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Abstract Humans navigate across a range of spatial scales, from rooms to continents, but the

brain systems underlying spatial cognition are usually investigated only in small-scale environments.

Do the same brain systems represent and process larger spaces? Here we asked subjects to

compare distances between real-world items at six different spatial scales (room, building,

neighborhood, city, country, continent) under functional MRI. Cortical activity showed a gradual

progression from small to large scale processing, along three gradients extending anteriorly from

the parahippocampal place area (PPA), retrosplenial complex (RSC) and occipital place area (OPA),

and along the hippocampus posterior-anterior axis. Each of the cortical gradients overlapped with

the visual system posteriorly and the default-mode network (DMN) anteriorly. These results

suggest a progression from concrete to abstract processing with increasing spatial scale, and offer

a new organizational framework for the brain’s spatial system, that may also apply to conceptual

spaces beyond the spatial domain.

DOI: https://doi.org/10.7554/eLife.47492.001

Introduction
Over the past few decades, research of the brain’s spatial system advanced tremendously, providing

insights into how the brain represents complex information and how these processes are impaired in

disease states (e.g. Banino et al., 2018; Kunz et al., 2015; for reviews see Buzsáki and Moser,

2013; Epstein et al., 2017; Moser et al., 2008). However, scientific investigations of spatial cogni-

tion in humans and animals are often limited to small scale environments such as single rooms or

short walkable pathways. It is therefore unclear whether representation and processing of large-scale

environments rely on the same neurocognitive systems (Wolbers and Wiener, 2014). This question

is of importance for several reasons. First, the lack of knowledge on how the brain’s spatial system

treats different spatial scales affects interpretation of past investigations that used different types of

experimental environments. Second, disorientation is a prevalent symptom across neurological and

psychiatric disorders, but remains poorly understood and diagnosed, in part because it may have dif-

ferent subtypes that manifest at different spatial scales (Peer et al., 2014). Finally, recent findings

suggest that the brain’s spatial system is also used to represent conceptual knowledge

(Behrens et al., 2018; Bellmund et al., 2018; Constantinescu et al., 2016; Gärdenfors, 2000).

Since large-scale environments are often remembered in a schematic manner not consistent with

Euclidean geometry (McNamara, 1986; Moar and Bower, 1983; Tversky, 1981), understanding

their representation may provide clues to representation of abstract domains.

Previous neuroscientific evidence supports the idea that the brain’s spatial representations are

not unified but separated into multiple scales. Functional MRI studies in humans demonstrated that

locations within rooms and their surrounding buildings are coded in different cortical regions

(Kim and Maguire, 2018), and that directions are represented in the retrosplenial complex with
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respect to the local axis of a room irrespective of its large-scale context (Marchette et al., 2014).

Electrophysiological evidence in animals also points to separate representation of small scale regions

and their large-scale context, as grid- and place-cells within the medial temporal lobe undergo

remapping when crossing borders between rooms (Fyhn et al., 2007; Skaggs and McNaughton,

1998; Tanila, 1999), and form independent representations of different segments of the environ-

ment (Derdikman et al., 2009; Derdikman and Moser, 2010; Paz-Villagrán et al., 2004;

Spiers et al., 2015). Recordings from the rat retrosplenial cortex also demonstrate coding of loca-

tion both in the immediate small-scale region and in the large-scale surrounding environment

(Alexander and Nitz, 2017; Alexander and Nitz, 2015). Finally, evidence from patients with dis-

orientation disorders shows that disorientation can be limited to a specific spatial scale according to

the underlying lesion (Peer et al., 2014). Patients with lateral parietal cortex lesions are impaired in

navigating their immediate, small-scale environment (‘egocentric disorientation’; Aguirre and

D’Esposito, 1999; Stark, 1996; Wilson et al., 2005). In contrast, patients with retrosplenial lesions

(Aguirre and D’Esposito, 1999; Takahashi et al., 1997) and Alzheimer’s disease (Monacelli et al.,

2003; Peters-Founshtein et al., 2018) show the opposite pattern – correct localization in the imme-

diately visible environment but inability to navigate in the larger unseen environment. Despite this

evidence, few neuroscientific studies directly contrasted between representation of different scales

of space. Several studies indicated a posterior-to-anterior progression from small to large scales

along the hippocampal axis, manifested as larger spatial receptive fields, in both humans and ani-

mals (Brunec et al., 2018; Kjelstrup et al., 2008; Poppenk et al., 2013). However, these investiga-

tions only used routes ranging up to several meters, and focused only on the hippocampus and not

on the rest of the brain’s spatial system. Another fMRI study contrasted coarse- and fine-grained

spatial judgments in one scale (city), finding increased hippocampal activity for fine-grained distinc-

tions (Hirshhorn et al., 2012a). In the current work, we sought to characterize human brain activity

under ecological experimental settings, across a large range of spatial scales, when directly manipu-

lating only the parameter of spatial scale. To this aim, we asked subjects to compare distances

between real-world, personally familiar locations across six spatial scales (rooms, buildings, neigh-

borhoods, cities, countries and continents; Figure 1), under functional MRI, and looked for differen-

ces in brain response for the different scales.

