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Transcriptomic profiling of human cardiac cells
predicts protein kinase inhibitor-associated
cardiotoxicity
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Kinase inhibitors (KIs) represent an important class of anti-cancer drugs. Although cardio-

toxicity is a serious adverse event associated with several KIs, the reasons remain poorly

understood, and its prediction remains challenging. We obtain transcriptional profiles of

human heart-derived primary cardiomyocyte like cell lines treated with a panel of 26 FDA-

approved KIs and classify their effects on subcellular pathways and processes. Individual

cardiotoxicity patient reports for these KIs, obtained from the FDA Adverse Event Reporting

System, are used to compute relative risk scores. These are then combined with the cell line-

derived transcriptomic datasets through elastic net regression analysis to identify a gene

signature that can predict risk of cardiotoxicity. We also identify relationships between

cardiotoxicity risk and structural/binding profiles of individual KIs. We conclude that acute

transcriptomic changes in cell-based assays combined with drug substructures are predictive

of KI-induced cardiotoxicity risk, and that they can be informative for future drug discovery.
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Protein kinase inhibitors (KIs) are an important class of
therapeutics used for the treatment of various forms of
cancer1,2 and other diseases. There are currently more than

48 KIs approved for clinical use by the U.S. Food and Drug
Administration (FDA) and other regulatory agencies3, and more
than 250 KIs are undergoing clinical trials or are in develop-
ment4–6. The clinical effectiveness of KIs as cancer drugs has led
to a broad effort to develop drugs that are more efficacious and
have reduced the propensity for adverse events. Cardiotoxicity
(CT) is a clinically important adverse event associated with sev-
eral KIs7–10. KI-associated CT manifests as loss of cardiomyocyte
function, which can lead to heart failure11. Given the extensive
therapeutic potential of KIs, approaches to identify and subse-
quently mitigate the risk for CT during early development of
novel KIs and during clinical administration are urgently
required.

We do not yet sufficiently understand the mechanisms
underlying KI-associated CT. The human kinome consists of
more than 500 protein kinases12. Given that many KIs exhibit
multitarget pharmacology13, inhibition of multiple protein kina-
ses in cardiomyocytes may lead to adverse drug effects such as
CT14. For individual KIs, pathways involved in mitochondrial
function8,15,16, endoplasmic reticulum stress response16, and
AMPK inhibition17, have been shown to be associated with KI-
induced CT18. Overall, however, the general mechanisms of KI-
induced CT are still poorly understood18.

Obtaining quantitative clinical risk scores for KI-associated CT
is also challenging, as the risk for KI-associated CT has not been
systematically studied. The FDA adverse event report system
(FAERS) database has been previously applied to quantify the risk
of ADRs19–21. The FAERS database contains over 9 million
individual drug-associated adverse-event reports reported by
industry and physicians. Through statistical analyses of the
FAERS database, relatively unbiased estimates for the relative risk
for specific ADRs can be computed. Such risk scores are clinically
relevant as they are based on real-life patient population, and they
are not solely based on selected patient cohorts. We previously
used such analyses of the FAERS database in combination with
systems’ pharmacology-based approaches to obtain mechanistic
insights into adverse-event mechanisms21,22.

In the current study, generated as part of the NIH-funded
Library of Integrated Network Based Cellular Signatures (LINCS)
Drug Toxicity Signature Generation Center (DToxS), we take a
top–down global approach to determine if a comprehensive
profiling of gene expression changes in human cardiomyocytes
can provide insight into pathways associated with KI-induced CT,
and to potentially predict the risk of CT. The rationale for this
approach is based on the central assumption that CT largely
originates from cardiomyocytes where one or more protein
kinases contribute to the pathophysiology. Since progression to
heart failure takes several months to manifest, it is not immedi-
ately obvious if gene expression changes measured after drug
treatment for a few days would have predictive value. Thus, a
second important assumption is that early changes in gene
expression upon drug treatment of cardiomyocytes are indicative
of later physiological events. We test the validity of our
assumptions by experimentally obtaining gene-expression pat-
terns for the different KIs, and if these patterns could be selec-
tively associated with the clinical risk of CT for each KI, thereby
providing gene-expression signatures for KI-associated CT.

We report the generation of transcriptomic profiles from four
human primary cardiomyocyte-like cell lines. These profiles are
generated using 23 KIs that were FDA-approved and used
extensively at the time of experimental design, such that an
adequate number of clinical reports have been collected. Drugs
are used at their imputed therapeutic concentrations. Through

this pan-KI transcriptomic profiling, we obtained insights into the
affected pathways that may be related to KI-associated CT. We
show that selective patterns of gene expression can be associated
with the FAERS-derived clinical risk for KI-associated CT, which
may be highly relevant to identify KI drug candidates at risk for
showing clinical CT. We also describe the relationships between
KI CT risk and structural properties of KIs, highlighting the
potential for re-engineering small molecules that exhibit a high
risk for CT.

