanism is not necessarily a
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viscous one. This should be differentiated from the previous studies concerned with unsteady
boundary layers [16,19]. In fact, two types of flow instabilities were discussed in this work.
Generally speaking, at lower ReU the flow instability is triggered by the inviscid mechanism;
at higher ReU it is overtaken by the viscous mechanism.

Moreover, the case in figure 13 reveals a situation where the flow instability is actually
developed as the pulsating flow is accelerating. This would be highly unlikely from the
perspective of the viscous instability mechanism. This study provides the experimental data with
analysis to give evidence that this flow phenomenon is due to the inviscid mechanism: namely,
the inflexion-point instability.

Additional remarks on the studies concerning the flow instability of an oscillatory pipe flow
are worthwhile to be made here. The oscillatory pipe flow is referred to an unsteady pipe
flow with zero mean velocity. Hino et al. [27] conducted an experimental work to study the
phenomenon of laminar–turbulent transition in an oscillatory pipe flow. They identified three
types of turbulent flow regimes, namely, weakly turbulent, conditionally turbulent and fully
turbulent, characterized by the Reynolds number Rδ , based on the oscillatory velocity amplitude
and the thickness of the Stokes layer, and the Stokes parameter equivalent to the Womersley
number defined in this work. Eckmann & Grotberg [28] conducted the velocity measurements in
an oscillatory pipe flow over a range of the Reynolds number and Womersley number to study the
flow transition to turbulence. As they found, the transition was detected during the decelerating
phase of flow, and the turbulence was confined in an annular region a few times the Stokes-
layer thickness near the wall. Later, Blennerhassett & Bassom [21] conducted a numerical study
on flow instability of oscillatory pipe flows. They found for a case of the pipe diameter being
about ten times the Stokes-layer thickness that the velocity perturbation corresponding to the
least damped mode bears the resemblance to those reported by Hino et al. [27] and Eckmann &
Grotberg [28]. In these studies, discussions made were mainly concerned with the viscous effect
due to the oscillatory flows. Whether or not the inviscid mechanism reported in this study would
play a role in the oscillatory pipe flows is of interest to be considered in the future.
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