Results

Posterior-anterior gradients of spatial scale selectivity
To investigate spatial scale-selective activity, we looked for voxels showing difference in response to

task performance at the different scales, and characterized their gradual response profiles by fitting

a Gaussian function to the beta value graphs at each voxel (Figure 2—figure supplement 1). This

analysis identified three cortical regions that displayed a continuous gradual shift in spatial scale

selectivity: the medial temporal cortex, medial parietal cortex and lateral parieto-occipital cortex

(Figure 2A–D, Figure 2—figure supplement 2). Activity in these regions displayed a gradual shift

from selectivity for the smallest spatial scales (room, building) in their posterior parts, followed by

selectivity for medium scales (neighborhood, city) more anteriorly, and for the largest scales (coun-

try, continent) in the most anterior part of each gradient (Figure 2E; p<0.001 for all gradients, per-

mutation test on linear fit slope, FDR-corrected). The three scale-selective gradients were symmetric

across the two hemispheres. Extraction of the scale with maximal response from each voxel (while

disregarding the pattern of activity at other scales) also demonstrated posterior-to-anterior progres-

sion along the three abovementioned gradients (Figure 2E, Figure 2—figure supplement 3;

p<0.001 for all gradients, permutation test on linear fit slope, FDR-corrected). To further character-

ize the scale selectivity of each region, we plotted the event-related activity and beta values for each

spatial scale at each part of the three gradients. Results showed the same gradual posterior-anterior

shift from small to large spatial scales, with each part of the gradient having a preferred scale and

gradually diminishing activity to other scales around it (Figure 2—figure supplement 4A–C). Finally,

in light of previous findings of spatial scale selectivity changes along the hippocampal long axis

(Brunec et al., 2018; Poppenk et al., 2013), we measured average spatial scale selectivity along the

hippocampus. Activity shifted from small to large scales along the posterior-anterior axis of the hip-

pocampus (Figure 2E; p<0.001 for average position of Gaussian fit peak, permutation test on linear
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fit slope, FDR-corrected). Using the same analysis at the individual subject level, 16 of 19 subjects

showed significant increase in preferred scale along the lateral parietal gradient, 17 of 19 along the

medial temporal gradient, 17 of 19 along the medial parietal gradient, and 6 of 19 along the hippo-

campus (all p<0.05, permutation test on linear fit slope, FDR-corrected).

In addition to the continuous gradients, several other brain regions displayed scale-specific activ-

ity not organized as a continuous gradient (Figure 3, Supplementary file 1). Clusters of activity at

the supramarginal gyrus, posterior temporal cortex, superior frontal gyrus and dorsal precuneus dis-

played the highest activity levels for the smallest spatial scales (room and building), and their activity

gradually diminished for larger scales (Figure 2—figure supplement 4D). In contrast, the lateral

occipital cortex and the anterior medial prefrontal cortex clusters displayed the opposite pattern of

Figure 1. Study design and stimuli. (A) The design of the study. In each block, subjects viewed one target item in a specific scale and location, and

then performed four proximity comparisons for pairs of other items from the same location. All stimuli were provided by the subjects from locations

personally familiar to them, and target and comparison items were chosen randomly from the subject’s stimulus set. (B) Examples of stimuli (subject-

provided locations and items) in each spatial scale.

DOI: https://doi.org/10.7554/eLife.47492.002

The following figure supplements are available for figure 1:

Figure supplement 1. increase in size of spatial scales.

DOI: https://doi.org/10.7554/eLife.47492.003

Figure supplement 2. Behavioral results.

DOI: https://doi.org/10.7554/eLife.47492.004
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Figure 2. Small to large spatial scales preferentially activate regions along continuous posterior-anterior gradients. Three cortical gradients were

observed demonstrating a continuous shift in spatial scale selectivity. Within each gradient, posterior regions were selectively active for smaller spatial

scales, and anterior ones for larger spatial scales. Colors indicate Gaussian fit peak scale position (voxels identified by ANOVA across beta values,

p<0.01, FDR-corrected for multiple comparisons, minimum r2 of fit = 0.7). (A) Medial parietal gradient, (B) Medial temporal gradient, (C) lateral

occipito-parietal gradient. (D) 3D visualization of the two medial gradients (gradients marked by dashed arrows, other activations not shown). (E)

change in average spatial scale selectivity along the posterior-anterior axis of each gradient and along the hippocampal long axis (X axis represents

MNI coordinates from posterior to anterior, blue – average position of a Gaussian fit peak for all scale-sensitive voxels at each coordinate, red –

average position of scale with maximum activity for all scale-sensitive voxels at each coordinate). RH – right hemisphere, LH – left hemisphere. Full

volume maps of these results are available online at https://github.com/CompuNeuroPsychiatryLabEinKerem/publications_data/tree/master/spatial_

scales (Peer et al., 2019, copy archived at https://github.com/elifesciences-publications/publications_data).

DOI: https://doi.org/10.7554/eLife.47492.005

The following figure supplements are available for figure 2:

Figure supplement 1. Main data analysis pipeline.

DOI: https://doi.org/10.7554/eLife.47492.006

Figure supplement 2. Volume view of all scene-selective activations.

DOI: https://doi.org/10.7554/eLife.47492.007

Figure supplement 3. Gradients of spatial scale selectivity – scale with highest activity (beta value) at each voxel.

DOI: https://doi.org/10.7554/eLife.47492.008

Figure supplement 4. Activity profiles for spatial scale-sensitive regions.

DOI: https://doi.org/10.7554/eLife.47492.009

Figure supplement 5. Effects of different potential contributing factors.

Figure 2 continued on next page
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higher activity for the largest spatial scales (city, country and continent), and gradually decreasing

activity for the smaller scales (Figure 2—figure supplement 4D).

The three cortical scale-selective gradients extend anteriorly from
scene-responsive cortical regions
The three cortical gradients identified by our analyses are located in close proximity to known

scene-responsive cortical regions – parahippocampal place area (PPA), retrosplenial complex (RSC)

and occipital place area (OPA) (Epstein et al., 2017). To test the exact locations of these regions

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.47492.010

Figure 3. Scale-selective activity along gradients and additional cortical regions. Surface view of all scale-selective cortical activations (including regions

outside of the three gradients; voxels identified by ANOVA across beta values, p<0.01, FDR-corrected for multiple comparisons, minimum r2 of

fit = 0.7, cluster threshold = 15 mm2). Continuous scale-sensitive gradients are marked by white dashed lines. Full volume maps of these results are

available online at https://github.com/CompuNeuroPsychiatryLabEinKerem/publications_data/tree/master/spatial_scales (Peer et al., 2019, copy

archived at https://github.com/elifesciences-publications/publications_data).

