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Abstract

Genome-scale models of metabolism and macromolecular expression (ME-models) explicitly
compute the optimal proteome composition of a growing cell. ME-models expand upon the
well-established genome-scale models of metabolism (M-models), and they enable a new
fundamental understanding of cellular growth. ME-models have increased predictive capabili-
ties and accuracy due to their inclusion of the biosynthetic costs for the machinery of life, but
they come with a significant increase in model size and complexity. This challenge results in
models which are both difficult to compute and challenging to understand conceptually. As a
result, ME-models exist for only two organisms (Escherichia coliand Thermotoga maritima)
and are still used by relatively few researchers. To address these challenges, we have devel-
oped a new software framework called COBRAme for building and simulating ME-models. It
is coded in Python and built on COBRApy, a popular platform for using M-models. COBRAme
streamlines computation and analysis of ME-models. It provides tools to simplify constructing
and editing ME-models to enable ME-model reconstructions for new organisms. We used
COBRAme to reconstruct a condensed E. coli ME-model called iJL1678b-ME. This reformu-
lated model gives functionally identical solutions to previous E. coli ME-models while using 1/6
the number of free variables and solving in less than 10 minutes, a marked improvement over
the 6 hour solve time of previous ME-model formulations. Errors in previous ME-models were
also corrected leading to 52 additional genes that must be expressed in iJL1678b-ME to grow
aerobically in glucose minimal in silico media. This manuscript outlines the architecture of
COBRAmMe and demonstrates how ME-models can be created, modified, and shared most
efficiently using the new software framework.

This is a PLOS Computational Biology Software paper
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Introduction

Genome-scale metabolic models (M-models) have shown significant success predicting vari-
ous aspects of cellular metabolism by integrating all of the experimentally determined meta-
bolic reactions taking place in an organism of interest [1-4]. These predictions are enabled
based on the stoichiometric and thermodynamic constraints of the organism’s metabolic reac-
tion network and the metabolic interactions with the environment. M-models are capable of
accurately predicting the metabolic capabilities of an organism, but they require defined sub-
strate input constraints and empirical metabolite measurements to make predictions of its
growth capabilities. Therefore, a focus of development in the field of genome-scale models has
been to increase the scope and capabilities of genome-scale models [5].

Recently, M-models have been extended to include the synthesis of the gene expression
machinery, enabling models to compute the entire metabolic and gene expression proteome in a
growing cell [6-9]. These ME-models integrate Metabolism and Expression on the genome scale
(Fig 1), and they are capable of explicitly computing a large percentage (up to 80% in some cases)
of the proteome by mass in enterobacteria [10]. In other words, ME-models not only compute
optimal metabolic flux states, as with M-models, but they additionally compute the optimal prote-
ome composition required to sustain the metabolic phenotype. ME-models enable a wide range
of new biological questions that can be investigated, including direct calculations of proteome
allocation [11] to cellular processes, temperature dependent activity of the chaperone network
[12], metabolic pathway usage, and the effects of membrane and volume constraints [7]. Further-
more, their ability to compute the optimal proteome abundances for a given condition make
them ideal for mechanistically integrating transcriptomics and proteomics data.

So far ME-models have been constructed for only two organisms, Thermotoga maritima [8]
and Escherichia coli K-12 MG1655 [6,7,9,13]. The slow pace of ME-model construction can be
attributed to two basic challenges. First, ME-models are much slower to numerically solve
than M-models; it takes 5 orders of magnitude more CPU time to solve i{OL1650-ME [6] than
it does the corresponding iJO1366 M-model [14] (~6 hrs for iOL1650-ME vs ~100 ms for
iJO1366). Therefore, while M-models can be solved on personal computers, ME-models have
required large clusters or supercomputers to parallelize simulations. Second, the large model
sizes and complex structure have made analyzing and debugging the model difficult and time
consuming. M-models can use generalized software tools [15-19], but each organism’s ME-
model has required its own dedicated codebase and database schema, which makes advances
for one organism’s model difficult to apply to another organism. Therefore, each organism’s
ME-model has required dedicated person-years of effort.