Results
Differences in CT risk of kinase inhibitors. In order to obtain
unbiased estimates of clinical risk of KI-associated CT, we ana-
lyzed individual adverse-event reporting data from FAERS
(Fig. 1a). Reporting odds ratios (RORs) were derived based on the
relative frequencies of AE occurrence of each KI compared to all
KIs. These risk scores provide a relative ranking of KI-associated
toxicity. Kinase inhibitors were shown to have pronounced dif-
ferences in the relative risk of CT (Fig. 1b). When comparing the
ranking of risk scores derived from FAERS with adverse drug-
reaction (ADR) reporting data from the World Health Organi-
zation (WHO) ADR reporting database, we find that the ranking
from these databases largely agrees (Fig. 1c), indicating the gen-
eral consistency of the clinical risk scores across databases.

Phenotypic assays poorly correlate with CT. We performed a
literature review for in vitro and in vivo experimental datasets
that aimed to predict CT risk based on phenotypic readouts, such
as cell viability or beating rate from in vitro cardiomyocyte or
animal models, to determine if such phenotypic experiments can
predict the clinical risk scores for CT. Studies in which drugs at
the clinical concentration induced more than a 20% change in
various phenotypic readouts compared to control experiments
were classified as predicting potential CT (Fig. 1d). Across these
studies, it was apparent that there was no identifiable relationship
between apparent experimental toxicity in comparison to the
relative incidence of CT in patients as derived from FAERS.

We conducted dose–response experiments with selected KIs
that had varying risks for CT using the cardiomyocyte cell lines
that were used in the current study for transcriptomic profiling,
quantifying cell viability, and mitochondrial stress after 48 h of
exposure to the selected KIs. We again assessed if drugs caused
more than a 20% change in cell viability and mitochondrial stress
at the typical clinically used concentration (Supplementary
Table 1). These studies showed a similar lack of correlation with
clinical risk (Fig. 1e, Supplementary Fig. 1). These findings
underscore the need for alternative approaches such as early
molecular signatures for CT. This identified lack of the
predictiveness of preclinical in vitro and in vivo phenotypic
assays, as has been noted by others7.

Transcriptomic profiling of human primary cardiomyocyte-
like cell lines. To study the transcriptomic response to KIs
associated with CT, we obtained four primary cardiomyocyte
lines that were isolated from ventricles of healthy adult human
heart (two male and two female, PromoCell GmbH, Germany).
Culture conditions, detailed phenotypic characterization of each
cell line, including gene and protein expression, morphology, and
functional assays, can be found on the DToxS Center website
(www.dtoxs.org) under the “Cellular Metadata” section.

Confluent cardiomyocyte-like cells were treated with drugs for
48 h at concentrations similar to their clinical concentration
(Supplementary Table 1) with 3–4 replicates and 3–4 cell lines
(Supplementary Table 2), after which RNA was extracted and
sequenced using the 3′ digital gene-expression method23 (Fig. 2a).
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Fig. 1 Cardiotoxicity of protein kinase inhibitors. a Approach to quantify relative clinical cardiotoxicity risk scores for kinase inhibitors from the FDA
Adverse Event Reporting System (FAERS) database. b Reporting odds ratio (mean and 95% confidence interval of computed odds ratio) for cardiotoxicity
across kinase inhibitors from FAERS. c Comparison of ranking derived from FAERS and WHO Pharmacovigilance data shows agreement. d Literature-
reported in vitro and in vivo preclinical assays to predict KI-associated cardiotoxicity poorly correlated with clinical FAERS-derived risk scores for
cardiotoxicity at clinical drug concentrations. e In vitro dose–response experiments for selected KIs for viability and mitochondrial stress poorly correlate
with clinical FAERS-derived risk scores for cardiotoxicity. Source data are provided in source data file.
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We investigated if transcriptomic profiles of PromoCell
cardiomyocytes are related to human heart tissue and hence a
good model to study CT. We compared the gene-expression
similarity of untreated PromoCell cardiomyocytes against tissues
available in the Genotype-Tissue Expression (GTEx) project,
which contains gene-expression data from many human tissues,

including the heart (Fig. 2b)24. Using the Jaccard distance for the
top expressed 250 genes (based on transcript per million counts)
for both untreated PromoCell and GTEx tissues, we observe that
PromoCell cardiomyocytes’ expression exhibits a gene expression
similar to blood (rank 2), muscle (rank 4), and heart (rank 10)
tissue. Based on these results, we conclude that the PromoCell
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cardiomyocytes can offer comparable gene-expression changes to
that of cardiomyocytes.