DOI: https://doi.org/10.7554/eLife.47492.011

Peer et al. eLife 2019;8:e47492. DOI: https://doi.org/10.7554/eLife.47492 5 of 20

Research article Neuroscience

https://doi.org/10.7554/eLife.47492.010
https://github.com/CompuNeuroPsychiatryLabEinKerem/publications_data/tree/master/spatial_scales
https://github.com/elifesciences-publications/publications_data
https://doi.org/10.7554/eLife.47492.011
https://doi.org/10.7554/eLife.47492


with respect to our findings, we used masks of these regions as previously defined on an indepen-

dent sample (Julian et al., 2012). The three regions (PPA, RSC and OPA) were found to be situated

at the posterior part of the medial temporal, medial parietal and lateral occipito-parietal gradients,

respectively. Accordingly, the scene-responsive regions were most active for the small and medium

scales: room, building and neighborhood (Figure 4). This finding suggests their stronger involve-

ment in the processing of immediate visible scenes, compared to more abstract larger environments.

However, these regions also showed activity for the larger scales, suggesting that their computa-

tional role may extend beyond the exclusive processing of the immediately visible environment,

though to a lesser extent (Figure 4).

The three cortical gradients indicate a shift between the visual and
default-mode brain networks
To relate the three cortical gradients to large-scale brain organization, we compared their anatomi-

cal distribution to a parcellation of the brain into seven cortical resting-state fMRI networks, as iden-

tified in data from 1000 subjects (Yeo et al., 2011). Across the three gradients, the posterior

regions (related to processing of small scales) overlapped mainly with the visual network, while the

anterior regions (related to processing of large scales) mainly overlapped with the default-mode net-

work (Supplementary file 1).

Differences in scale selectivity between the three cortical gradients
The previous analyses identified three cortical regions with gradual progression of scale selectivity.

We next attempted to identify differences between these three regions that may be indicative of

their functions. To this aim, we analyzed the number of voxels with preferential activity for each scale

within each gradient (Figure 5, Figure 5—figure supplement 1). The medial parietal gradient was

mostly active for the neighborhood, city and continent scales, indicating a role for this region in

processing medium to large scale environments. In contrast, the medial temporal gradient contained

mostly voxels sensitive to scales up to the city level, suggesting that this region is involved mostly in

processing small to medium scales. Finally, the lateral occipito-parietal gradient was most active for

the smallest scales (room, building) and the largest (continent) scale. These findings demonstrate

that despite their similar posterior-anterior organization, the three scale-sensitive cortical gradients

have different scale preferences, indicating possible different spatial processing functions.

Subjects’ behavioral ratings and their relation to the scale effects
Analysis of subjects’ ratings of emotional significance and task difficulty for each location indicated

no significant differences between scales, except for difficulty difference between the continent and

the room and neighborhood scales (Figure 1—figure supplement 2A–B; correlation between diffi-

culty and scale, r = 0.39; p<0.05, two-tailed one-sample t-test across subjects). Familiarity ratings

did significantly differ across scales, with larger average familiarity for the smaller scale environments

(Figure 1—figure supplement 2C; average correlation of familiarity and scale increase, r = �0.72;

p<0.05, two-tailed one-sample t-test across subjects). First-person perspective taking and third-per-

son perspective taking ratings were also highly correlated with scale increase, indicating a gradual

shift between imagination of locations from a ground-level view in small-scale environments to imag-

ination from a bird’s-eye view in large-scale environments (r = �0.81, r = 0.80, respectively; both

p<0.05, two-tailed one-sample t-test across subjects; Figure 1—figure supplement 2E,

Supplementary file 1). Response times did not significantly differ between scales (Figure 1—figure

supplement 2D). The verbal descriptions of task-solving strategy confirmed the trend of decrease in

ground-level and increase in map-like (or ‘bird’s-eye’) imagination with increasing scale

(Supplementary file 1). These descriptions also demonstrated that as the scale decreased, subjects

increasingly relied on estimations of walking or driving times between locations, except for the room

scale where this strategy was not used (Supplementary file 1).

To measure the effect of these different factors on the observed activations, we used parametric

modulation using subjects’ ratings of emotion, familiarity, difficulty, perspective taking and strategy.

The familiarity, perspective taking (first-person and third-person) and reports of use of a map strat-

egy showed significant effects inside the scale-related gradients, in accordance with their high
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correlation to spatial scale (Figure 2—figure supplement 5). No other factor showed any signifi-

cantly active regions in this analysis.

We next contrasted the activity for the experimental task with that for the lexical control task at

each region. Within the three gradients, this contrast revealed significantly higher activity for the

spatial task compared to the lexical control task (GLM contrast, all p-values<0.05, FDR corrected for

Figure 4. Visual scene-responsive cortical regions (PPA, RSC and OPA) are preferentially active for small to medium spatial scales. Scene-responsive

cortical regions (marked by a black outline) were defined using publicly available dataset by responses to a places > objects contrast in a separate

subject sample (Julian et al., 2012). (A) retrosplenial complex (RSC), (B) parahippocampal place area (PPA), (C) occipital place area (OPA). Left –

overlap of scene-responsive regions and the three scale-sensitive gradients. Right– average beta weights for each condition (scale) within each region

of interest (error bars represent standard errors across subjects). The visual scene-responsive regions are situated at the posterior part of the three

gradients, and are therefore mostly active during processing of small to medium scale environments.

DOI: https://doi.org/10.7554/eLife.47492.012
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multiple comparisons across regions), except for the anterior city, country- and continent-related

regions in the medial temporal gradient and the continent region in the occipito-parietal gradient.

Among the other scale-sensitive regions outside of the gradients, only the supramarginal and lateral

occipital cortex clusters did not show a significant activity above that of the lexical control task.