We addressed these challenges by developing a computational framework called COBRAme
for building, editing, simulating, and interpreting ME-models. COBRAme is written in Python
and extends the widely used COBRApy software that only supports M-models [18]. COBRAme
is designed to: 1) support any organism with an existing M-model; 2) use protocols and com-
mands familiar to current users of COBRApy; 3) represent ME-models with an intuitive collec-
tion of Python classes; and 4) solve FBA simulations orders of magnitude faster than previous
ME-models [6]. As a result of the above considerations, we hope that COBRAme and its associ-
ated tools will accelerate the development and use of models of metabolism and expression.

Design and implementation
Python

The COBRAme software (S1 File) is written entirely in Python 2.7+/3.5+ and requires the
COBRApy [18] software package to enable full COBRA model functionality. Additionally,
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Fig 1. Multi-scale processes modeled in a ME-model depicted in a dividing E. coli cell. ME-models expand upon underlying M-models by explicitly accounting for the
reactions involved in expressing genes that are required to catalyze enzymatic processes. The synthesis of each major macromolecule is coupled to the reaction that it is
involved in by accounting for its dilution to daughter cells during cell division. Each dilution is a function of growth rate ().

https://doi.org/10.1371/journal.pcbi.1006302.9001
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COBRAme requires the SymPy Python module [20] in order to handle the symbolic variable
representing cellular growth rate (y), which participates as a member of many stoichiometric
coefficients in the ME-model. The BioPython package [21] is used by COBRAme to construct
transcription, translation, and tRNA charging reactions for each gene product in the organ-
ism’s genbank genome annotation file. The ME-model is solved using the SoPlex [22,23] or
gMINOS [24] solvers via APIs written in Python and included as part of this project. Further,
the ECOLIme Python package is included in this work (S2 File) and contains information per-
taining to E. coli gene expression and scripts to build {JL1678b-ME starting with the E. coli
metabolic model, ifO1366 [14]. ECOLIme can further act as a blueprint for ME-model recon-
structions of new organisms.
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ME-model architecture

Constructing a ME-model requires assembling information pertaining to many different cellu-
lar processes. For instance, in order to construct a translation reaction for the ME-model, the
sequence of the gene, the codon table for the organism, the tRNAs for each codon, ribosome
translation rates, elongation factor usage, etc. must be incorporated. Further, several processes
in the ME-model recur for many genes that are transcribed or translated, due to their tem-
plate-like nature [13]. To address these challenges, the COBRAme ME-model was structured
to compartmentalize information for individual cellular processes. A key component of this
approach was the separation of the ME-model into two major Python classes: the information
storage vessels called ProcessData and the functional model reactions called MEReaction,
which is analogous to the COBRApy Reaction.

ProcessData. COBRAme constructs ME-models that are composed of two major Python
classes. The first of these is the ProcessData class, which is used to store information associated
with a cellular process. The type of information contained in each ProcessData type is summa-
rized in the COBRAme Documentation (http://cobrame.readthedocs.io/, S4 File). This
method of information storage has several advantages over alternatives such as establishing a
database to query information as it is needed, which was the approach used to build previous
ME-model versions. For example, this approach simplifies the dissemination of the informa-
tion used to construct a ME-model given that the information can now be included as part of a
published ME-model without requiring the user to install and populate a database. Further,
this gives the ability to compartmentalize the information based on which cellular processes it
elucidates. By storing this information in Python objects, methods can be implemented to fur-
ther allow data contained in each ProcessData instance to be manipulated. This approach also
reduces error by enabling many aspects of the model to be computed using defined inputs in a
consistent way. For example, the amino acid sequence for a protein can be dynamically com-
puted and used to construct a TranslationReaction instance using a gene’s nucleotide sequence
and codon table (Table 1 and S5 File).

