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We survey blood glucose control schemes for insulin-dependent diabetes therapies and systems. These schemes largely rely on
mathematical models of the insulin-glucose relations, and these models are typically derived in an empirical or fundamental way. In
an empirical way, the experimental insulin inputs and resulting blood-glucose outputs are used to generate a mathematical model,
which includes a couple of equations approximating a very complex system. On the other hand, the insulin-glucose relation is also
explained from the well-known facts of other biological mechanisms. Since these mechanisms are more or less related with each
other, a mathematical model of the insulin-glucose system can be derived from these surrounding relations. This kind of method of
the mathematical model derivation is called a fundamental method. Along with several mathematical models, researchers develop
autonomous systems whether they involve medical devices or not to compensate metabolic disorders and these autonomous
systems employ their own control methods. Basically, in insulin-dependent diabetes therapies, control methods are classified into
three categories: open-loop, closed-loop, and partially closed-loop controls. The main difference among these methods is how
much the systems are open to the outside people.
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1. INTRODUCTION

Complexity of a human biological system typically allows its
relations to be expressed only in a nonlinear way. Because of
this complexity, it is not simple to achieve insulin-dependent
diabetic therapies autonomously. Diabetes mellitus is a
metabolic disorder of endogenous insulin allowing excessive
amount of glucose to stay in blood. In general, blood
glucose is transformed into energy required by human
activities, such as, walking, and this transformation requires
insulin functionality. However, in diabetes mellitus, since a
human body fully or partially lacks the insulin functionality,
unchanged glucose remains in blood. A condition of high
blood glucose profiles results in several complications, such
as, eye, kidney, and nerve damage, called hyperglycemia [1].
Thus, in order to avoid the hyperglycemia, a continuous
supply of exogenous insulin is required, and the insulin-
dependent diabetic therapy usually does this. On the con-
trary, too much insulin supply may lead to a condition of
low blood glucose profiles resulting in drowsiness, mental

malfunctioning, irritability, and loss of consciousness [1].
This condition is called hypoglycemia and also dangerous to
the diabetic. Thus, the insulin-dependent diabetic therapy
must concern both hyperglycemia and hypoglycemia by
providing an appropriate amount of exogenous insulin
timely.

At the beginning of the insulin-dependent diabetic
therapy, it is required to obtain an approximation of the
insulin-glucose relation. This relation is usually described in
a number of mathematical equations. Two methods are taken
in this process, namely, empirical and fundamental methods.
Arguably, this process is most time consuming.

Based on mathematical equations representing the
insulin-glucose mechanism, therapies are systematically
established. Broadly, controlling the blood glucose levels is
achieved by means of three strategies, namely, open-loop,
closed-loop, and partially closed-loop schemes. In general,
the fully and partially closed-loop schemes involves several
medical devices but the open-loop scheme does not. While
in the closed-loop scheme, a system is aimed to completely
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encompass the diabetic, open- and partially closed-loop
require the physician’s contribution to complete the loops.
Therefore, typically any decisions of the insulin injections
are made by a physician in open- and partially closed-
loop schemes. We explain these three strategies along with
applications in the later sections.

This paper is the second part of our survey of insulin-
dependent diabetes. Our first paper [2], the first part of the
survey, mostly spent its pages on the background of insulin-
dependent diabetes therapy, such as, description of type 1
and type 2 diabetes, the insulin functionality, and medical
devices involved in the insulin-dependent therapy. In this
paper, we survey blood glucose control schemes which lie
on the basics of the insulin-dependent diabetes therapies and
systems.

The rest of the paper is organized as follows. In Section 2,
we briefly summarize diabetes mellitus for the sake of
induction to the topic. In Section 3, we explain empirical
and fundamental schemes to derive mathematical models of
the insulin-glucose dynamics. From Sections 4 through 6,
we explore the control strategies, especially for the insulin-
glucose dynamics. In these sections, we provide several
applications based on the controls. Finally, we conclude this
survey in Section 7.

2. TYPE 1 AND TYPE 2 DIABETES

The World Health Organization (WHO) reported that there
were currently nearly 180 million patients suffering from
diabetes allover the world, and the number of the diabetics
would increase more than 350 million people by 2030 [3].
From the same report, approximately 1.1 million people died
from diabetes in 2005 and among this number, people under
70 years old account for a half [3]. In the United States,
currently it costs 136 billion dollars annually to take care
of 12 million diabetes patients [4, 5]. In general, diabetes
is considered as a condition that disproportionately affects
developed countries.

Diabetes first emerged around 2000 B.C. while insulin
and its functionality were discovered in 1921. Since the
discovery of insulin, insulin-dependent diabetes therapies
mostly concern how to delay the emergence of the com-
plications in use of insulin supplement [6, 7]. In short,
diabetes is characterized in a condition that blood keeps
high glucose levels unchanged into energy resulting in
several complications. Although insulin is largely concerned
with this reaction, diabetes fully or partially lacks this
functionality [8]. Diabetes eventually causes cardiovascular
disease, chronic renal failure, retinal damage, nerve damage,
and microvascular damage.

Besides, according to characteristics of diabetes, it is
typically classified into two types, namely, type 1 and type
2 diabetes [8]. In short, in type 1 diabetes, from the
malfunction of the pancreas resulting from the destruction of
the β cells of the Islets of Langerhans, a supply of endogenous
insulin completely stops. This requires other sources of
insulin supplementation. Otherwise, the diabetic eventually
falls into a condition of hyperglycemia. On the other hand, in
type 2 diabetes, the insulin functionality gradually weakens,

but does not completely stops. Since the diabetic more or less
has the endogenous insulin supply, diabetes therapies mostly
focus on exercises or regimens consuming or suppressing
excessive glucose in blood. However, both type 1 diabetes
and type 2 diabetes are considered chronic and currently
incurable.