Discussion
Our investigation revealed several novel findings. First, spatial scale sensitivity was found to be orga-

nized along three cortical gradients, extending anteriorly from the three known scene-responsive

regions (PPA, RSC and OPA), as well as along the long axis of the hippocampus. These gradients

were organized such that their posterior parts were most active for the smallest spatial scales and

their anterior parts for the largest spatial scales. In addition, the posterior parts of the cortical gra-

dients overlapped with the brain’s visual network, while the anterior parts extended into the default-

mode network (DMN). Spatial scale sensitivity was differentially distributed between these gradients,

with the medial temporal gradient preferentially active for small- to medium-scale environments, the

medial parietal gradient for medium- to large-scale environments, and the lateral occipito-parietal

gradient for the small and large scales but not for medium-sized ones. These scale-selective gra-

dients were correlated with a shift from detailed to less-detailed knowledge of locations, and from

first- to third-person perspective taking with increasing scale. In the following, we discuss our results

with respect to previous theories of spatial processing as well as findings regarding the spatial sys-

tem’s organization and its role in conceptual processing.

Several theories on how the cognitive system processes different spatial scales have been previ-

ously proposed. Early authors have suggested a scale-independent unitary system for spatial

Figure 5. The three scale-selective cortical gradients have different voxel distributions, demonstrating preference for processing different spatial scales.

The position of the Gaussian fit peak was used to identify voxels responsive to each scale. Voxel numbers are described within each gradient. Results

indicate that the medial parietal gradient mostly represents scales at the neighborhood level and larger, the medial temporal gradient mostly

represents environment up to the neighborhood-sized scales and has only small portions dedicated to larger scales, and the lateral occipito-parietal

gradient is highly active both for the smallest scales and the largest ones.

DOI: https://doi.org/10.7554/eLife.47492.013

The following figure supplement is available for figure 5:

Figure supplement 1. Scale-selective voxel distributions within the three gradients.

DOI: https://doi.org/10.7554/eLife.47492.014
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representation, such as an hierarchical tree that stores relations between segments at each hierarchi-

cal level, irrespective of its scale (Hirtle and Jonides, 1985; Holding, 1994; Worden, 1992). In con-

trast, other authors have suggested that different neurocognitive system are responsible for

representation of different spatial scales. According to dual systems theories, local room-sized envi-

ronment are stored using a precise metric reference frame, and larger environments are represented

as a schematic, non-metric graph connecting these smaller environments (Meilinger, 2008;

Werner et al., 2000). Finally, multiple systems theories claim that separate systems process differ-

ent spatial scales. The different suggested scales include figural/graphics spaces (smaller than the

body), vista spaces (small environments that can be grasped from one location), navigation/environ-

mental spaces (large spaces learned through navigation), and geographical spaces (regions too large

to be learned by navigation, and are learned mainly through maps) (Montello, 1993; Tversky, 2003).

Consequently, the different types of theories offer different predictions on the type of brain activity

involved in computations at different scales. While dual and multiple systems theories would predict

activation at different brain regions for different spatial scales, the unitary system theory would pre-

dict activity within same brain regions across scales. Our findings showed that all scale-sensitive

regions are active across a range of spatial scales, with activity shifting along functional gradients

within the same brain regions. Therefore, our findings seem to reconcile the different theories, show-

ing a unitary system that is involved in spatial processing across a range of spatial scales, while nev-

ertheless having an internal organization according to scale.

Several factors might explain the shift in cortical activity when subjects make judgments at differ-

ent scales. One element that may differ between scales is the amount of movement involved in their

navigation and initial learning, although we did not find consistent differences between reports of

imagined movement at different scales. Alternatively, subjects may use personally-relevant episodic

memories to a different degree in order to perform the task at different scales, although the limited

time allowed for each comparison and the lack of differences in emotional significance ratings

between locations limit this possibility. Other potential contributing factors include differences in the

level of familiarity/detailed knowledge of locations between the different scales, and a shift in per-

spective taking between first- and third-person imagination. Subjects’ behavioral ratings and verbal

descriptions show that when thinking of larger scales, subjects shift to use a bird’s-eye imaginary

perspective and have less detailed knowledge of locations. Previous studies that directly manipu-

lated familiarity and level of knowledge of locations (Epstein et al., 2007b; Epstein et al., 2007a;

Hirshhorn et al., 2012b; Wolbers and Büchel, 2005) or first- vs. third-person perspective taking

(Rosenbaum et al., 2004; Sherrill et al., 2013) found differences in activity within the OPA, RSC

and PPA (generally higher activity for more well-known places and first-person perspective, as found

here). However, these studies did not find activity shift to more anterior cortical regions for third-

person perspective taking or less well-known locations, as shown in the scale-sensitive gradients

described in this study. Therefore, level of familiarity and perspective taking might not entirely

explain the observed gradients. These findings might be explained by the idea that posterior gradi-

ent regions contain detailed spatial information, supported by the visual system and acquired using

a first-person perspective; as the scale increases, knowledge becomes less detailed and more

abstract and schematic, supporting a bird’s-eye/map like imagination (Arzy and Schacter, 2019).