MEReactions. ME-models are multiscale in nature, meaning they contain reactions that
operate on dramatically different scales in time and space and whose reaction rates span ~15
orders of magnitude [25]. Fast reactions (e.g., metabolic) are coupled to slow reactions (e.g.,
complex formation) through coupling coefficients that determine the amount of macromole-
cule needed to catalyze particular reactions. To facilitate this coupling and to handle the
unique characteristics of each major reaction type found in cell biology, the MEReaction
Python class is used.

The MEReaction classes inherit all of the methods of a COBRApy Reaction. In addition to
the functionality of the COBRApy Reaction, however, MEReactions contain methods to read
and process the information contained in ProcessData objects and to update this information
into a complete, functional reaction. In many cases, part of compiling a ME-model reaction
also includes imposing the appropriate growth rate dependant coupling constraints (coupling
constraints detailed in the COBRAme Documentation and Supplemental Text (S8 File)).
These coupling constraints are imposed directly as part of the MEReaction’s update method
and can vary depending on the reaction type. Since MEReactions are directly linked to the
information used to construct them through the associated ProcessData, this codebase has the
ability to easily query, edit, and update the information and metabolite stoichiometry consti-
tuting the MEReaction and therefore the edit model (Table 2 and S5-S7 Files). Examples of
how this ME-model architecture can be leveraged to query and edit reaction information can
be found in the COBRAme Documentation.
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Table 1. Overview of all ProcessData subclasses.

ProcessData Information Contained Example Number in
Subclass iJL1678b-ME
StoichiometricData | Metabolite stoichiometry of a metabolic reaction (often equivalent to M-model HISTD 2282
reaction)
ComplexData Protein subunit stoichiometry of an enzyme complex as well as the modifications CPLX-153 1445
required for its activity
SubreactionData Some processes occur in multiple steps (e.g. translation reactions) or require ala_addition_at_GCA or 353
modifications. This class details the stoichiometry and catalytic enzyme associated with | mod_2fe2s_c
the process.
TranscriptionData Nucleotide sequence, RNA products, sigma factor usage, etc. for a given transcription TU00001_from_RpoD_mono 1447
unit
TranslationData Subreactions (tRNA mediated amino acid additions), sequence of mRNA/protein, etc. | b2020 1569
for a given mRNA being translated
tRNAData Codon, amino acid, tRNA, and modifications required to make a functioning tRNA tRNA_b0202_AUU 158
TranslocationData Keff, enzymes, and metabolite stoichiometry of a particular protein translocation srp_translocation 9
pathway
PostTranslationData | Translocation pathways, protein modifications (for lipoproteins), etc. required to translocation_protein_b0733 682
produce a functioning protein.
GenericData List of complexes or metabolites that are redundant and represented as generics generic_Tuf 11

https://doi.org/10.1371/journal.pchi.1006302.t001

ME-model reconstruction workflow

The ME-model of E. coli is reconstructed using the two Python packages presented here,
COBRAme and ECOLIme. COBRAme contains the class definitions and necessary methods to
facilitate building and editing a working ME-model. COBRAme is written to be organism-agnos-
tic so that it can be applied to ME-models for any organism. ECOLIme contains the E. coli specific
information (e.g., the E. coli ribosome composition) as well as functions required to process files
containing E. coli reaction information (e.g., the text file containing transcription unit definitions)
and associate them with the ME-model being constructed. Therefore, ECOLIme is required to
assemble the reaction and gene expression information that comprises JL1678b-ME. COBRAme,
on the other hand, supplies the computational framework underlying the ME-model. The package
composition along with further demonstrations of the utility of each of these packages is outlined
in the COBRAme Documentation.

The procedure used to build iJL1678b-ME using COBRAme and ECOLIme is presented in
the building script, ‘build_me_model’ (Fig 2). This script goes through each of the major gene

Table 2. ProcessData types used to construct each MEReaction type.