Limited overlap in differentially expressed genes across KIs.
Differential gene-expression fold-change values were computed
across the four cell lines. Initial analyses showed that the DEGs
generally clustered more strongly by drugs than by cells. We
calculated median fold-change values for each KI across cell lines,
resulting in a single gene- expression profile for each KI. Ranked
gene lists for each KI were generated by ranking by differential
gene-expression p value and keeping the top 250 genes. To assess
the similarity between genes present in the top 250 genes for each
KI, the Jaccard index was calculated for each ranked list of KI-
specific genes, which indicated a limited overlap (<0.25) between
the top 250 genes across KIs (Fig. 2c). Principal component
analysis showed variable gene-expression patterns for nine KIs,
while for the remaining KIs, little variation in gene expression
was seen (Fig. 2d), even though these remaining KIs included
drugs for which CT is well established. We concluded that ranked
differential gene-expression values would not be sufficient to
provide clear insights into gene-expression profiles associated
with CT.

Pathways correlated with KI-associated CT. To identify path-
ways and subcellular processes across KIs and their potential
involvement with CT, we performed enrichment analysis for
protein kinases and KEGG terms using the top 250 differentially
expressed genes ranked by p value across cell lines and KIs. We
then correlated p values of enriched terms with clinical FAERS-
derived risk scores to identify potential kinases and pathways
associated with CT risk (Fig. 3a). The protein kinase LIMK2,
which is involved in actin cytoskeleton reorganization pathways,
ranked the highest in its correlation specifically enriched for KIs
with a higher risk score (Fig. 3b). Sucrose- and pyruvate-
metabolism pathways were the most strongly enriched pathways
correlating with high risk scores (Fig. 3c). However, since no
directionality in pathways is considered in these enrichment
analyses, both the positively and negatively correlated processes
may play a role in the development of CT. When considering
enriched protein kinases and KEGG processes across all KIs
without considering correlation to CT risk, multiple pathways
were identified (Supplementary Fig. 2). These findings indicate
that there is likely substantial complexity underlying the action of
KI in cardiomyocytes, although currently these analyses remain
correlational and do not offer proof of causal relationships.

Transcriptomic signature to predict CT risk. We tested if our
KI-wide fold-change gene-expression profiles correlated with the
KI-specific clinical risk scores for CT to identify a predictive
transcriptomic signature for CT risk. Given the limited similarity
between top-ranking gene-expression profiles across KIs, the
entirety of the gene- expression profiles for different KIs were
considered as potential predictors for KI-associated CT risk. KI-
specific expression profiles of 10,749 genes were available as
potential predictors for KI-specific CT risk scores. To identify

genes most strongly associated with CT risk, we used an elastic
net-penalized regression approach, which aims to select the most
predictive variables while avoiding overfitting25.

A two-stage regression analysis was performed (Fig. 4a). From
the available 23 KIs with the associated clinical CT risk scores, we
randomly left out 2 KIs for external validation of the model (test
set, 10% of data). The differential gene-expression profiles of 21
remaining KIs were then used to train the model. Given the
limited number of available drugs, small changes in expression
patterns for drug were expected to affect the identity of the overall
set of predictor genes. Therefore, we generated bootstrap datasets
by random resampling of KI risk and the associated gene-
expression profiles. These bootstrapped datasets were then fit
using elastic net models. This first step was performed to identify
gene-based predictors that could consistently predict CT risk and
contributed significantly to the prediction of this risk. The
bootstrap analysis resulted in stable selection of potential
predictors. Predictors to be included in the final elastic net
regression model were selected based on their minimal root-
mean-squared prediction error (RMSE) after cross- validation.
Based on this cross-validation, the gene-expression-based pre-
dictors in the final elastic net models consisted of 26 genes with
the associated variable importance values (Fig. 4b).

Repeated cross-validation analyses indicated good predictive
performance of the model for left-out KIs (Fig. 4c). We evaluated
our 26-gene signature for predicting CT risk on an independent
validation set of six KIs, of which three KIs were previously
untested (Fig. 4d). We note that the independent validation set
was performed 1 year after the original signatures were generated,
using a different experimental protocol for the transcriptomic
assay that was based on mRNA detection using random primers.
We observed accurate predictive performance for five out of six
KIs tested. The outlier, ibrutinib, had the lowest, albeit acceptable,
predictive performance, with an error of 0.493 between the
predicted and observed risk scores. Taken together, the developed
signature can be of relevance to support risk prioritization of
newly developed KIs. When we tested which of the 21 KIs drove
the prediction strength of the model, we found that excluding any
of four low-CT risk drugs (cabozantinib, tofacitinib, pazopanib,
and erlotinib) increased the error substantially, indicating that
these KIs contribute distinct information to the signature. In
contrast, several of the high-ranking CT drugs could be excluded
without sacrificing accuracy (Supplementary Fig. 3).

