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ABSTRACT
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets
bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone
formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteopo-
rosis. Despite great interest in iPTH and its clinical use, themechanisms of PTH action remain complicated and not fully defined. More
than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine
studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions
under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a
treatment duration lasting 5–6 weeks, and a PTH dose of 30–60 μg/kg/day. This comprehensive study also evaluated these genetic
models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes
and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest
increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphire-
gulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response
include deletions of: proteoglycan 4 (Prg4, �9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-
density lipoprotein receptor-related protein 5 (Lrp5, �1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and
diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics.
© 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone
and Mineral Research (ASBMR).
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INTRODUCTION

Parathyroid hormone (PTH) has been approved by the US Food
and Drug Administration (FDA) since 2002, when teriparatide, a

34–amino acid analog of PTH, was accepted for the treatment of
osteoporosis. More recently a PTH related protein (PTHrP) analog
was also approved for the treatment of osteoporosis under the
name abaloparatide.(1) It is well accepted that intermittent PTH
(iPTH) therapy is anabolic for bone, whereas continuous PTH expo-
sure is catabolic. The anabolic actions of iPTH in bone have been
observed in animal models since 1929 using cats and rats.(2-5) These
results were recapitulated in human patients,(6,7) which led to the
approval of this anabolic agent for therapeutic purposes. However,
the anabolic mechanism of iPTH is not fully understood, and this

study aimed to reveal trends in critical genes and gene families rel-
evant for iPTH anabolic actions.

As an endogenous endocrine mediator, PTH is released when
the parathyroid gland detects a decrease in serum calcium con-
centration. Circulating PTH then targets the kidney and bone to
increase serum calcium levels.(5) The effects of PTH and PTHrP
in bone are achieved by binding to its type 1 receptor (PTH1R,
a G-protein coupled receptor with seven transmembrane
domains) on osteoblasts.(8,9) This stimulates the production of
receptor activator of nuclear factor κB ligand (RANKL) in osteo-
blasts and subsequent osteoclastogenesis.(10) Indirectly, there is
an increase in osteoblast numbers and bone formation.(11)

PTH is essential for fetal development, with newborn PTH-
deficient mice exhibiting reduced cartilagematrix mineralization

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
Received in original form December 23, 2020; revised form May 26, 2021; accepted June 2, 2021.
Address correspondence to: Laurie K. McCauley, DDS, MS, PhD, 1011 N University Avenue, Ann Arbor, MI 48109, USA. Email: mccauley@umich.edu
Additional Supporting Information may be found in the online version of this article.

Journal of Bone and Mineral Research, Vol. 36, No. 10, October 2021, pp 1979–1998.
DOI: 10.1002/jbmr.4389
© 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research
(ASBMR).

1979 n

https://orcid.org/0000-0002-5696-4648
https://orcid.org/0000-0002-7723-293X
https://orcid.org/0000-0001-6355-0710
https://orcid.org/0000-0001-9173-9123
http://creativecommons.org/licenses/by/4.0/
mailto:mccauley@umich.edu


and trabecular bone, due to fewer metaphyseal osteoblasts.(12)

Adult PTH-null mice exhibit decreased serum calcium, decreased
1,25-dihydroxyvitamin D3, and increased serum phosphate.(13)

Trabecular bone volume is increased in the femurs, tibias, and
vertebrae of mutant mice, and the number and size of tibial oste-
oclasts are reduced. Furthermore, there is a decreased mineral
apposition rate.