MEReaction Type ProcessData Information Used Number in iJL1678b-ME
MEReaction None 2021
SummaryVariable None 22
MetabolicReaction StoichiometericData, SubreactionData, ComplexData 5266
ComplexFormation ComplexData, SubreactionData 1445
TranslationReaction TranslationData, SubreactionData 1569
TranscriptionReaction TranscriptionData, SubreactionData 1447
PostTranslationReaction PostTranslationData, TranslocationData, SubreactionData 682
tRNAChargingReaction tRNAData, SubreactionData 158
GenericFormationReaction GenericData 44

Most MEReaction types in COBRAme must be linked to at least one ProcessData instance that defines the core information underlying the reaction being represented.

The required ProcessData for each reaction is listed

https://doi.org/10.1371/journal.pchi.1006302.t002

in bold.
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red ovals), all of which are defined in the COBRAme package. The entirety of the MEReactions comprise a working ME-model. Not all input data, ProcessData
classes, and MEReaction classes are shown. For a complete list, reference the COBRAme Documentation.

https://doi.org/10.1371/journal.pcbi.1006302.9002

expression processes modeled in iJL1678b-ME and uses ECOLIme to load all the relevant
information. Once the information is loaded, it is used to create and populate ProcessData
instances associated with the information. Each of the ProcessData instances are then linked to
the appropriate MEReaction instance and updated to form a functioning ME-model (Fig 2).

Reformulating the E. coli ME-model

Significant efforts were made to simplify the ME-model while also optimizing the model size,
modularity, and time required to solve. These included: 1) reformulating the implementation
of explicit coupling constraints (metabolites) and 2) lumping major cellular processes such as
transcription and translation into single ME-model reactions. Further, a number of updates,
changes, and corrections have been made to the E. coli ME-model reconstruction which are
detailed below and in the Supplemental Text (S8 File).

Macromolecular coupling. The largest mathematical difference between the original ME-
model formulation [6] and COBRAme is the change in the macromolecular coupling imple-
mentation. Coupling coefficients dictate the amount of macromolecule synthesis flux that is
required for the reaction catalyzed by that macromolecule to carry flux. They are derived
based on the fact that, as a cell grows and divides, it dilutes macromolecules to its daughter
cells. Therefore, coupling constraints have a general form of “w/k.¢” [6] (Fig 3), where p is the
growth rate and k. is the effective turnover rate of the process catalyzed by the macromole-
cule. While these are essential in a ME-model to couple together the various types of reactions,
in previous model versions they inflated the number of metabolites and reactions contained in
the ME-model (ME-matrix), resulting in longer solve times. COBRAme improves coupling
constraint implementation by directly embedding macromolecule dilution coupling into its
catalytic reaction (Fig 3 and S8 File).

A more thorough description of coupling constraint reformulation and implementation
can be found in the COBRAme Documentation and the Supplemental Text (S8 File).
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Reference the COBRAme Documentation for derivations and further explanation of the coupling coefficients.

https://doi.org/10.1371/journal.pcbi.1006302.9g003

Reaction lumping. Splitting the model into ProcessData and MEReactions allows for a
variety of model simplifications. For example, reactions that occur in a number of individual
steps or sub-reactions (i.e., ribosome formation, translation, etc.) can be lumped into a single
reaction. The single lumped MEReaction can be constructed by associating it with the multiple
ProcessData instances that detail the individual sub-reactions involved in the overall reaction.
All sub-reaction information is further accessible through the MEReaction instance itself
which allows the information to be queried, edited, and updated throughout the reaction. If
the sub-reaction participates in many different reactions, the sub-reaction changes can be
applied throughout the entire model. This lumping has the obvious benefit of reducing the
number of model reactions, thus shortening the solve time. Lumping intricate reactions has
the added benefit of making the ME-model much more modular in nature. This simplifies the
process of adding or removing new processes associated with the ME-model reaction. Exam-
ples of accessing and editing MEReactions through ProcessData can be found in the
COBRAme Documentation.