We then used the 26-gene signature to construct a
protein–protein interaction network analysis to identify protein
kinases and transcription factors associated with the signature
(Supplementary Fig. 4). Several protein kinases were retrieved
that are both known targets of the studied KIs, and which may be
associated with the occurrence of KI-induced CT.

Chemical structures of KIs inform CT risk. Off-target binding
or polypharmacology is commonly observed in KIs23. Since off-
target binding is dependent on the structure of the drug, we
investigated the relationship between kinase inhibitor chemical
structure, binding target profile, and CT risk. To do this, we

Fig. 2 Overview of pan-KI transcriptomic profiling in human primary cardiomyocyte-like cells. a Overview of experimental approach to generate
transcriptomic data. For each drug, genes were ranked by absolute mean fold-change gene-expression value across replicates (>3 biological replicates) and
cell lines (a total of 1309 experiments), and the top 250 genes for each KI were kept. Information about the total number of replicates can be found in the
source data file. b Jaccard similarity of gene-expression signature of PromoCell cardiomyocyte cell lines (102 samples) to gene-expression signatures of
tissues available in the GTeX database (17,382 total samples). Boxplot whiskers refer to the upper and lower quartile of all pairwise Jaccard coefficients
between each sample, within each tissue type. Information about each boxplot’s sample size, minima, maxima, and center is provided in the source data
file. c Heatmap depicting the Jaccard index that indicates the magnitude of similarity in top-ranking differentially expressed genes for all KI pairs. d First
three principal components (PCs) based on full mean fold-change gene-expression profiles across KIs. Source data are provided in source data file.
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generated a structure–activity–similarity (SAS) map of the 26
tested inhibitors (in both the training and validation set) and their
CT-risk score (Fig. 5A)26. SAS maps can be divided into four
quadrants: the upper-left quadrant shows KI pairs with low
chemical similarity and large changes in CT risk. The lower-left
quadrant describes largely dissimilar KI pairs with small changes
in CT risk. The lower-right quadrant describes KI pairs that
exhibit a “smooth” structure–activity relationship, that is, small
changes in chemical similarity are associated with small changes
in CT risk. Finally, the upper-right quadrant indicates highly
chemically similar compounds with large changes in CT risk.

KI pairs in the upper-right region represent activity cliffs, that
is, that small changes in chemical structure are associated with
large changes in CT risk. In this region, we find several KI pairs,
in particular, we observe large activity cliffs between afatinib and
bosutinib as well as bosutinib and erlotinib. Here, all four
compounds have the same chemical core (Fig. 5b); however, both
afatinib and erlotinib show respectively lower CT risk scores
compared to bosutinib. We hypothesized that harmonization of
drug substructure, similarity, and promiscuity in the context of
kinase inhibitor type may inform on our ability to predict CT
risk (Fig. 5c).

By investigating their KI target profiles, we observe that both
afatinib and erlotinib are less promiscuous KIs compared to

bosutinib (which is one of the most promiscuous KIs in this set,
Fig. 5d), and they both inhibit EGFR at nanomolar concentra-
tions. On the other hand, less promiscuous KIs, such as lapatinib
and gefitinib, exhibit a comparably lower CT risk score (Fig. 5e).
Indeed, we observe a correlation between kinase inhibitor
promiscuity and the observed CT risk score (Supplementary
Fig. 5). However, KI promiscuity may not be the sole determinant
of CT risk. For example, KIs such as imatinib and nilotinib are
not as promiscuous as bosutinib; however, both exhibit relatively
high CT risk scores. In this case, both imatinib and nilotinib CT
may be explained due to their similar chemical structure and high
specificity for protein kinases such as DDR1 and ABL.

Finally, kinase inhibitors have distinct binding modes against
their targets6,27,28. Kinase inhibitors that bind their kinase targets
can be classified based on their binding mode, including
the kinase conformation they bind and/or type of interactions
they make with their kinase targets (e.g., covalent vs. non-
covalent)6,27,29. For example, type I inhibitors bind an active
kinase conformation, while Type I1/2, II–V bind distinct
inactive states (Methods); type VI KI binds the kinase target
covalently. We do not observe a clear relationship between kinase
inhibitor-binding mode and CT. For example, the type II
inhibitors imatinib and nilotinib are observed to have a high
CT risk, while the type II inhibitors sorafenib and regorafenib
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have comparatively lower observed CT risk. However, both pairs
of inhibitors are highly chemically similar and have similar
binding targets. Taken together, the observed CT risk of a KI may
be related to both a kinase inhibitor’s selectivity and its chemical
structure. Furthermore, we observe a relationship between
chemical structure and binding target similarity to the predictive
performance of our signature (Fig. 5e–g).