As mentioned before, type 1 diabetes completely stops
the insulin supply. This is caused by the malfunction of the
pancreas destroying the β cells which are responsible for the
endogenous insulin supply. It is considered a reason why
the destruction of the β cells occurs is due to the immune
system which should react an infection by viruses, such as,
the Coxsackie virus family or German measles but mistakenly
destroys the β cells [9]. Type 1 diabetes is sometimes called
childhood, juvenile or insulin-dependent diabetes although
it does not only emerge during a childhood [9].

On the other hand, type 2 diabetes does not stop the
endogenous insulin supply, but instead it is characterized
in insulin resistance, insulin deficiency, and hyperglycemia
[10]. Although in type 2 diabetes, endogenous insulin still
can facilitate its functionality, it is largely degraded and
cannot sufficiently change blood glucose into energy [11].
Thus, the amount of unchanged blood glucose will get
larger resulting in hyperglycemia, a condition of high blood
glucose profiles, causing eye, kidney, and nerve damage [12].
However, since in the early stage of type 2 diabetes, the
symptoms are not serious or noticeable, it is likely to miss its
emergence easily. This causes the diabetes more serious and
critical. Type 2 diabetes is sometimes inherited genetically,
but in most of the cases it caused from irregular life styles,
such as, the lack of exercise, obesity or a sedentary lifestyle
[10]. Type 2 diabetes is also called non-insulin-dependent,
obesity-related, or adult-onset diabetes.

Currently, diabetes can be treated at home by a patient
himself or herself under the supervision of a physician.
During the earlier years of the diabetes treatment, logs and
tables of insulin injections and regimens were kept, and
according to these records next insulin injections and regi-
mens as well as exercises are determined by a physician. Now,
microcontrollers and sensors enable autonomous insulin-
dependent diabetes therapies systematically adjusting the
insulin supply. More precisely, according to feedback from
one or more blood glucose sensors, a rate of insulin supply of
an insulin pump is determined, which works like an “artifi-
cial pancreas.” The advantages of an “artificial pancreas” are
safe, automatic, and nonintrusive. Several control schemes
are developed in order to achieve the optimal exogenous
insulin supply suppressing the blood glucose levels within
a safe range of nominal. For more details about diabetes
fundamentals, please refer our first paper in [2].

3. MODELING THE HUMAN
INSULIN-GLUCOSE SYSTEM

To procure the mathematical models of the human insulin-
glucose system, several approaches are taken by researchers.
In these approaches, empirical and fundamental methods are
preferably used by them. These approaches aim to describe
the insulin-glucose dynamics as a couple of mathematical
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equations that should be easy to manipulate for the insulin
therapies and should fully describe the characteristics of the
internal insulin-glucose metabolism [13].

Basically, the empirical method uses a model structure
(formula or equation) which is determined theoretically with
several parameters. The behavior of this model structure is
determined by only the input-output data of the system from
a number of experiments [13]. In this method, capturing the
system behavior or data is the most time-consuming process.
In an example of the linear structure of the insulin-glucose
system, to represent glucose effects, two parameters are used,
and to represent insulin effects, other two parameters are also
used in order to close the model to the actual system [13].
In addition to the input-output data, semiempirical method
utilizes other physiological factors, such as dynamic behavior
and kinetics to create a closer model of diabetic patients [13].

In the fundamental methods, a mathematical repre-
sentation of the human internal system which is already
known sufficiently by researchers constructs an insulin-
glucose model. This system behavior includes kinetics and
material transport [13]. According to investigating the
internal system, a lot of data from the literature can be
used to determine the system parameters. Usually the model
averages studied behaviors. In particular, in constructing a
fundamental diabetes model, the authors in [14] applied the
insulin-release data of the β cells of the pancreas from a
number of examinations to a mathematical representation.

4. OPEN-LOOP CONTROL MODELS

Arguably, the most complex component of blood glucose
management is the control domain. There are several
classes of solutions to this problem, ranging in complexity,
prerequisite knowledge, and feedback.

The open-loop system for the insulin-dependent diabetes
therapy does not employ any glucose sensors. However,
occasionally calling the “open-loop” system is not appro-
priate and more precisely, the system should be called
the “programmed” insulin infusion system because of its
incomplete openness. That is, the control loop can be closed
by the physician and the diabetic when interacting on the
system [15].

One example of the systems is one that was developed
by Case-Western Reserve University, and this system is
considered to be one of the most intelligent programmed
insulin infusion products that deal with the noninsulin-
dependent diabetics [15]. The idea is that from an analysis
of the insulin curve in the nondiabetic, it was turned
out that the curve approximately traces a combination of
a double exponential curve and a basal insulin infusion
[15]. According to this mathematical model, an intravenous
insulin delivery system was designed such that it followed
the real pancreas functionality of the nondiabetic. The
system utilized a portable cart containing the control system,
the insulin-pump, power supplies, and insulin reservoir so
that the patient could move around with the devices. The
insulin pump delivers low-concentration insulin and updates
the insulin delivery rate every 30 seconds. Because of its
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Figure 1: A control flow of closed-loop control models [19].
Entire loop of the control is closed from outside by utilizing
an insulin pump and in vivo blood glucose (BG) sensors. Both
insulin injections and glucose measurements are carried out
subcutaneously.

simplicity, the system can be set up and operated by nurses
[15].

This research revealed the diabetics had the blood
glucose profile to be improved considerably from a two-
week examination, and, moreover, the improved conditions
remained even several days after the examination. On the
other hand, the researches of this programmed system so far
did not indicate any hypocglycemic condition yet [15].

In addition to the achievement of Case-Western Reserve
University, Siemens and the Finsen Institute also developed a
programmed insulin infusion system that employed a mod-
erately complex delivery algorithm from another approach.
The system is capable of manually inserting small pin
connectors into the control unit in order to control the
insulin delivery rate. Like a product of Case-Western Reserve
University, the infusion rate follows an exponential curve,
and the insulin infusion rate is updated every 30 minutes
[15–18].