Nonequivalent changes. Unlike the reformulations described above, some of the changes
made in the COBRAme formulation purposefully changed the model in a nonequivalent way.
One of the most significant differences was assigning a “dummy complex” monomer with a
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representative amino acid composition to act as the catalytic enzyme for “orphan” reactions.
These are non-spontaneous reactions that do not have a known enzymatic catalyst. The previ-
ous ME-model formulations modeled these “orphan” reactions as spontaneous, causing a
slight bias toward using these reactions since they did not have an associated protein expres-
sion cost. This was corrected in iJL1678b-ME. Additionally, in i{JL1678b-ME, protein “carriers”
(described in the Supplemental Text (S8 File)) like the acyl carrier protein are considered the
catalysts of their transfer reactions. Therefore, iJL1678b-ME will require translation of these
carriers in order for them to participate in the reactions in which they are involved, thus result-
ing in the expression of 52 more genes when simulating on glucose minimal media compared
to iJL1678-ME.

Further, membrane surface area constraints imposed in iJL1678-ME were removed. This
constraint limited the number of membrane proteins that could be expressed at a given growth
rate. Protein competition for membrane space may play an important role in shaping E. coli’s
metabolic phenotype, particularly when growing aerobically. Despite this, the constraint was
removed to prevent the model from being over constrained when growing in non-glucose aer-
obic conditions, which could lead to unrealistic behavior. Removing this constraint makes
iJL1678b-ME more flexible and applicable to more in silico conditions. Similarly, growth-
dependent surface area calculations were used when imposing growth-dependent lipid synthe-
sis demands, therefore they were also removed and replaced with demands identical to those
defined in the iJO1366 biomass objective function. The protein translocation genes and path-
ways that were added when reconstructing iJL1678-ME, however, remain in iJL1678b-ME.

Additional corrections and changes made when reconstructing iJL1678b-ME are outlined
in the Supplemental Text (S8 File).

Optimization procedure

Unlike M-models, the stoichiometric matrix for each ME-model consists of numerous growth rate
(1) dependent metabolite coupling coefficients and variable bounds (Figs 1 and 3). This makes the
ME-model nonlinear, meaning it cannot be solved as a normal LP like M-models. The ME-matrix,
however, is quasi-convex [25], meaning that, for any feasible substituted p, all smaller p values will
also be feasible. Therefore, the maximal feasible u value can be determined by a binary search or
bisection algorithm wherein successive linear programs are solved at different values of . to find
the largest value of 1 that gives a feasible flux state, as done for iJL1678-ME and iOL1650-ME. For
each optimization, the production of a representative “dummy complex” is maximized. In doing
so, it allows the same algorithm to be used for both batch and nutrient limited growth, which
required different procedures in {JL1678-ME and iOL1650-ME [6] (see S8 File).

While any linear programming solver supported by COBRApy [18] could have been used,
ME-models are very ill-scaled [6], unlike M-models [26]. Therefore, two specialized solvers are
used due to their extended numerical precision, thus ensuring acceptable numerical error: 1)
gMINOS [23,24], which supports quad (128-bit) numerical precision, and 2) SoPlex [22],
which supports “long double” (80-bit) numerical precision as well as iterative refinement in
rational arithmetic to further reduce numerical error.

Results and discussion
Model overview

The COBRAme framework was used to reconstruct a mass-balance checked, reformulated ver-
sion of the E. coli K-12 MG1655 ME-model iJL1678-ME, called iJL1678b-ME (S3 File). This
produced a model with 12,655 reactions and 7,031 metabolites (S6 and S7 Files), a marked
improvement over iJL1678-ME which contained 79,871 reactions and 70,751 metabolites. As a
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result, {JL1678b-ME has a stoichiometric matrix with ~85% fewer columns and ~90% fewer
rows than iOL1650-ME. This dramatically speeds up the solving procedure and allows processes
such as iterative refinement, which uses rational arithmetic and is unsuited for fast vectorized
SIMD operations, to become feasible for fast and accurate solutions (Fig 4, Fig B in S8 File).