PTHrP-null mice exhibit an osteoporotic phenotype that can
be recapitulated in mice with targeted deletion in osteoblasts
(Pthrpf/f;crecolI).(14) This model is more specific to the local bone
environment, in which iPTH treatment increased mineral apposi-
tion rate, bone volume, trabecular number, trabecular thickness,
trabecular connectivity, and cortical thickness in long bones. This
could be attributed to increased receptor availability without
endogenous PTHrP or changes in receptor desensitization
(i.e., increased number of receptors because there is not desensi-
tization from PTHrP). In either case, it is likely that PTHrP can
modulate the response to PTH via the PTH1R receptor.(14)

MATERIALS AND METHODS

Data for this study was collected from publications that have
administered anabolic doses of iPTH from 2001 to 2020 (Figure 1).
Papers were accessed by searching scholarly search engines,
such as PubMed, through December 2020. A highly relevant and
consistent outcome of trabecular bone volume per total volume
was used as a key and focused measure to compare the anabolic
response in experimental gene targeted mice to wild-type controls
in published studies. The PTH-induced bone volume response was
derived for both gene targeted and wild-type mice (Table 1) sepa-
rately [(PTH – Vehicle)/PTH]. Then, the relative response was calcu-
lated as a fold change by dividing the gene targeted response by
the wild-type response. A fold change of 1.0 indicates that there
was no change in the anabolic response between wild-type and
gene-targeted mice. If the fold change was greater than 1.0, the
mutant mice had a greater anabolic response than wild-type mice,
whereas between 0 and 1.0 the mutant mice had a less anabolic
response. A negative fold change indicates that the mutant
response to iPTHwas not anabolic. In some studies, actual numerical
data was provided, whereas in others, data was derived from

graphic representation. When bone volume was only depicted
graphically, values were estimated by measurement with a ruler to
derive the gene-targeted response relative towild type. Studies that
showed an anabolic response to PTH in wild-type controls were
included whereas those that did not demonstrate an anabolic
response in controls were excluded (there were very few studies
that did not display an anabolic response).

Most commonly, human PTH(1-34) (hPTH(1-34)) was adminis-
tered, although there were a few studies as indicated when the
PTH differed (i.e., hPTH(1-84) or derived from a different source).
Doses ranged from 20 to 160 μg/kg/day, but was typically
between 40 and 100 μg/kg/day, as specified in Table 2. PTH
was administered by injection daily, 7 days/week, unless noted
differently. Treatment time was typically 2 to 6 weeks of iPTH.
The models are grouped under categories largely according to
functional analyses in the Supplemental Material, alphabetically
in Table 2. By assimilating the literature that has used anabolic
PTH in genetic mouse models, we gain a better understanding
of key genetic pathways as well as the overall complexity of
PTH actions in bone.

RESULTS

Actions of iPTH in wild-type mice

Because gene-targeted murine studies utilized wild-type mice as
positive controls, a variety of variables were analyzed to better
understand the optimal conditions under which iPTH functions. Tra-
becular bone volume was compiled and organized by different cat-
egories (Figure 2, Table 1). The groups were stratified by: sex, bone
site, days per week of treatment, age at start of treatment, duration
of treatment, and dose of iPTH. Strain was also considered and is
listed in Table 2; however, the only strain that had a large enough
sample size for consideration was C57BL/6. Because the interest of
this section is in comparing different categories, we did not include
strain in the analysis. Most of these groups had a significant, positive
correlation between the control trabecular bone volume and the
iPTH-treated bone volume (Table 1). Using both sexeswas an excep-
tion. Although this does not suggest that those indices should not
be used in future studies, caution should be taken if drawing conclu-
sions based only on trabecular bone volume.

FIGURE 1. Timeline of gene targeted mouse models of PTH anabolic actions in bone. Abbreviation: PTH, parathyroid hormone.
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Correlation graphs of the reported trabecular bone volume in
control versus iPTHmice are shown in Figure 2 and are separated
by the categories mentioned. In order to understand how the
variables relate within a category, the data was modeled with a
linear regression and the slopes and corresponding 95% confi-
dence interval were compared. Groups that had a significant cor-
relation are discussed in the Supplemental Material, but all of the
data is presented. This data can be used to inform future study
design and interpretation.