5. CLOSED-LOOP CONTROL MODELS

The system to deliver insulin mechanically in order to reg-
ulate the glycemic profile is called the “closed-loop” system
[15]. As shown in Figure 1, the closed-loop system completes
its operating cycle within the system and no external interac-
tion to diabetic patients is required [19, 20]. In other words,
the closed-loop control uses the feedback from the output.
Typically, the closed-loop system for type 1 diabetes therapy
utilizes the glucose sensor and schematically consists of
three phases: blood glucose measurements, insulin demand
calculation, and insulin injection. The closed-loop system
repeats this sequence. So far, along with the glucose sensor,
the closed-loop system also employs an insulin pump which
continuously infuses insulin via a subcutaneous root.

Basically, insulin delivery is controlled by these implanted
blood glucose sensors and an insulin pump attached to a
patient’s body [19, 21–23]. In short, according to measure-
ments of glucose level from an implanted blood glucose
sensor, an insulin pump continuously infuses insulin into a
patient’s body. However, although implanted blood glucose
sensors benefit a lot for the diabetes therapy, establishing
reliable measurements of blood glucose is so difficult that
many researches in this field are still under way by many
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Figure 2: Three-level model of subcutaneous insulin absorption.

biomedical researchers [19]. Figure 1 shows a control flow of
a closed-loop strategy.

Currently many forms of blood glucose sensors exist,
such as fingerstick types, implantable types, or noninvasive
types. For example, in applying a fingerstick-type blood
glucose sensor, blood glucose levels are measured three to
seven times a day and according to the measurements, the
amount of insulin supply by an insulin pump is updated
manually. However, since with the fingerstick-type sensors,
measurements are carried out by patients themselves on reg-
ular basis, managing patient lifestyle by themselves is rather
troublesome. Meanwhile, when using an implantable blood
glucose sensor, glucose levels in blood are automatically
monitored in a certain amount of period.

In calculating the insulin infusion, many control models
are developed by researchers until now: pole-assignment
strategy, self-tuning adaptive control, or nonlinear predictive
control [19]. More details about these schemes are explained
in the later subsections.

5.1. Pole-assignment strategy

Pole assignment is a standard control systems technique for
designing an infinite impulse response filter [19, 24]. This
consists of a set of filter coefficients and a feedback loop in
order to maintain a stable blood glucose level.

In general, the closed-loop schemes of the insulin-
dependent diabetes therapy utilize an insulin pump that
automatically supplies insulin into the human body sub-
cutaneously [19]. Usually the glucose levels are monitored
by a needle-type glucose sensor through the subcutaneous
(SC) route, and the insulin infusion rate (IIR) is determined
by continuous measurements of the blood glucose level.
For example, in pole-assignment strategy [21], the IIR in
relation to blood glucose level, the insulin-glucose system, is
determined by the following computation:

IIR(t) = KpG(t) + Kd
dG(t)
dt

+ Kc

with

Kp = amnV

p
,

Kd
Kp

= 1
l

+
1
m

+
1
n

+
b

a
,

Kc = d +
c

a
Kp,

(1)

where G is blood glucose level and d is the insulin infusion
rate through the intravenous (IV) route. Parameters a, b, and

c can be calculated from the relationship between plasma
insulin I and blood glucose levels in a normal person, which
are written as

I(t) = aG(t) + b
dG(t)
dt

+ c. (2)

Moreover, other parameters n and l are from next equations
which are the pharmacokinetics of insulin infusion through
the SC route:

dX(t)
dt

= IIR(t) + lX(t),

dY(t)
dt

= lX(t)− (p + o)Y(t),

dZ(t)
dt

= pY(t)− nZ(t),

I(t) = Z(t)
V

,

(3)

where X, Y, and Z represent the insulin level in the two
subcutaneous compartments and in the plasma, respectively.
Figure 2 shows such an X/Y/Z 3-level model.

At last, m is calculated as m = p + o [19].
This is a simplified approach, forgoing adaptive control

for ease of characterization and implementation. For most
situations, it will perform as desired, but if it encounters a
situation that it handles poorly, it will handle that situation
poorly every time it occurs again in the future.

Experiments showed that the combination of the pole-
assignment strategy and Lispro insulin generated a similar
trend to the use of the IV route with regular insulin [19].
However, the combination of the pole-assignment strategy
and regular insulin generated much worse result.

5.2. Self-tuning adaptive control

A difficulty of the pole-assignment strategy is to repeatedly
evaluate model parameters in each computation of the IIR
[19]. To avoid re-evaluations of the model parameters, the
self-tuning adaptive control closed-loop scheme employs a
recursive assessment of the model parameters so that the
glucose level of time period k, that is, Gk, is evaluated from
the glucose levels of time period k − 1 through k − h, that is,
{Gk−1, . . . ,Gk−h}, and the insulin doses of time period k − 1
through k − p, {IDk−1, IDk−p}, as well as some unknown
parameters Θ, which can be written as [25–28]

Gk =M
(
Gk−1, . . . ,Gk−h, IDk−1, IDk−p,Θ

)
, (4)

where p and h are time delays. Since this method evaluates
the blood glucose level of time period k from the previous
evaluations and insulin doses, it can efficiently eliminate
unnecessary re-evaluations of the model parameters.

Besides, according to glucose level Gk, the next insulin
dose is calculated as

J = (Gk −Gk−1
)2 − rIDk, (5)

such that IDk can minimize value J, where r is a weighting
factor designed to control the amount of insulin dose.
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Figure 4: Model predictive closed-loop control.

Implementation of self-tuning adaptive control, shown
in Figure 3, is quite similar to pole-assignment control, as
it uses the same system modeling equations in order to
compute the insulin infusion rate [19].

The primary difference between the two methods is
that another controller is used to constantly evaluate the
system model, and may “tune” or redesign the PD controller
parameters as needed to obtain more accurate results based
upon minimum variance.

One advantage of this control scheme is that it is
comparatively easy for a physician to estimate the future
trend of blood glucose levels from a set of the past inputs,
where the model can be used to predict hypoglycemic or
hyperglycemic events before they occur [13].