Discussion
The occurrence of drug treatment-associated CT, leading to
decreased cardiac function, follows the therapeutic effects of the
drugs, and is only observed in a subset of the patients using the
drug. This raises the question of whether it would be possible to
obtain early cell-based signatures predictive for drug toxicity.
Here we addressed this question by attempting associating drug
treatment-induced gene-expression patterns with the clinical risk
for the adverse events of interest.

By estimating clinical risk from the FAERS database, our
method utilizes a relevant and unbiased approach for the quan-
tification of CT risk. As a result, our CT risk scores lack notable
pitfalls such as selection bias associated with tightly controlled
clinical trials, which underestimate adverse-event risks due to
cohort size, trial duration, and selective inclusion criteria for
subjects. Nevertheless, there are limitations to the FAERS data-
base as well, which we have discussed and addressed in previous
work22. Specifically, use of the FAERS resource may confound
demographics information such as age and sex, which was

observed not to vary across different KIs. Moreover, CT risk score
does not reflect absolute risk for developing CT. Rather, it reflects
the relative risk for a subset of patients for which drug-associated
adverse events were reported. In addition, there may be some
systematic biases based on the sampling frequency of drugs by
institution.

It remains unclear if all KIs induce CT through similar
mechanisms, and to what extent ultimate clinical pathologies are
similar. While the FAERS database allows us to distinguish
between different types of CT, the annotation is not uniform and
may either refer to distinct pathophysiological descriptions or
rather more general clinical presentations of heart failure. To this
end, we chose to lump all forms of heart failure, while excluding
cardiac AEs that have known and unrelated origin such as cor-
onary artery disease and arrhythmias.

We compared KI-associated transcriptomic response profiles
generated from cultured human primary cardiomyocyte-like cells
with clinical CT risk scores to obtain a reduced set of genes that
may predict the relative risk for KI-associated CT. Using the
clinically weighted signatures and the associated regression
coefficients identified in the elastic net model, the relative risk for
CT can be predicted. The risks predicted by our signatures and
the associated regression model can be used in drug development
to rank the potential risk of novel KIs with respect to existing KIs
with better characterized clinical risks for CT.

The signatures generally showed good prediction of CT risk
during cross-validation as well as on an independent set of KIs
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(Fig. 4), while the only poorly performant KI, ibrutinib, inhibitor
of Bruton nonreceptor protein-tyrosine kinase, represents a
unique KI in terms of binding mode (i.e., type VI inhibitor) and
high promiscuity (Fig. 5). Specifically, it is a member of an
emerging class of kinase inhibitor drugs that bind their targets
covalently (type VI KIs). These drugs are highly underrepresented
in the databases used in this analysis, explaining the mis-
classification of ibrutinib30.

The four cell lines we studied are insufficient to fully capture
such human variability to KIs. Therefore, in our analysis, we used
median fold-change gene-expression profiles across multiple cell
lines. The resulting averaged gene-expression profiles thus reflect
relatively consistent changes in gene expression across cell lines,
i.e., changes in gene expression that are less likely to be highly

variable across cell lines, yet may also reflect a set of predictors
that may be more consistent in the population. Given that the
FAERS CT risk scores also reflect a population-level CT risk, the
use of these median values in fold-change gene-expression values
is a reasonable starting point for our analyses.

The experimental underpinning of the transcriptomic profiles
generated in this study makes them likely to be of value in selecting
drug candidates with a low risk for CT as an adverse event. Our
analysis is based on primary human heart-derived cardiomyocyte-
like cells. Although these cell lines do have phenotypic limitations
due to dedifferentiation, the signatures obtained from the cells could
be relevant for prediction of clinical drug effects. These cell lines
may be reflective of human cardiac pharmacology, i.e., in com-
parison with animal-derived cardiomyocytes, even though further
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characterization and standardization are still needed. Detailed
characterization of these cell lines is available as metadata to the
RNAseq datasets at www.dtoxs.org. Our analyses used drug expo-
sures similar to clinically reported maximum plasma concentrations
of the individual KIs, rather than using the same concentrations for
all KIs, even though we did not correct for protein binding. We
expect that the duration of 48-h exposure may reflect tran-
scriptomic changes that are likely related to early changes in sub-
cellular processes associated with the adverse event of interest.

Unfortunately, in this study, it is not feasible or ethically
possible, due to lack of prior informed consent, to compare
cardiac gene-expression signatures with gene-expression profiles
from patients who receive KI-therapy and/or who developed KI-
associated CT. We considered whether we could compare our
gene-expression signatures to cardiac gene-expression data from
patients with heart failure who undergo surgery. Typically these
are patients with advanced disease, and the gene expression in
tissue from advanced disease is not likely to be of relevance to
acute drug-induced CT.