We hypothesized that if a mouse has a high baseline bone vol-
ume, there is less capacity to mount an anabolic response to
iPTH. Similarly, if an animal has a low baseline bone volume, they
would show a greater response to iPTH. Analysis of the graph in
Figure 2G supports this, with the control bone volume plotted
against the fold change response to PTH. Although biases exist
because only studies that showed an anabolic response in
wild-typemice were included, statistics support an inverse expo-
nential relationship between these variables. To confirm that the
data had an exponential relationship, and not a linear one, we
calculated the Akaike Information Criterion (AIC), a statistical pre-
dictor of error between two models. The AIC for the exponential
model is 36.44 lower than the linear model, indicating that the
exponential equation more precisely describes the relationship
between the two variables.

Analysis of PTH anabolic actions in bone using
gene-targeted mice

The mechanism of anabolic iPTH and its effect on the bone
microenvironment has been studied for decades, and numerous
mechanisms have been proposed based on in vitro and in vivo
models.(67-69) A wide variety of genetic mousemodels have been
employed to elucidate the actions of PTH in bone over the past
20 years (Figures 1, 3, Table 2). Withmodern technology facilitat-
ing unprecedented genetic manipulation, this comprehensive
study compiles the evidence of iPTH actions in gene-targeted
murine models. Of note, an important limitation is that although
some mutations are global, many are focused on a subset of
cells, and dependent on effective cre drivers and appropriate
promoter selection. Hence the anabolic actions of PTH may
reflect the effectiveness of the model as well as the targeted
gene. Specific genotypes are indicated in Table 2, and are dis-
cussed in detail in the Supplemental Materials.

The Supplemental Materials include detailed text descriptions
of the literature using iPTH in gene-targeted mice, which are
summarized alphabetically by gene in Table 2. The models stud-
ied can be stratified by the function of the gene, including recep-
tor activation and signaling pathways; downstreammediators in
the fibroblast growth factor (FGF) family, wingless-related inte-

TABLE 1. Statistical analysis of the trabecular bone response in wild-type mice

Pearson’s correlation Linear regression of the slope

Category r2 p Slope 95% CI

Gender
Female (n = 44) 0.8990 <0.0001 1.031 0.8746 to 1.1870
Male (n = 40) 0.7698 <0.0001 1.808 1.3160 to 2.3010
Both (n = 11) 0.3470 0.2957 0.748 �0.7763 to 2.2720

Bone site
Tibia (n = 15) 0.8631 <0.0001 1.194 0.9090 to 1.4790
Femur (n = 63) 0.5204 <0.0001 1.690 1.2750 to 2.1050
Vertebrae (n = 21) 0.1462 0.0872 0.620 �0.0996 to 1.3400

Age at start of treatment
0–2 weeks (n = 12) 0.4261 0.0214 0.988 0.1802 to 1.7970
4–8 weeks (n = 22) 0.3150 0.0066 0.752 0.2348 to 1.2690
9–10 weeks (n = 23) 0.6942 <0.0001 0.950 0.6640 to 1.2360
11–12 weeks (n = 25) 0.7071 <0.0001 1.530 1.1050 to 1.9540
>12 weeks (n = 22) 0.6239 <0.0001 2.031 1.2950 to 2.7670

Days per week of treatment
5–5.5 (n = 35) 0.8758 <0.0001 1.250 1.0060 to 1.4940
7 (n = 66) 0.6487 <0.0001 1.3178 0.9320 to 1.7010

Treatment duration
<4 weeks (n = 23) 0.6880 <0.0001 1.347 0.9357 to 1.7590
4 weeks (n = 48) 0.3858 <0.0001 0.885 0.5335 to 1.2016
5–6 weeks (n = 22) 0.6749 <0.0001 2.459 1.6630 to 3.2550
7–12 weeks (n = 12) 0.6503 0.0015 0.790 0.3814 to 1.1970

Treatment dose (μg/kg/day)
≦30 (n = 19) 0.6201 <0.0001 2.176 1.3050 to 3.0480
40 (n = 19) 0.6799 <0.0001 1.565 1.0150 to 2.1140
50–60 (n = 13) 0.3717 0.0269 1.135 0.1559 to 2.1150
80 (n = 44) 0.4488 <0.0001 0.919 0.6021 to 1.2370
90–160 (n = 10) 0.9454 <0.0001 1.001 0.8050 to 1.1970

Notes: Data was pooled to analyze Pearson’s correlation of the trabecular response of wild-type mice to vehicle or iPTH. The r2 and p value are reported
from this analysis. The slope and 95% CI of the linear regression of the slope is also reported.
Abbreviations: CI, confidence interval; iPTH, intermittent parathyroid hormone.