Past studies have found evidence for posterior-anterior subdivisions in PPA and RSC

(Baldassano et al., 2016; Baldassano et al., 2013; Burles et al., 2018; Chrastil et al., 2018;

Silson et al., 2019; Silson et al., 2016). Posterior parts of both regions were active during visual

scene viewing and navigation, and were functionally connected to visual regions. In contrast, anterior

regions were active during imagination and recall of relations between unseen parts of the larger

environment, and were functionally connected to the anterior hippocampus and DMN. These find-

ings were interpreted as evidence for two spatial systems: a posterior system involved in perceptual

analysis and encoding of visual scenes, and an anterior system responsible for scene recall from

memory (Baldassano et al., 2016; Burles et al., 2018; Chrastil et al., 2018). Our results provide

several novel insights related to these past findings. First, instead of a binary distinction between

two systems in scene-selective regions (PPA, RSC and OPA), we found a continuous gradient operat-

ing both within these regions and extending anteriorly from them. Second, all investigated condi-

tions involved only recall of environments from memory, suggesting that posterior-anterior activity

differences do not relate only to direct visual processing vs. scene memory. Instead, the scale of

representation may be important for organizing activity along the posterior-anterior axis. Third, we
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found that the cortical posterior-anterior organization by spatial scale also exists along the hippo-

campal long axis, in agreement with past findings (Brunec et al., 2018; Kjelstrup et al., 2008). With

respect to the hippocampus, hippocampal long axis organization was previously suggested to relate

to the level of detail vs. abstractness of the representation, both in space and in other memory

domains (Brunec et al., 2018; Poppenk et al., 2013). We hypothesize that the same principle of

detailed vs. general-schematic representation applies to the scale-sensitive cortical gradients we

identified. Indeed, behavioral works demonstrated that while humans represent small-scale environ-

ments in a precise, Euclidean manner, in larger environments they may be using a more flexible

representation system (Meilinger, 2008; Wolbers and Wiener, 2014). This representation may take

the form of a ‘cognitive graph’ that represents relations between locations topologically

(Chrastil and Warren, 2014; Epstein, 2008; Meilinger, 2008; Warren et al., 2017), resulting in

behavioral biases and navigational mistakes (Moar and Bower, 1983; Tversky, 1981). Thus, the

general posterior-anterior organization of the spatial system may relate to precise relational encod-

ing in posterior regions vs. a flexible, cognitive-graph-like representation of larger spaces in anterior

regions.

Across the three cortical gradients, we found that posterior regions correspond to visual scene-

processing regions (PPA, RSC and OPA), while anterior regions were part of the default-mode net-

work (DMN), in accordance with previous findings (Baldassano et al., 2016; Baldassano et al.,

2013; Chrastil et al., 2018). The RSC, PPA and OPA are considered to be regions specializing in

spatial processing (Dilks et al., 2013; Epstein and Kanwisher, 1998; Epstein and Ward, 2010). In

contrast, the DMN is active both during rest and across a variety of high-level, mostly self-refer-

enced, cognitive processes, that extend beyond the spatial domain (Buckner et al., 2008;

Buckner and Carroll, 2007; Peer et al., 2015; Simony et al., 2016; Spreng et al., 2009). Thus, the

posterior-anterior gradients we identified might reflect a shift from representing visually observable

spatial relations in small-scale spaces to representing more abstract relations in larger environments.

Indeed, recent investigations suggested a general cortical organization scheme, where information

gradually progresses from sensory regions to form high-level cognitive representations in the DMN

(Huntenburg et al., 2018; Margulies et al., 2016). In a previous study, we found that posterior

regions within medial parietal cortex specialize in processing spatial relations, while the regions ante-

rior to them process temporal relations between events and social relations between people

(Peer et al., 2015). Similarly, it has been shown that posterior RSC and hippocampus are more

active for spatial judgments while regions anterior to them are active for general episodic memory

(Hirshhorn et al., 2012a). Moreover, a posterior-anterior gradient was observed in studies of brain

processing of different scales of time, when transitioning from small, immediately-perceivable tem-

poral windows (single seconds) to larger windows (several minutes) that require integration across

time (Baldassano et al., 2017; Chen et al., 2016; Hasson et al., 2008). The hippocampus and its

posterior-anterior organization were also related in previous works to processing of both spatial and

non-spatial knowledge (Eichenbaum, 2000), leading to suggestions that representation of concep-

tual knowledge relies on a geometric, spatial-like processing system (Behrens et al., 2018;

Bellmund et al., 2018; Casasanto and Boroditsky, 2008; Gärdenfors, 2000; Liberman and Trope,

2008; Parkinson and Wheatley, 2013). Our findings suggest that also outside the hippocampus,

the scene-selective RSC, PPA and OPA, which are usually studied in isolation within the field of spa-

tial neuroscience, may combine with the DMN to form a generalized brain system for conceptual

knowledge organization.

Besides the three gradients, several other bilateral cortical regions showed sensitivity to spatial

scale. These regions included the superior frontal gyrus, supramarginal gyrus, posterior temporal

cortex and dorsal precuneus, which had the highest activity for the smallest spatial scale (room) and

decreased activity with increasing scales. These regions may be involved in processes that are prefer-

entially involved in analysis of local environments, such as egocentric perspective taking, in accor-

dance with our subjects’ reports (Figure 1—figure supplement 2, Supplementary file 1) and the

parietal cortex’s role in egocentric processing of the immediately surrounding environment

(Byrne et al., 2007; Wilson et al., 2005). In contrast, clusters at the lateral occipital and medial pre-

frontal cortices displayed the opposite pattern of maximal activity at large spatial scales and

decreasing activity with decreasing scale. This pattern may reflect processes that are employed

more at large scales, such as visualization of maps and routes that occurs when imagining large-scale

spaces (Montello, 1993; Tversky, 2003), in accordance with subjects’ reports (Supplementary file
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1). Future experiments may untangle the role of each of these activation clusters in small-scale and

large-scale specific processing.