By investigating the chemical structure and binding profile
similarity of KIs, we are able to observe that chemical compo-
nents and scaffolds that lead to promiscuous binding of KIs to
multiple binding targets are correlated with higher CT values.
This is consistent with the notion that a portion of CT risk of KIs
can be attributed to higher levels of off-target interactions.
Indeed, when we investigate the binding profile of three chemi-
cally similar KIs: afatinib, erlotinib, and gefitinib, we find
that their binding profiles are fairly specific compared to other
KIs, and they have a lower normalized CT risk score. One lim-
itation we have observed with our approach is that chemically
distinct KIs (e.g., in terms of binding profile, substructural
similarity, and type), such as the type IV inhibitor ibrutinib,
exhibit diminished predictive performance. However, we think
that using the guidelines we provide herein, this signature could
still assist in the development and prioritization of KIs with lower
toxicity risks.

We cautiously anticipate that clinically weighted tran-
scriptomic signatures such as those developed in this study may
be of relevance to guide safety assessment in early drug devel-
opment. Unlike the relatively well-established assessment of
electrophysiological safety issues such as QT prolongation, the
assessment of non-QT type of CT associated with KI16 and other
novel drugs31, lacks reliable biomarkers. The transcriptomic sig-
nature for CT identified in this study may help fill this gap,
especially if its structure and binding profiles are closely repre-
sented within the inhibitors in this study. One could anticipate
that after initial selection of promising KIs with apparent efficacy
in preclinical screens, transcriptomic profiling using the sig-
natures developed here may possibly be used to rank drugs for the
expected CT risk and exclude those with high CT risk scores
(Supplementary Fig. 6).

While beyond the scope of this study, future extension of our
studies could explore the idea of studying individualized risk
scores for CT. That is, do baseline gene-expression profiles of
larger libraries of patient-derived cardiomyocyte cell lines predict
the difference in risk for CT between individual patients? Ideally,
such an analysis would be conducted using induced pluripotent
stem cell-derived cardiomyocytes from patients, who have
received KIs and experienced different levels of CT, such as was
recently described for anthracycline chemotherapeutics32. This
would then further enable the development of precision medicine
approaches to KI therapy that could minimize the risk for CT.

Methods
Cell culture and drug treatment. Adult human cardiomyocytes (Cat #: C12810)
were purchased from PromoCell GmbH (Heidelberg, Germany) and grown in
culture as per the manufacturer’s instructions. Four different cell line lots (Lot #:
3042901.2, 4031101.3, 2082801.2, and 2120301.2) isolated from two male and two
female subjects were cultured under serum-free differentiation conditions for at
least 28 days prior to drug treatment. Details regarding metadata information,
including cell line metadata and the quality control and assurance metrics, can be
found on www.dtoxs.org.

Table 1 Overview of KIs included in this analysis.

Drug Three-letter code Approval yeara Therapeutic targets Concentration (µM)b

Afatinib AFA 2013 ErbB2 and EGFR 0.05
Axitinib AXI 2012 VEGFR1/VEGFR2/VEGFR3/PDGFRB/c-KIT 0.2
Bosutinib BOS 2012 Bcr-Abl and SRC 0.1
Cabozantinib CAB 2012 c-Met and VEGFR2 2
Ceritinib CER 2014 ALK 1
Crizotinib CRI 2011 ALK and HGFR 0.25
Dabrafenib DAB 2013 BRAF 2.5
Dasatinib DAS 2006 ABL, ARG, KIT, PDGFRα/β, and SRC 0.1
Erlotinib ERL 2004 ErbB1 3
Gefitinib GEF 2003 ErbB1 1
Imatinib IMA 2001 Bcr-Abl 5
Lapatinib LAP 2007 ErbB1 2
Nilotinib NIL 2007 Bcr-Abl 3
Pazopanib PAZ 2009 VEGFR2, PDGFRα/β, and KIT 10
Ponatinib PON 2012 Bcr-Abl, BEGFR, PDGFR, FGFR, EPH, SRC, c-KIT, RET, TIE2, and FLT3 0.1
Regorafenib REG 2012 RET, VEGFR, and PDGFR 1
Ruxolitinib RUX 2011 JAK 1
Sorafenib SOR 2005 BRAF, VEGFRs, PDGFRα/β, FLT3, and KIT 0.5
Sunitinib SUN 2006 VEGFR, PDGFR, CSF1R, FLT3, and KIT 1
Trametinib TRA 2013 MEK1 and MEK2 0.1
Tofacitinib TOF 2012 JAK 1
Vandetanib VAN 2011 RET, VEGFR, and EGFR 0.33
Vemurafenib VEM 2011 BRAF 2