iOL1650-ME, constructed using COBRAme, was simulated in glucose aerobic minimal
media in silico conditions and compared against simulations from the previous iOL1650-ME
version. Both simulations were ran using a selection of k. parameters that were fit to proteo-
mics data obtained from E. coli grown in multiple conditions [27]. The new model version
gave similar fluxes (R*>.98) when comparing model solutions on a transcription, translation,
and metabolic level (Fig 5), suggesting that the two models are practically identical, computa-
tionally. The reformulated ME-model cannot be expected to give completely identical solu-
tions to iOL1650-ME due to some of the nonequivalent changes and model corrections
described in Nonequivalent Changes. Particularly, the RNA degradosome and RNA excision
machinery was slightly under-expressed due to the change in stable RNA excision handling,
described in the Supplemental Text (S8 File).

Flux Variability
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Fig 4. Flux variability analysis of reactions representing the expression of the Pgi enzyme and the PGI metabolic reaction. The variability becomes negligible (the
max and min possible fluxes converge) for metabolic and translation fluxes when using a y precision of 10> and for transcription fluxes when using a y precision of
1072, There are two transcription reactions for pgi since this gene can be transcribed using two different sigma factors. The lower limit of reaction flux values is set to
107"° mmol « gDW™ « hr™" as this is close to the lowest value that can be accurately represented in double-precision floating-point in Python. Note the maximum
reaction flux for the reverse direction of PGI does not drop to 107> mmol « gDW™ « hr™" by this p precision. However, considering the general scale of metabolic
reaction fluxes (see Fig 5), the maximum flux effectively drops to zero for practical purposes. High p precision can be achieved without sizeable increases in total solve
time using QMINOS. The ME-model simulations were repeated nine times for each precision and the error bars represent the standard deviation of the solve times.

https://doi.org/10.1371/journal.pcbi.1006302.9004
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flux predictions (R*>0.98). The models cannot be expected to give completely identical flux predictions due to the ME-model updates outlined in Nonequivalent
Changes. Since iJL1678b-ME does not contain membrane surface area constraints, iOL1650-ME was used for comparison.

https://doi.org/10.1371/journal.pcbi.1006302.g005

Computational essentiality predictions for both iJL1678b-ME and iOL1650-ME were com-
pared against a genome-wide essentiality screen of single gene knockouts grown in glucose
M9 minimal media [28]. Due to the corrections described above and in the Supplemental Text
(S8 File), iJL1678b-ME displayed improved gene essentiality predictions when comparing
essentiality for the 1539 proteins also modeled in i{OL1650. The bulk of these improvements
stem from modeling the expression of enzyme “carriers” as mentioned in Nonequivalent
Changes. This correction led to a 35 gene decrease in the number of false positive predictions
made by iJL1678b-ME, but also led to a 22 gene increase in true positives. Overall, the accuracy
of the model improved from 86.6% to 87.5%. Further, the Matthews Correlation Coefficient
[29], a machine learning metric to gauge the performance of binary classifiers, saw an increase
of 7% from 0.616 to 0.659 (Table 3).

Beyond performance and predictive improvements, the reformulations and reduced size
make iJL1678b-ME more understandable to the user. By lumping cellular processes into
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Table 3. Summary of essentiality predictions for the 1539 proteins modeled in both i{JL1678b-ME and iOL1650-ME.

iJL1678b-ME

iOL1650-ME

Experimental
Essential Nonessential
Essential 1070 (69.5%) 109 (7.1%)
Nonessential 84 (5.5%) 276 (17.9)
Essential 1092 (71.0%) 87 (5.7%)
Nonessential 119 (7.7%) 241 (15.4%)

Predictions of essentiality are from a genome wide screen of Keio collection [30] knockouts grown on glucose M9 minimal media [28].

https://doi.org/10.1371/journal.pcbi.1006302.t003

individual model reactions, the structure of each ME-model reaction is able to more closely
resemble known reactions the user will recognize. For instance, the translation of a given gene,
<gene_id>, occurs in a single model reaction, “translation_<gene_id>,” where all components
and coupling constraints are applied in one place (Fig 3) as opposed to occurring in multiple, dis-
tinct reactions. In addition to being more easily understandable by the user, the reformulation
makes the model more amenable to visualization tools like Escher [19], further easing the process
of interpreting simulation results.