5.3. Model predictive control

A model predictive control (MPC), or nonlinear predictive
control (NLPC) algorithm attempts to “learn” what nominal
means in a system [19, 20], shown in Figure 4. In the case
of blood glucose management, a nonlinear MPC algorithm
uses sensor data to track glycoregulatory system parameters
in order to predict the levels of required insulin infusions.
It then uses models of the human glucose metabolism to
estimate the effects of the insulin injection. An example of
a model used is a nonlinear autoregressive (NARX) model,
where previous blood glucose (BG) levels and insulin dosage
levels are run through a nonlinear function, often obtained
through neural network learning.

Bayesian learning is applied using the model-predicted
effect of the insulin, and its actual measured effect. The
learning process adjusts system parameters in order to
increase the accuracy of its predictions as more iterations
are performed. Using this method, the system will become

increasingly accurate, and will begin to “understand” how
the patient that it is calibrated to will react to insulin
injections of varying compositions and strengths.

5.4. Nonlinear predictive control
(neural predictive control)

Apparently, the insulin-glucose system is complicated, and
the system is considered to be nonlinear [29]. In [30],
in order to follow this nonlinearity, one method utilizes
a collaboration of a neural network (NN) and nonlinear
model predictive control (NPC) technique, that is, neural
predictive control. More precisely, NNs and an NPC are used
to simulate the glucoregulatory system. A schematic diagram
of the neural predictive control is shown in Figure 5.

Basically NNs approach the problem of blood glucose
management without attempting to explicitly describe the
exact model of the blood glucose-insulin system [31–33].
This is particularly useful in situations where patients have
a disease that complicates normal model description, or an
abnormality exists which makes prediction difficult using
just measured parameters and sensor data.

Like other control strategies, the main goal of the
neural predictive control is to achieve regulation of the
glucose profiles for the type 1 diabetics predicting a future
glucose curve from the nonlinear model with time delays,
so it can follow a similar curve to the metabolism of
normal people. A feed forward neural network employing
backpropagation can be trained offline using accumulated
patient data, including daily blood glucose readings as well
as insulin dosages. A neural network will then be able to
“learn” based upon experience, much as a human brain
learns. This will help it to predict nonlinear behavior, even
multiple orders removed, imperceptible to standard data
interpretation methods. This capability to be “intuitive”
helps to drive a system in which unknowns or immeasurable
parameters are still accounted for, and abnormalities are
detected and intelligently handled.

The neural predictive control reveals several physiolog-
ical variables to be controlled. In addition to the control
variables, it also designs a cost function in relation to the
insulin-glucose model [19, 30].

In the mechanism of the scheme, the neural predictive
control makes consecutive control actions toward the glucose
metabolism altering the control variables, so that the actions
consequently minimize a designed cost function at each sam-
pling time. However, the alteration of the control variables
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Figure 5: Schematic representation of neural prediction control proposed for the nonlinear predictive control study of the glucose
metabolism, which consists of an amalgamation of a neural network and nonlinear predictive control technique.

also changes the optimization problem at each sampling
time. On the other hand, the model and its parameters can
be of no difference during a whole examination [19].

Fortunately, in order to regulate the glucose profile,
the so-called monomeric insulin (MI) analogs are currently
available. These MI analogs have advantages that they are
able to be absorbed through the subcutaneous route three
or four times faster than human insulin resulting in that the
rise of the plasma insulin concentration grows faster. Besides,
the MI analogs are more predicable than human insulin due
to its less variability [30].

In the forming of the control strategy, [30] first develops
a mathematical model of the insulin-glucose dynamics of the
type 1 diabetics, which is mainly broken down into three
parts: the subcutaneous insulin absorption model, glucose
regulation model, and subcutaneous glucose model, shown
in Figure 6. From the model, the subcutaneous insulin
absorption is calculated in two steps: the subcutaneous
MI analogs infusion and utilization from the subcutaneous
depot [34]. With respect to the glucose regulation, in
order to model the system mathematically, [30] adopts a
compartmental model in which there are single compart-
ments for glucose and glucagon, and three compartments
for insulin (liver and portal insulin, plasma insulin, and
insulin in the interstitial fluid). Also in the model, net
hepatic glucose balance, renal glucose excretion, and glucose
utilization are simulated to generate numerical values. From
the glucose regulation model, the subcutaneous glucose
model is generated by investigating transfer rates between
the plasma and subcutaneous compartments. Consequently,
the subcutaneous glucose model forms a linear, first-order
system with the transfer function [30].

In the second step, using numerical data from simu-
lations of the mathematical patient model, the paper [30]
develops the nonlinear system by NNs in order to make

future blood glucose predictions. To do this, the paper [30]
utilizes a nonlinear autoregressive model (NARX) because of
its popularity and usefulness. The form is described as

Gk = f
(
xk
)

+ ek

= f
(
Gk−1, . . . ,Gk−ny , IDk−1, . . . , IDk−nu

)
+ ek,

(6)

where G is a sequence of subcutaneous glucose profiles,
especially Gk is a future glucose prediction, ID is a sequence
of subcutaneous insulin infusion rates, ek is a noise, and ny
and nu are both durations of glucose utilization and insulin
activation, respectively.

At this point, however, the approximation of the nonlin-
ear function f is a hard task. A reason why to approximate the
nonlinear function is difficult is that the function is required
to be made up from finite data although there are usually
infinite solutions for it. To resolve this difficulty, approxi-
mation based on regularization techniques is used because
it was proved that regularization principles consequently
can derive networks with one layer of hidden units, that is,
regularization networks [30]. Thus, the paper [30] uses a
function of radial basis function (RBF) networks, which are a
subclass of regularization networks, in order to represent the
nonlinear function f :

f
(
x(t)

) =
n∑

i=1

wiH
(∥∥x − x0

i

∥∥),

H
(∥∥x − x0

i

∥
∥) = 1

((
x − x0

i

)2
+ β
)2 ,

(7)

where H is a continuous function of R+→R, ‖‖, represents
the Euclidean norm, x0

i are some proper center values
selected from the data points, wi are some weight constants,
and β is a parameter representing the dispersion [19, 30].
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Figure 6: Compartmental models of the glucose regulation system
from [30]. Compartment g is plasma glucose; compartments u11,
u12; and u13 are plasma insulin, liver insulin, and interstitial insulin,
respectively, and compartment u2 is plasma glucagon. External
injections of glucose and insulin are represented as Ix and Iu. NHGB
stands for the net hepatic glucose balance. Nonlinear functions are
represented as Fi which depends on variables a, b, c, and d.