Our findings offer several new insights regarding the distinct roles of different parts of the brain’s

spatial processing system. The medial parietal gradient, extending from the RSC, was found to be

preferentially active for processing of large environments, ranging from neighborhoods to conti-

nents. Previous research has shown that the RSC is involved in locating places within their large-scale

context, such as when pointing in the direction of far-away, unseen landmarks (Epstein, 2008;

Epstein et al., 2007b; Maguire, 2001). Additionally, it was suggested to be related to representa-

tions of approximate relations between locations as a cognitive graph (Epstein, 2008; Epstein and

Vass, 2014). Therefore, the RSC may be involved in locating places within their larger context across

environments of different sizes. Interestingly, a recent meta-analysis demonstrated that the posterior

part of the RSC/posterior cingulate cortex is active when directly viewing scenes while its more

dorso-anterior part is active when locating items in larger unobservable environments, further sup-

porting this interpretation and the gradients we identified (Burles et al., 2018). In a similar manner,

the medial temporal gradient, extending from the PPA, was shown here to be responsive mostly for

environments up to the neighborhood level. The PPA is classically known to be involved in location

recognition and analysis of observed scene layouts (Epstein, 2008). Our findings suggest a role for

the PPA in performing similar computations not only in directly visible scenes, but also in larger envi-

ronments that can still be learned by experience. Finally, the lateral occipito-parietal gradient,

extending from the OPA, was shown here to be primarily involved in processing room to building

sized environments, but also to have an anterior extension involved in processing very large environ-

ments. The OPA is thought to be a perceptual processing system used for analyzing local geometry

and identifying routes within visual scenes (Bonner and Epstein, 2018; Bonner and Epstein, 2017),

and our findings suggest it may have similar functions in very large-scale spaces, possibly due to

human tendency to visually imagine these scales as maps. Taken together, the anterior extension of

the PPA, RSC and OPA suggest that they perform general computations across different environ-

ment sizes, beyond the immediately-visible scenes by which they are usually defined.

When looking at the overall distribution of spatial scale selective voxels across the brain, it is

apparent that some spatial scales are more prominently represented than others. The smallest envi-

ronments (rooms) were preferentially represented along large parts of the lateral parieto-temporal

cortex, indicating their importance in everyday experience and behavior of the environment immedi-

ately surrounding us. Among the medium scales, neighborhoods showed the largest prominence

and largest number of maximally active voxels along the three gradients. Regions in the size of

neighborhoods may be the most directly relevant for everyday active navigation and social commu-

nication; indeed, most monkeys and apes have a territory size of up to 3 km2 (Lowen and Dunbar,

1994), suggesting that this is the scale that has been most relevant to navigation in primate (and

possibly human) evolution. Finally, several regions in the lateral occipital and medial prefrontal lobes,

as well as in the anterior parts of the three cortical gradients, showed prominent activity specifically

at the largest spatial scale of continents. This specificity may be related to the increased abstractness

of relations as perceived in these large environments, or to the use of mechanisms specifically

involved in imagining very large spaces, such as their conception through maps (Montello, 1993;

Tversky, 2003).

Activity in the hippocampus, and in some of the anterior parts of the cortical gradients, was nega-

tive relative to baseline, while showing consistent differences in activity between scales. The anterior

parts of the three cortical gradients overlap with the DMN, which may be characterized by negative

BOLD during tasks (Raichle et al., 2001), and negative BOLD in the hippocampus is also a common

finding (Shipman and Astur, 2008). These negative activations were interpreted in the past as

potentially reflecting high constitutive activity of these regions during rest more than during active

tasks (Ekstrom, 2010; Shipman and Astur, 2008; Stark and Squire, 2001). The fact that these acti-

vations are below baseline preclude inference of whether these regions participate in processing of

smaller spatial scales or are only active for larger ones.

Our study has several limitations. First, the task we used involved a specific cognitive computation

of three-way distance comparison between locations, enabling direct comparison between scales

using the same task and experimental design. However, experiments involving other tasks that can

be applied across spatial scales may reveal additional information on scale-specific and scale-inde-

pendent brain processes. Second, to obtain a large range of spatial scales and maintain ecological
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validity we used a personalized paradigm where subjects provided names of real-world locations

familiar to them, in six naturalistic scales, therefore not controlling for the precise size and distances

in each scale. Despite this restriction, the distances between subjects’ selected stimuli logarithmically

increased with each scale, and a bilateral gradient organization was consistently observed across

gradients. However, the exact relations between distances and scales may be further investigated in

a more granular manner using studies of well-controlled (e.g. virtual) environments with different

scales. Third, to identify the DMN and the known scene-selective cortical regions, we used group

averages from large subject groups; directly identifying these systems at the single-subject level

might yield more detailed measurements of their scale specificity. Fourth, we did not measure navi-

gation, imagery or memory abilities, and therefore did not control for these factors in the group

analyses; however, our results hold at the individual subject level in the large majority of subjects,

limiting their ability to explain our results. Finally, as discussed above, environments at different

scales may have inherent differences in their imagination and the strategies employed for judgments

within them, such as imagination of walking, driving, flying or imagining them through maps.

Although we cannot rule out these factors as affecting activation differences between scales, a shift

between different strategies is not likely to explain a continuous shift in the location of activity along

cortical gradients with a change in spatial scale, as we observed here.

In conclusion, our results demonstrate the extension of known visual scene-responsive regions to

a larger scheme of brain organization and processing of relations in larger unseen environments.

These findings may provide a basis for understanding how the human brain processes and integrates

the navigated environment across scales. Furthermore, our findings suggest a way by which brain

systems responsible for representation of large-scale environments may be used to flexibly represent

information in other abstract cognitive domains. Further investigations into how the brain integrates

environments and relations in large scales may inform us on general processing mechanisms in the

brain, and how relations in other abstract conceptual domains are encoded by spatially-based

processes.

Materials and methods

Subjects
Nineteen healthy subjects (twelve males, mean age 27.7 ± 4.4 y) participated in the study. All sub-

jects provided written informed consent, and the study was approved by the ethical committee of

the Hadassah Hebrew University Medical Center.

Experimental stimuli
Six spatial scales were investigated: room, building, neighborhood, city, country and continent.

These scales reflect ecological categories, which grow in size in a logarithmic manner (Figure 1—fig-

ure supplement 1). To gather stimuli for this large range of spatial scales, subjects were asked to

provide names of two real-world locations personally familiar to them at each scale, several days

before the experiment (e.g. home bedroom, Hadassah hospital, London, Argentina). In each of these

twelve locations, subjects indicated the names of eight items whose location they personally know:

objects at the room and building scale (e.g. bed, vending machine), and landmarks at the neighbor-

hood, city, country and continent scales (e.g. Supermarket, Eiffel tower). Subjects were asked to

keep the item names short and make sure they represent a unique location. Subjects who failed to

provide enough personally-familiar stimuli (due to lack of sufficient travel experience abroad) were

not included in the experiment.