aUS approval date, first indication.
bDerived from maximum total (bound + free) plasma concentrations in humans as reported in the literature.
Table S3 lists the purity and literature references to clinical concentrations.
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Dose–response experiments. For two of the four cell lines, dose–response
experiments were conducted treating cells for 48 h with eight increasing perturbagen
concentrations (5 nM, 50 nM, 100 nM, 500 nM, 1 µM, 5 µM, 10 µM, and 100 µM) and
vehicle-treated control, in quadruplicates. We assayed for viability through image-
based analysis of nuclear counts with Hoechst 33342 (Thermo Fisher, Cat #: H3570)
and MitoTracker Red (Thermo Fisher, Cat #: M22426) for mitochondrial toxicity.
Details of the experimental protocols for cell culture, drug treatment, and tran-
scriptomics have been described as step-by-step standard operating procedures for the
various experiments available on www.dtoxs.org.

Transcriptomics. Cells were treated for 48 h with a single perturbagen con-
centration around the maximal concentration (Supplementary Table 1). After
drug treatment, the cells were lysed, RNA was collected using TRIzol, and
gene-expression profiles were measured using the 3′ digital gene-expression
method33,34.

Sequence alignment and processing of gene-expression data. The raw
sequences were demultiplexed. Combined standard RNAseq files were aligned to
the reference human genome hg38 using the STAR software suite35. The
resulting alignment files were parsed to identify the fragments with acceptable
alignment quality, to remove duplicate fragments, and to assign accepted frag-
ments to the corresponding genes. The resulting read-count (i.e., transcript
count) table was then subjected to correlation analysis at each treatment con-
dition, to identify and remove outlier samples, determined by predefined
thresholds. The gene read-count tables were then subjected to differential gene-
expression analysis using the R package EdgeR36. Details of these computational
procedures are described elsewhere23, and step-by-step protocols are available
on www.dtoxs.org. The resulting normalized and log-transformed fold-change
gene- expression values for each sample are also deposited for public access to
the DToxS data repository (www.dtoxs.org).

Processing and exploratory analysis of gene-expression data. The median log-
transformed gene-expression fold-change value was calculated across all cell
lines for each individual KI. The resulting matrix of gene fold-change values by
KIs was used for the regression analysis. To obtain insight into the general
patterns present in this KI-perturbed transcriptomics dataset, we generated
rankings of the top 500 genes for each drug, by their absolute mean fold-change
value, i.e., whether positive or negative. For each of these KI-associated rankings,
we determined the frequency of these changes being also present in the ranking
of other drugs, e.g., the similarity in genes present in the top 250 gene lists for
each KI. This was visualized using the Jaccard index, and by plotting the most
highly drug-connected genes against the associated drugs. Principal component
analysis for the first three principal components on the absolute mean fold-
change values for each drug was performed to further assess similarity between
drugs in their gene-expression values.

Calculation of tissue cell line expression similarity. Pairwise expression simi-
larity scores were computed based on the Jaccard coefficient of a binary matrix
based on RNA sequencing data from PromoCell cardiomyocyte exposures to
kinase inhibitors. The top 500 genes for a KI were set as 1, while genes that were
not in the top 500 were set as 0.

Calculation of clinical risk RORs. Adverse-event frequencies from the FDA
Adverse Event Reporting System (FAERS) were obtained from the AERSmine
resource37, which contains a curated version of the FAERS database. ADRs in the
FAERS database are organized according to MedDRA38, which is a hierarchical
ontology to classify ADRs from high-level organs associated with the pathology to
reported low-level specific pathological conditions. We downloaded the frequencies
of the occurrence of ADRs for all protein KIs available in FAERS, together with all
other frequencies of ADRs reported for these KIs. A time-stamped record of this
download to reproduce this analysis was retained. RORs were then computed for
each KI using the frequency fdt of the ADR of interest, the frequency fdn of any
other ADR occurring, the frequencies fnt of occurrence of the ADR of interest for
any other protein kinase inhibitor, and the frequency fnn for all other ADRs and
KIs. The ROR was calculated using Eq. (1)

ROR ¼ fdt=fdn
fnt=fnn

; ð1Þ

whereas the standard error (SE) of the log ROR was calculated using Eq. (2)

SElogROR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
fdt

þ 1
fdn

þ 1
fnt

þ 1
fnn

s

; ð2Þ

with the log-transformed confidence interval (CI) being calculated as follows:
CI= log(ROR) ± 1.96*SElogROR.

Adverse events in FAERS are mapped to the MEDDRA dictionary38. CT events
related to heart failures and cardiomyopathies, excluding arrhythmogenic ADRs
and coronary artery disorders, were selected from the main MEDDRA cardiac

ADR group. The selected ADRs primarily reflected different stages of heart failure,
which were grouped together.