Also the regularized orthogonal least squares (ROLSs) algo-
rithm is used to determine RBF weights and centers in order
for f (x(t)) to fit the data under some constraints [19].

The third step to model the control scheme is to design
an NPC [30]. To do this, the moving horizon approach is
used to obtain the control law. Thus, eventually controlling
the glucose profiles is turned into resolving the minimization
problem where a sequence of subcutaneous insulin infusions
must sufficiently minimize the problem below

arg min
ID

J=
[ Np∑

j=N1

(
eTj Γej

)
+
Nc−1∑

j=0

ΔIDT(t+ j)ΓuΔIDT(t+ j)

]

,

(8)
where ID = [IDk, IDk−1, . . . , IDk−Nc−1]T and Nc, Np, N1, Γe,
Γu are parameters of the controller for tuning.

5.5. Fuzzy control scheme

A fuzzy control scheme is studied in [35]. There are three
steps for the process of a fuzzy logic algorithm: fuzzification,
rules, and defuzzification.

(1) Fuzzification: the input of a controller is an
exact number, like the concentration of glucose is
100 mg/dl. What the fuzzification do is to fuzzy
the concentration such as low concentration, high
concentration, and proper concentration. Every exact
number has the weight of all these low concentration,
high concentration, and proper concentration.

(2) Rules: after defining the fuzzy concept of input, rules
are made to decide what the output should be: more
drug, a little drug, or no drug.

(3) Defuzzification: after the rule, the output of fuzzy
concept is obtained, for example, more of 0.8 and
little of 0.2. But the output which is the object model’s
input must be an exact number, that needs to be
defuzzification. By defuzzification, the output gets an
exact number.

In the paper [35], it is assumed that there are two
different inputs of the concentration of glucose and the
change rate of concentration, and one output of the dose of
drug. “overlow,” “good,” “high,” and “overhigh” are defined
for the concentration. The rate is “overlow,” “low,” “high,”
and “highest.” The dose of drug is defined as “zero,” “little,”
“norm,” “more,” and “most.” Ten rules are defined such that
[35]:

(1) if (rate is overlow), then (dosage is zero);

(2) if (concentration is overhigh) and (rate is low), then
(dosage is little);

(3) if (concentration is overhigh) and (rate is highest),
then (dosage is most);

(4) and so forth.

6. PARTIAL CLOSED-LOOP SCHEME

In a partially closed-loop scheme of the insulin-dependent
diabetes therapy, measurements are conducted three to seven
times per day, and insulin injections are also performed
three to four times under the supervision of a physician.
These decisions, for example, the number and type of insulin
injections, insulin dosage [19], are made according to model-
based or algorithmic-based decision support systems, such
as DIAS, AIDA, and T-IDDM [19]. Insulin injections are
usually performed by using the subcutaneous (SC) route due
to its management and safety. Also there is an alternative
route for insulin delivery that is ideal for control, the
intravenous (IV) route. However, this route is not ideal for
the management and safety. Figure 7 shows a control flow of
a partial closed-loop scheme.

While in the closed-loop systems, the blood glucose
levels are automatically monitored by an implantable sensor
and according to the measurements, insulin infusions are
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Figure 7: A control flow of partially closed-loop insulin therapy models from [19]. In general, in this case, insulin dosages are supported
by an expert system that generates an optimal insulin dosage from a comparison between a model case and a prediction of a future blood
glucose transition.

carried out in the use of an insulin pump or three or
four times of the insulin injections, in the partial closed-
loop, the metabolic controls partly rely on the physician’s
evaluations of the measurements of the blood glucose levels,
the amount of insulin injections and physical exercises as well
as glycosuria and ketonuria [19]. Moreover, as other metrics
of the evaluation, medium period indicators, such as glycated
hemoglobin (HbA1c), are captured, where the blood glucose
levels of the past 60 days can be seen. These data are
recorded by the patients everyday. In other words, the partial
closed-loop scheme is made out of a collaboration of the
feedforward and feedback controls, and usually feedforward
controls are made by clinicians who determine it from the
patient’s lifestyles. However, these evaluations largely rely on
doctor’s experiences.

From the objective of the insulin therapy that aims to
reconstruct the artificial insulin metabolisms in relation to
the levels of blood glucose in the body, it is typically an
optimization problem that is viewed from four dimensions:
the number of injections, time of injection, insulin type, and
insulin dosage [19]. Basically, this four-dimensional space
optimization is intrinsic.

Besides, occasionally a clinician provides him/her with a
feedforward strategy from the patient’s lifestyle.

6.1. Physician prescribed regiment

The insulin regiment prescribed by a doctor, to be admin-
istered manually, constitutes partially closed-loop control
[19, 24]. A physician will dictate an insulin administration
routine to a patient, variant upon a patient’s lifestyle. Patients
under such a system monitor their blood glucose level several
times a day, administering insulin based upon prescribed
tables according to their schedule and BG level. Figure 8
shows the procedure.

This is the method that has traditionally been used
by insulin-dependent diabetics, but it performs poorly
compared to other methods. Partially, closed-loop control
is far from real time and only updates its control routine
at scheduled physician visits. Furthermore, lifestyle events
such as eating, sleeping, or working out must be accounted

for by the patient in their interpretation of insulin tables,
introducing the very real danger of human error.