Availability and future directions

Both the COBRAme and ECOLIme software packages are required to construct {JL1678b-ME
and are currently available on the Systems Biology Research Group’s Github page (https://
github.com/SBRG). Installation procedures as well as all necessary documentation required to
build, simulate, and edit ME-models are present in the repository READMEs. The gMINOS
solver [24] is also freely available for academic use. Instructions for installing and using the
solver can be found as part of the solveme package [25]. Alternatively, the SoPlex solver can be
found at (http://soplex.zib.de/) and is freely available to academic institutions. The soplex_
cython package contains instructions to compile the soplex solver with 80-bit precision capa-
bilities along with the necessary code required to solve iJL1678b-ME with SoPlex. Builds of
COBRAme, ECOLIme, the gMINOS solver, and all dependencies can be further obtained
from Docker Hub (https://hub.docker.com/r/sbrg/cobrame/). The scripts and instructions for
locally building Docker images that include the above software as well as SoPlex can be found
on the COBRAme GitHub repository. This allows researchers to easily install and use ME-
models regardless of platform and enables cloud computing platforms for ME-model simula-
tions. These software packages will be actively maintained and continuously improved. The
COBRAme documentation can be found on readthedocs (https://cobrame.readthedocs.io/).
The scripts, data, and instructions needed to reproduce the presented results can be found in
the S3 File or at https://github.com/coltonlloyd/cobrame_supplement.

Enable new ME-model reconstructions

We anticipate that the presented software tools will facilitate the reconstruction of many new
ME-models beyond iJL1678b-ME for Escherichia coli K-12 MG1655. While the COBRAme
code was constructed to be readily applicable to many different organisms, it is likely that
some organisms will require additional features for their ME-model reconstruction that we
did not originally anticipate. It is our priority to continue to update and improve the code to
enhance its utility to model new, diverse organisms. Future efforts will also be made to create
standards to govern how ME-models are reconstructed and shared within the scientific com-
munity. This will include working with the systems biology community to develop SBML
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[31,32] standards capable of encoding the information required to reproducibly build and sim-
ulate ME-models.

Supporting information

S1 File. The COBRAme source code. The COBRAme version 0.0.9 source code. The latest
version of COBRAme can be downloaded from https://github.com/SBRG/cobrame.
(ZIP)

S2 File. The ECOLIme source code. The ECOLIme version 0.0.9 source code. The latest ver-
sion of ECOLIme can be downloaded from https://github.com/SBRG/ecolime.
(ZIP)

S3 File. Scripts used to produce all figures and tables. All results outlined in the manuscript
can be reproduced by following the instructions in the README. A JSON version of
iJL1678b-ME is also contained in this file. Alternatively, these scripts can be found at https://
github.com/coltonlloyd/cobrame_supplement.

(Z1P)

$4 File. The documentation for COBRAme version 0.0.9. The latest version of the documen-
tation can be found at https://cobrame.readthedocs.io.
(PDF)

S5 File. The ProcessData in iJL1678b-ME. Summary of the information contained in all Pro-
cessData types used in the ME-model. Descriptions of what each ProcessData class represents
can be found in Tables 1 and 2.

(XLSX)

S6 File. The MEReactions in iJL1678b-ME. Summary of the attributes of each reaction type
used in the COBRAme ME-model.
(XLSX)

S7 File. The metabolites in iJL1678b-ME. Summary of the attributes of each metabolite type
used in the COBRAme ME-model.
(XLSX)

S8 File. Supplemental Text and figures. Includes additional information regarding ME-
model updates and reformulations along with some additional analysis.
(PDF)
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