Elastic net regression analysis. The FAERS-derived risk RORs for CT were
regressed against the KI-associated vectors of mean fold-change values across the four
cell lines. A two-step regression procedure was then used to select predictor genes
reducing the sensitivity to changes in dataset composition. For this, we first generated
1000 bootstrap datasets with replacements for gene expression–KI risk score pairs.
Each of these bootstrap datasets was fit using an elastic net regression model (R
version 3.4.3, package glmnet, version 2.0-16). The genes that were selected as pre-
dictors (i.e., nonzero regression coefficient) and the scaled values of the gene-
associated coefficients were saved for each bootstrap dataset. Across all bootstrap
datasets, the relative frequency of the selection of gene-based predictors, and the
mean-scaled coefficient value was computed. We then calculated the product of the
mean frequency and scaled coefficient value, rank predictors by their importance with
respect to robustness (selection frequency). A large number of percentiles of these
rankings were evaluated using leave-one-out cross-validation. The selection percentile
(99.755%) resulting in optimal prediction errors (RMSE) was then used to select a
subset of gene-based predictors, and the model that generated the final gene-
expression signatures. The selected predictor genes were then ranked by their relative
importance, and by their median fold-change values, and displayed as clustered
heatmaps. We finally evaluated the predictive value of the resulting regression model
to predict CT risk scores for the two left-out KIs.

When using this approach to analyze similar datasets of cardiomyocyte
transcriptomes together with risk scores, it is possible that potentially different
genes are identified than those described in the current report. This difference
associated with the intrinsic property of penalized regression approaches that select
predictors from potentially highly correlated sets of predictor candidates. Hence,
small changes in either risk scores or gene-expression datasets may affect
correlation structures of the data and thereby the list of genes for a signature.

Enrichment and network analyses. Enrichment analysis was performed based on
a one-tailed Fisher’s exact test using R (package stats), in order to identify
enrichment of specific genes in predefined gene lists. For enrichment of pathways
and biological processes, we used the KEGG database (2016), and for enrichment
of protein kinases, we used the KEA database (2015). Diseases were excluded from
the KEGG list of processes (e.g., diabetes, depression, and cancer), in order to only
evaluate general biological processes or pathways. We used the top 250 DEGs
ranked by p value for each KI to perform enrichment analysis. Subsequently
enriched term p values were correlated with CT risk scores to identify kinases and
pathways associated with CT risk.

The gene part of the signature for CT identified in the regression analysis was
used as seed note to perform a protein–protein interaction network (PPI) analysis,
conducted using the web application X2K39, which aims to identify associated
kinases and transcription factors based on multiple PPI databases.

Calculation of chemical similarity. RDkit (www.rdkit.org)40 was used to generate
chemical fingerprints and compute pairwise Tanimoto coefficients (Tc) between
the 26 tested kinase inhibitors. For each pair of inhibitors, we first calculated the Tc
using four chemical fingerprints, including Morgan_2 2,048-bit (ECFP4)41, Mor-
gan_1 2,048-bit (ECFP2)41, Daylight-like42, and MACCS43. Because each of these
fingerprints capture distinct chemical properties, we computed a weighted Tc
average of the three fingerprints: 30% ECFP4, 30% ECFP2, 30% Daylight-like, and
10% MACCS, which exhibited the most optimal spread of the distribution of the
pairwise distances. To generate the SAS maps (Fig. 5a), we plotted the pairwise-
weighted Tc values with their difference in CT scores (DCT). Finally, 0.35 was set
as the threshold for chemical similarity, while half of the maximum difference was
set as the threshold for DCS. Chemical structures were drawn using Marvin (www.
chemaxon.com)44 based on SMILES strings obtained from PubChem.

Calculation of KI-binding target similarity. Kinome-wide kinase inhibitor-
binding (Kd) profiling data were obtained from Klaegar et al.5, which consisted of
kinome-binding (Kd) profiling data for all of the tested kinase inhibitors across 242
kinases. A heatmap was generated for selected kinase inhibitors based on the
negative log of the Kd values from Klaegar et al. (Fig. 5c)5. Notably, the Kd values
were scaled by 100,000 to avoid negative log values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All processed RNAseq data and the curated version-controlled standard operating
procedures featured in this study can be downloaded freely at (www.dtoxs.org)22 or the
LINCS Data Portal (http://lincsportal.ccs.miami.edu/dcic-portal/). Raw transcriptomics
data can be accessed through the Gene Expression Omnibus (GEO) repository with
accession numbers GSE146096 and GSE146097. Source data for each figure are provided
with this paper. All remaining data will be available from the corresponding author upon
reasonable request. Source data are provided with this paper.
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Code availability
All scripts are open-source and available from the DToxS GitHub repository (https://
github.com/dtoxs).
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