6.2. The Bergman model

The Bergman model is one of the virtual diabetes patient
models represented in the literature. In the Bergman model,
the certain dynamics of the diabetes patient system can be
represented as mathematical equations by employing three-
order model: a glucose compartment, G, a remote insulin
compartment, X, and an insulin compartment, I [4, 36, 37].
Basically, the Bergman model has a very simple form and is
represented as follows:

dG(t)
dt

= −(p1 + X(t)
)
G(t) + p1Gb,

dX(t)
dt

= −p2X(t) + p3
(
I(t)− Ib

)
,

dI(t)
dt

= γ
(
G(t)− h)t − nI(t),

(9)

where G(t) represents plasma glucose and I(t) represents
plasma insulin at certain time t, which are initialized at
t = 0. X(t) represents the effect of insulin causing net
glucose disappearance, for example, the remote insulin
concentration. Gb represents a base value of plasma glucose
and likewise, Ib represents a base value of plasma insulin.

Moreover, p1 is a parameter representing glucose effec-
tiveness, p2 fractionally represents the insulin-dependent
increase rates and p3 fractionally represents the net remote
insulin disappearance rates. h is a threshold where the plasma
glucose levels are expected not to exceed. When the plasma
glucose levels exceed the threshold, the second-phase of
insulin secretion will be performed with additional γ insulin
secretion. Furthermore, insulin is removed from the plasma
insulin space at rate of n.

The Bergman model is used for efficiently predicting the
certain diabetes patient system dynamics.



Daisuke Takahashi et al. 9

Feed-forword control

Patient
Set point Feed-back

control
Subcutaneous

injection
+

Subcutaneous
blood glucose

sensor

Figure 8: Partially closed-loop control.

6.3. Automated insulin dosage advisor

The automated insulin dosage advisor (AIDA) is a virtual
diabetes patient model that was originally designed for the
educational purpose so as to help patients and clinicians
learn effective glycemic control [4, 38]. Basically, AIDA
is used for estimating effects of insulin injections and
regimens in type 1 diabetic therapy [39]. More precisely,
AIDA is a simulation program that models the insulin-
glucose dynamics based on the physiological rules around
metabolism of a single glucose compartment [19, 38].

To model the insulin-glucose dynamics, AIDA prepares a
single glucose pool (compartment) of extracellular glucose.
Metabolism around the glucose compartment is carried
out such that delivering glucose into the compartment is
conducted both by being absorbed by the intestine and by
being produced by the liver (gluconeogenesis). On the other
hand, removing glucose out of the compartment is carried
out by insulin-independent and insulin-dependent glucose
utilization. More precisely, by the insulin-independent glu-
cose utilization, glucose is carried from the compartment
into red blood cells, the central nervous system and viscera,
whereas by the insulin-dependent glucose utilization, glucose
is carried from the compartment into the liver and periphery.
To hepatic and peripheral glucose utilization, AIDA is
designed to have a capability of adding different insulin
sensitivities by modeling them separately. Besides, the renal
threshold is defined in order to model renal glucose losses
[38, 39]. Figure 9 shows a variation of the net hepatic glucose
balance in terms of the changes of the amount of the
active insulin and blood glucose (BG) levels in the form of
nomograms.

Moreover, the AIDA model applies a process of insulin
absorption derived by Berger and Rodbard to its pharma-
cokinetics of the model [40].

In addition, insulin is separated into two compartments
where one is for plasma insulin and the other is “active”
insulin. On the basis of a physiological model, “active”
insulin controls metabolism. On the other hand, hepatic
degradation produces insulin from plasma insulin [39].

In the use of AIDA, by comparing home-monitored
blood glucose levels to a typical behavior of blood glucose
of a patient, for example, the model day, metabolic problems
are identified. According to particular metabolic problems,
AIDA can generate several possible solutions, and among
these possible solutions, one best solution will be selected

Uptake

Production

Net hepatic
glucose balance

(+)

(−)

0

BG≤ 1 mmol/l

BG= 3 mmol/l

BG≥ 4 mmol/l

Sh×Active insulin

Figure 9: Variation of the net hepatic glucose balance in terms of
the changes of the amount of the active insulin and blood glucose
(BG) levels from [39]. The figure demonstrates that the amount
of the active insulin reduces the net hepatic glucose balance. The
transitions of the net hepatic glucose balance depend on a liver
sensitivity parameter Sh. A value of Sh is within the range of 0 to
1.

according to a nonlinear dynamic model of the insulin-
glucose system.

At last, this nonlinear dynamic model of AIDA consists of
four differentials, 11 algebraic equations and 17 parameters
[41]. From the data, the model will be constructed while
simulations are performed for each therapeutic choice to
optimize the following cost function:

J(G) =
∫ T

0

(
G(t)−G0

)2
dt, (10)

where G0 describes a set point [19].

6.4. Diabetes advisory system

The diabetes advisory system (DIAS) is a nonlinear model of
the blood glucose-insulin system based upon real-life param-
eters, versus simply BG measurements [21]. It incorporates
qualitative and quantitative input from the user, including
BG levels, meals, and past insulin injections.

The system uses a discrete-time finite-state model of
the system based upon user input. The system uses what it
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Gut absorption
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Figure 10: The flow of the physiological calculation of carbohydrate
by the diabetes advisory system (DIAS) from [42]. There are
two state variables in the model. CHO stands for the amount of
carbohydrate in the gut compartment and BG stands for that in the
blood compartment. In the figure, the carbohydrate intake raises
the level of CHO and likewise, the gut absorption raises the level of
BG. On the other hand, the glucose utilization lowers the level of
BG.

understands about the system as a whole, including dormant
compartmentalized insulin, predigested carbohydrates, and
current BG levels to compute a Bayesian estimate of future
BG levels. It uses all known information in order to compute
the value of the optimal dosage such that it minimizes
an associated cost function (i.e., hypoglycemia is far more
“costly” than hyperglycemia, due to its possibility of severe
damage). Over iterations, it will adjust its system model
parameters to better account for patient specific reactions it
detects. For example, in DIAS, the flow of the physiological
calculation of carbohydrate is drawn by Figure 10 [42].
Besides, DIAS has three different modes, for example, the
learning mode, the prediction mode, and the advisory mode.