Experimental paradigm
During the experiment, subjects were presented with a target stimulus consisting of one of the items

they had provided and its respective location (e.g. ‘table’ in ‘living room’, ‘city hall’ in ‘Jerusalem’),

followed by a pair of other stimuli from the same location on the left and right of the screen (Fig-

ure 1). Subjects were instructed to indicate which of the two stimuli is closer to the target stimulus

by pressing the left or right buttons.

Stimuli were presented in a randomized block design. Each block started by presentation of a tar-

get stimulus for 2.5 s, followed by consecutive presentation of four stimuli pairs, each for 2.5 s
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(Figure 1). All stimuli within the same block had to be judged in relation to the block’s target stimu-

lus location. Each block (12.5 s) was followed by 7.5 s of fixation. Subjects were instructed to

respond accurately but as fast as possible. The experiment consisted of either four or five experi-

mental runs for each subject, each run containing 24 blocks in a randomized order (two blocks for

each of the twelve locations = four blocks in each spatial scale). In total, subjects performed 24

blocks per run, each including four object pairs, for a total of 384–480 comparisons over the experi-

ment. Anchor items and stimuli pairs were chosen independently and randomly from the eight items

the subject provided for each location, allowing for repetitions; on average, 3.5% of stimuli pairs

were repeated during the experiment (with the same anchor stimulus), and each item was used

9 ± 2.87 times as a target. In addition, eleven subjects performed a lexical control task in a separate

run, in which they viewed similar target stimuli followed by stimuli pairs but were instructed to indi-

cate which of the pair of words is closer in length to the target stimulus. A training task using pairs

of stimuli derived from the same pool was delivered before the experiment; subjects performed the

training until they indicated that they felt comfortable doing the task (average number of training tri-

als per subject = 53 ± 26.6, or 8.8 trials per spatial scale). Stimuli were presented using the Presenta-

tion software (Version 18.3, Neurobehavioral Systems, Inc, Berkeley, CA, www.neurobs.com, RRID:

SCR_002521). After the experiment, subjects rated their level of familiarity with each of the twelve

locations, the emotional significance of the location, and level of difficulty of judgments at each loca-

tion (from 1 to 7). They were also asked to describe the strategy used for determining responses in

each of the six spatial scales (free descriptions) and specifically to what extent did they adopt a

ground-level or bird’s-eye point-of-view (1 to 7 rating).

Analysis of spatial scale sizes
For each stimulus provided by each participant, we identified the latitude and longitude of the stim-

ulus location, if it was a name which could be identified. 72% of stimuli locations were identified

(65% for neighborhoods, 83% for cities, 72% for countries and 70% for continents). The pairwise dis-

tances between all items in each location and scale were calculated using the Haversine formula (to

account for the earth’s globular shape), using a script provided by M Sohrabinia: https://www.math-

works.com/matlabcentral/fileexchange/38812-latlon-distance. A linear fit to the resulting logarithmic

values shows a fit of r2 = 0.98, indicating that scale transitions reflect a logarithmic increase in envi-

ronmental size.

MRI acquisition
Subjects were scanned in a 3T Siemens Skyra MRI (Siemens, Erlangen, Germany) at the Edmund and

Lily Safra Center (ELSC) neuroimaging unit. Blood oxygenation level-dependent (BOLD) contrast was

obtained with an echo-planar imaging sequence [repetition time (TR), 2,500 ms; echo time (TE), 30

ms; flip angle, 75˚; field of view, 192 mm; matrix size, 64 � 64; functional voxel size, 3 � 3 � 3 mm;

46 slices, descending acquisition order, no gap; 200 TRs per run]. In addition, T1-weighted high res-

olution (1 � 1 � 1 mm, 160 slices) anatomical images were acquired for each subject using the

MPRAGE protocol [TR, 2,300 ms; TE, 2.98 ms; flip angle, 9˚; field of view, 256 mm].

MRI processing
fMRI data were processed and analyzed using the BrainVoyager 20.6 software package (R. Goebel,

Brain Innovation, Maastricht, The Netherlands, RRID:SCR_013057), Neuroelf v1.1 (www.neuroelf.net,

RRID:SCR_014147), and in-house Matlab (Mathworks, version 2018a, RRID:SCR_001622) scripts. Pre-

processing of functional scans included slice timing correction (cubic spline interpolation), 3D motion

correction by realignment to the first run image (trilinear detection and sinc interpolation), high-pass

filtering (up to two cycles), smoothing (full width at half maximum (FWHM) = 4 mm), exclusion of

voxels below intensity values of 100, and co-registration to the anatomical T1 images. Anatomical

brain images were corrected for signal inhomogeneity and skull-stripped. All images were subse-

quently normalized to Montreal Neurological Institute (MNI) space (3 � 3�3 mm functional resolu-

tion, trilinear interpolation). The full analysis and preprocessing scripts are available at https://

github.com/CompuNeuroPsychiatryLabEinKerem/publications_data/tree/master/spatial_

scales (Peer et al., 2019, copy archived at https://github.com/elifesciences-publications/publica-

tions_data).
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Functional MRI analysis
Estimation of cortical responses to each spatial scale
A general linear model (GLM) analysis (Friston et al., 1994) was applied at each voxel, where predic-

tors corresponded to the six spatial scales. Each modeled predictor included all experimental blocks

at one spatial scale, where each block was modeled as a boxcar function encompassing the target

stimulus and the four distance comparisons following it. Predictors were convolved with a canonical

hemodynamic response function, and the model was fitted to the BOLD time-course at each voxel.