In Figure 10, there are two associated state variables, for
example, CHO and BG, and both of them record how much
carbohydrate content exists in the gut compartment and the
blood compartment, respectively [42, 43]. For example, in
this model, carbohydrate content is, at first, taken in from
meals and delivered to the gut and the blood compartment.
During the delivery to the blood, some of carbohydrate
content is absorbed by the gut and only the rest of it is
delivered to the blood and transformed into the main energy.

In addition, this flow of carbohydrate is redrawn more
precisely by using difference equations, which are shown
in Figure 11. In this redrawn model, the amount of carbo-
hydrate content in both the gut (CHO) and blood (BG)
compartment is updated in every hour such that both
increase and decrease of carbohydrate content are kept track

of in each compartment. In Figure 11, the GUT-ABS process
variable represents how much glucose is absorbed by the gut,
and the rest of glucose remains in the gut and is recorded
in the CHO state variable. Besides, the RENAL-CL process
variable represents how much glucose is removed, the INS-
INDEP-UTIL process variable represents how much glucose
is used independently of insulin, the INS-DEP-UTIL, on the
other hand, represents the amount of glucose to be used
for insulin-glucose dynamics, and the GLU-PROD process
variable represents the amount of glucose produced by the
liver [42, 43].

In DIAS, there are also two input variables, for example,
MEAL and INS-INJ, where the MEAL input variable is
carbohydrate intakes at given time from each meal, and the
INS-INJ input variable represents the amount of the external
insulin injection [42, 43].

Furthermore, to adjust individual physiological differ-
ences, two other parameters are employed, for example,
INS-SENS and NPH-MAX, where the INS-SENS parameter
stands for the insulin sensitivity that affects the active insulin
(ACT-INS) variable, and the NPH-MAX parameter repre-
sents the time when NPH insulin achieves the maximum
absorption or concentration, shown in Figure 11 [42, 43].

The “+” and “–” symbols in Figure 11 represent fluctua-
tion of carbohydrate on the CHO and BG state variables. For
example, the CHO state variable at HOUR 1 can be written
as an equation such that CHO (HOUR 1) = CHO (HOUR 0)
– GUT-ABS (HOUR 0) + MEAL (HOUR 1) [42, 43].

The transition among the states in a graph of difference
equations in DIAS is defined by causal probabilities. More
precisely, the graph representation of difference equations of
DIAS is defined by a causal probabilistic network (CPN) or
a Bayesian network using the HUGIN approach [42, 43].
For example, the transition probability of the amount of
carbohydrate absorbed by the gut given the carbohydrate
content in the gastrointestinal tract is P(GUT-ABS |CHO)
[42].

As previously mentioned, there are three modes in DIAS
to conduct a calculation of the optimal insulin dosage (the
decision support system): the learning mode, the prediction
mode, and the advisory mode.

At first, the learning mode is used to generate the two
adjustable parameters, for example, the insulin sensitivity
(INS-SENS) and time-to-peak absorption of NPH (NPH),
from the collection of standard data, such as the amount of
blood glucose, insulin injection, and carbohydrate content in
the meals [42, 43]. For instance, an example of a prediction of
blood glucose transition from [42], from the measurements
of blood glucose, the mixture of short-acting insulin and
intermediate-acting insulin and the carbohydrate intake, the
transition of blood glucose is predicted as a straight line.

Secondly, the objective of the prediction mode is to
predict the resulting blood glucose concentration from given
an intake of carbohydrate and insulin injection as well as
two adjustable parameters estimated in the learning mode
[42, 43]. There is a risk of hypoglycemia around lunch time,
the ratio of the insulin mixture is manually changed in the
morning to handle the condition. As an example of the
objective of the prediction mode of DIAS given from [42],
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Figure 11: Another form of the insulin-glucose dynamics which is described by difference equations from [42]. This figure shows that
the amounts of carbohydrate in both the gut and blood are calculated every hour. Basically, these calculations are made depending upon
absorptions and utilization. For example, the figure shows the difference equations between hour 0 and hour 1.
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Figure 12: The T-IDDM project architecture from [44].

there is a risk of hypoglycemia around lunch time, the ratio
of the insulin mixture is manually changed in the morning to
handle the condition. In DIAS, this mode calculates an effect
of a manually modified insulin therapy.

At last, the advisory mode, which is considered as a
special version of the prediction mode, is used to generate
possible insulin therapies that avoid the overall risk of an
excess or shortage of blood glucose by minimizing an utility
measure. In the advisory mode, the manual changes of the
insulin regimen conducted in the prediction mode, such as

switching to a different mixture of insulin, are automatically
replaced to an optimal way by the system. For example, a
replaced version of an optimal insulin injection procedure
is used by the advisory mode, where the mode recommends
reducing the amount of NPH insulin from 10 to 6 U before
dinner resulting in avoiding hypoglycemia during bedtime
[42, 43]. As an example of a result calculated by the DIAS
advisory mode, DIAS further generates an optimal solution
of an insulin therapy automatically to avoid the overall risk
of an excess or shortage of blood glucose by minimizing a
utility measure.

6.5. Telematic management of
insulin-dependent diabetes mellitus

The EU developed telematic management of insulin depen-
dent diabates mellitus (T-IDDM) which was a telemedicine
system that supported clinician’s decision-making for pro-
viding insulin for the insulin-dependent diabetics. Basically
the system consist of two modules, for example, a patient
unit (PU) and a medical unit (MU), and two decision
support elements, for example, a rule-based reasoner (RBR)
and a case-based retrieval system (CBRS) [19, 44, 45]. The
system architecture is shown in Figure 12.

With the system, the PU is basically responsible for
monitoring changes of the blood glucose concentration
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in patients, and the physiological data are transferred to
the hospital database via the Internet. Both manual and
automatic measurements and data transfers are allowed.
In addition to the hospital database, the PU also has a
local database that enables patients to deal with their own
diabetics cases autonomously [44].

On the other hand, the MU is responsible for supporting
the clinician’s sides of functionality. Thus the MU can
visualize incoming data from patients, analyze them, and
generate optimal insulin treatments for particular patients.
Basically, the MU is a web-based application made up
of collaborating five servers: a database server, temporal
abstraction server, data analysis server, decision support
system, and web server [44]. Data communication is made
up between the two devices.

From the perspective of the decision support for the
therapy, the RBR and CBRS are designed to resolve the
following premises.

At first, the insulin-glucose dynamics is very complicated
that only highly parameterized nonlinear models can be
applied to it although it is usual to have no more than
three or four blood glucose tests per day in the insulin-
dependent diabetes therapy, which is not enough to model
the dynamics. Due to the limitation of the measurements,
some parameters are required to be fixed in all cases whereas
only a few parameters are free to be set up according
to each patient case. However, this limitation of setting
parameters must make the models and the quality of
prediction inflexible and inaccurate [19]. One goal of T-
IDDM is to refine the models to generate more precise
prediction of the insulin-glucose models from the limited
inputs.

Secondly, the insulin therapy largely usually depends
on experiences of the professionals. T-IDDM provides the
professionals with more systematical way to plan the therapy
for particular insulin-dependent diabetics.

At last, the same metabolic behavior occasionally gen-
erates different results. For example, either “honeymoon”
effect or other troubles may cause the same number of
hypoglycemia over a month. However, this type of wrong
diagnosis may fall the diabetic into a critical situation.
Therefore, in independence of metabolic behaviors, T-IDDM
should employ context that can generate different results
from the same metabolic behavior. Also the introduction of
context may reduce the search space from whole possible
solutions [19].

In the implementation of the RBR, to optimize the
therapy, it runs four sequential tasks each of which is
connected to a set of rules through a forward chaining
mechanism. These four sequential tasks are the data analysis,
problem identification, suggestion selection, and therapy
revision [44].

However, only the RBR is sometimes not enough to pro-
duce reliable suggestions of the therapy for poorly controlled
patients. Therefore, in consideration of that situation, in
addition to the RBR, T-IDDM employs the CBRS to improve
the system to be more accurate. The objective of the CBRS
is to search a pool of past cases for similar situations to the
current condition and utilize them to help the user make an

optimal decision for the current condition [44]. This case
retrieval follows two steps. In the classification step, a set of
past cases is narrowed for searching according to very high-
level view of the cases by a Naı̈ve Bayes strategy [46], and after
that, in the proper retrieval step, cases having the closest to
the current situation are effectively chosen and shown to the
user [19].

6.6. Insulin-glucose system

Regarding the artificial insulin-glucose control system, [47]
designs a fuzzy logic reasoning system. There are mainly two
modules (e.g., an analog signal conditioning board and a
microcontroller board) and other interface devices, such as
a LCD display, a sixteen button keypad, and alarm system,
along with the operating software to work the system. The
software operates the system according to a fuzzy logic rea-
soning method. In the system, an analog signal conditioning
board is responsible for generating electrical signals from
vital parameters monitored by several biomedical sensors.
These parameters include sweating, snoring, heart rate, and
EEG. In the meantime, a microcontroller board processes
these electrical signals. The system works with batteries so
that it can be portable.

In the use of the system, several electrodes are placed
on the particular segment of the human body capturing
the four physiological parameters. Basically, these electrodes
are connected to an analog signal conditioning board that
amplifies and filters the vital signs. Since a 10 bit A/D
converter interfaces a microcontroller board, the analog
signals can be converted to the digital signals with the
sampling rate of 100 samples/s. The microcontroller invokes
the fuzzy logic reasoning algorithm that resides on the ROM
of the system to process the four parameters.

7. CONCLUSION

This survey mainly focuses discussions on control methods
for the insulin-dependent diabetes (type 1 diabetes). Three
control methods are introduced in this paper, namely, open-
loop, fully, and partially closed-loop control methods. In
either of them, the objective of the control methods is to
suppress the blood glucose profiles to avoid a condition
of hyperglycemia. Because diabetes is a metabolic disorder
which is characterized as complete or partial lack of insulin
functionality, therapies can be done by making up for the
lack of insulin supply by exogenous insulin replacement.

In the open-loop control method, the insulin replace-
ment is programmed such that the amount of the insulin
supply follows the non-diabetic insulin delivery. The open-
loop control method usually does not count on utilization of
blood glucose sensors, but instead, a transition of the insulin
supply is captured by carefully examining the nondiabetic in
advance.

On the other hand, fully and partially closed-loop
controls typically rely on feedbacks from the blood glucose
sensor measurement. In the closed-loop control method, the
system loop is fully closed so that it does not require any
assessment by physicians. It is only based on feedbacks from
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one or more blood glucose sensors, and it usually requires
continuous glucose measurements. Thus from the measure-
ments of blood glucose profiles, a rate of the insulin supply
by an insulin pump is adjusted so that it can lead to neither
conditions of hyperglycemia nor hypoglycemia. Examples of
the closed-loop control method are pole-assignment model,
self-tuning adaptive control, model predictive control, and
nonlinear predictive control.

In addition to the blood glucose sensor feedbacks,
partially closed-loop control also relies on feedforwards by
physicians. In the partially closed-loop control method, the
blood glucose measurements are conducted three to seven
times per day and insulin injections are done three or four
times per day. Although both the blood glucose samples
and insulin injections are discrete, these are compensated
by physicians’ feedford assessment of insulin requirements.
Usually a calculation of the insulin supply utilizes a flow
chart or table which describes complex relations between
blood glucose reduction and insulin supply. Examples of
the partially closed-loop control method includes Bergman
model, automated insulin dosage advisor (AIDA) and dia-
betes advisory system (DIAS).

Currently, diabetes is considered incurable. Hence chal-
lenges of the blood glucose control methods are to delay
the emergence of diabetic complications but not cure the
patients from diabetes. In practice, three control methods
introduced in this survey partially satisfy these requirements.
However, our expectation is that the progress of the tech-
nology will enable the construction an “artificial pancreas”
that follow the regular functionality of the actual pancreas,
and this new technology must lie on the current control
technologies.
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