Motion parameters were added to the GLM to eliminate motion-related noise. In addition, white

matter and CSF masks were manually extracted in BrainVoyager for each subject (intensity >150 for

the white-matter mask and intensity <10 with a bounding box around the lateral ventricles for CSF),

and the average signals from these masks were added to the GLM to eliminate potential noise sour-

ces. Data were corrected for serial correlations using the AR(2) model and transformed to units of

percent signal change. Subsequently, a random-effects analysis was performed across all subjects to

obtain group-level beta values for each predictor.

Identification of voxels with spatial scale sensitive activity
To identify voxels with differences in brain activity between spatial scales, single-factor repeated-

measures ANOVA was applied in each voxel on the scale-specific predictors’ beta values, across all

subjects (FDR-corrected for multiple comparisons across voxels, p<0.01). Following voxel identifica-

tion, beta values were averaged for each voxel across subjects, and two methods were used to iden-

tify selectivity to spatial scales: (1) fitting a Gaussian function to the betas’ graph and identifying its

peak; (2) selection of the scale with maximal activity (Figure 2—figure supplement 1). Since the

responses in almost all regions follow a gradual pattern of change between different scales, the

Gaussian fit enables a fuller consideration of the overall pattern of activity and scale selectivity across

scales, instead of focusing only on the maximally active scale. Gaussian fitting was performed for

each beta vector after its normalization by subtracting its minimum value, and fitting was performed

using Matlab, with bounds of 0 to 100 for amplitude, �100 to 100 for center, and 0 to 100 for width.

Only voxels with fit of r2 >0.7 (5737 out of 7452 voxels) were included in the subsequent analyses of

Gaussian fit peaks.

Group-level analysis of activity profiles across spatial scales
Event-related activity (ERA) averaging and beta averaging across subjects were used to investigate

activity profiles at each region. For event-related activity, BOLD signals were averaged for all blocks

containing each scale across all runs and subjects, for the ten functional volumes following each

block’s initial display of the target stimulus. Beta plots were also created by averaging the beta val-

ues calculated in the random-effects GLM analysis across all subjects. These procedures were per-

formed in each region of interest, as defined by the peak of the Gaussian fit to the group-averaged

beta maps.

Measuring increase of scale selectivity along gradients and along the
hippocampal long axis
Within the hippocampus and the three identified gradients (medial temporal, medial parietal and lat-

eral occipito-parietal), peak of Gaussian fit was averaged for each MNI coordinate along the Y axis,

as well as scale with maximal response, resulting in vectors of scale selectivity across the posterior-

anterior axis. To measure whether there is a gradual increase in preferred scale along each gradient,

we modeled each gradient using a linear function that was fitted to the scale preference values

along it, and also fitted this function to 1000 shuffled versions of each scale preference vector for

obtaining a null distribution. The slope of the actual fit was tested against the slope of the fits to the

random permutations to check if the obtained increase in scale preference along the gradients sig-

nificantly deviates from chance. Resulting p-values were corrected for multiple comparisons across

gradients using the false discovery rate (Benjamini and Hochberg, 1995). This analysis was addition-

ally repeated at the individual subject level, by fitting the Gaussian function at the individual subject

level and calculating the linear fit and its significance along the cortical gradients (regions defined by

the group results) and along the hippocampus.
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Comparison to hippocampus and visual scene-responsive regions (RSC,
PPA and OPA)
Masks of the RSC, PPA and OPA were used, as established in a previous publication (Julian et al.,

2012); http://web.mit.edu/bcs/nklab/GSS.shtml). These masks represent group activation clusters

from 30 subjects who watched visual images with a contrast of scenes > objects. The outlines of the

group-level clusters were overlaid on each cortical gradient (Figure 4) to compare their cortical loca-

tions. In addition, a region-of-interest GLM analysis (random effects group analysis) was performed

within each mask, to obtain beta values for each spatial scale at each region. The hippocampal

region-of-interest was extracted from the Harvard-Oxford atlas brain template distributed with FSL

(http://www.fmrib.ox.ac.uk/fsl/, RRID:SCR_001476; Desikan et al., 2006; Jenkinson et al., 2012).

Comparison of scale-specific activations to large-scale resting-state
networks
A previously published whole-brain parcellation into seven large-scale brain networks was used as a

template for resting-state networks location. For each scale-selective region within the three gra-

dients, its percent of overlap with each of the seven resting-state networks was measured (percent

of voxels from Desikan et al., 2006 this region within each network).

Analyses of potential factors contributing to the scale effect
Each subject’s ratings of difficulty, emotional significance and familiarity for each location were inde-

pendently normalized by z-transform. Ratings of first-person perspective taking, third-person per-

spective taking, and mentions of use of different strategies were similarly transformed for each

scale. The resulting values were then used as parametrically modulation regressors (after convolution

with the hemodynamic response function), according to each experimental block’s spatial scale and

specific location. A response time predictor was added in a similar manner according to each trial’s

response time. Random-effects group analysis (corrected for serial correlations, AR(2)) was then per-

formed using each of the regressors separately, to identify activity modulation by each potential con-

tributing factor. In addition, one-way ANOVA (Tukey-Kramer post-hoc test, p<0.01) was used to

identify significant differences in the ratings between the six spatial scales.

Comparison of activity to the lexical control task
Regressors for the lexical control were added to the scale predictors in the GLM analysis, and a new

design matrix was computed for each subject. A group analysis (corrected for serial correlations, AR

(2)) was performed in each scale-sensitive region of interest, and activity in this region’s preferred

scale was contrasted with the activity corresponding to the respective control condition.

Data sharing
All of the analysis codes from this project, as well as the resulting statistical maps and spatial scale-

specific regions, are freely available at https://github.com/CompuNeuroPsychiatryLabEinKerem/pub-

lications_data/tree/master/spatial_scales (Peer et al., 2019, copy archived at https://github.com/eli-

fesciences-publications/publications_data).
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