Journal of Bone and Mineral Research ANABOLIC PTH IN MURINE MODELS 1981 n



TA
B
LE

2.
G
en

et
ic
m
od

el
s
tr
ea
te
d
w
ith

iP
TH

Ta
rg
et

ge
ne

G
en

ot
yp

e
G
en

de
r

PT
H
re
gi
m
en

A
ge

of
m
ic
e

du
rin

g
tr
ea
tm

en
t

Bo
ne

si
te

FC
in

tr
ab

ec
ul
ar

BV
/T
V

N
.O
b/
BS

N
.O
c/
BS

St
ra
in

Ye
ar

Re
fe
re
nc
e

1α
(O
H
)

as
e

1α
(O
H
)a
se

�
/�

♂
40

μg
/k
g/
da

y
hP

TH
(1
-3
4)

12
–1

6
w
ee
ks

Ti
bi
a

~
1.
10

1
N
o
ch
an

ge
N
o
ch
an

ge
C
57

BL
/6
J;

BA
LB

/c
20

08
(1
5
)

A
m
pk

α1
A
m
pk
α
1�

/�
N
I

80
μg

/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Ti
bi
a

~
4.
25

0
N
D

N
D

C
57

BL
/6
12

9/
Sv

20
12

(1
6
)

A
re
g

A
re
g�

/�
♀

80
μg

/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Fe
m
ur

~
15

.7
5

N
D

D
ec
re
as
ed

12
9/

C
57

BL
/6

20
15

(1
7
)

A
tf
4

A
tf
4�

/�
N
I

60
μg

/k
g/
da

y
hP

TH
(1
-3
4)

5–
33

da
ys

Fe
m
ur

~
0.
46

8
N
D

N
D

Sw
is
s
Bl
ac
k

20
09

(1
8
)

A
tf
4

A
tf
4�

/�
N
I

60
μg

/k
g/
da

y
hP

TH
(1
-3
4)

5–
33

da
ys

Ve
rt
eb

ra
e

~
0.
35

3
N
D

N
D

Sw
is
s
Bl
ac
k

20
09

(1
8
)

Bc
l2

Bc
l2
�
/�

N
I

50
μg

/k
g/
da

y
hP

TH
(1
-3
4)

4–
13

da
ys

Ti
bi
a

1.
05

4
N
D

N
D

12
9/
C
57

BL
/6

20
09

(1
9
)

Bc
l2

Bc
l2
�
/�

Bi
m

+
/�

♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

16
–2

0
w
ee
ks

Ti
bi
a

N
D

N
D

N
o
ch
an

ge
C
57

BL
/6

(1
0t
h

ge
ne

ra
tio

n)
20

10
(2
0
)

β-
ar
r2

β-
ar
r2

�
/�

♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Fe
m
ur

N
D

In
cr
ea
se
d

In
cr
ea
se
d

C
57

Bl
/6

20
05

(2
1
)

β-
ar
r2

β-
ar
r2

�
/�

♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Ve
rt
eb

ra
e

~
0.
00

0
N
D

N
D

C
57

Bl
/6

20
05

(2
1
)

β-
ar
r2

β-
ar
r2

�
/�

♂
40

μg
/k
g/
da

y
hP

TH
(1
-3
4)

9–
17

w
ee
ks

Ve
rt
eb

ra
e

~
0.
42

8
D
ec
re
as
ed

D
ec
re
as
ed

C
57

Bl
/6

20
09

(2
2
)

β-
ar
r2

β-
ar
r2

�
/�

♂
40

μg
/k
g/
da

y
hP

TH
(1
-3
4)

9–
17

w
ee
ks

Ti
bi
a

~
0.
17

9
N
D

N
D

C
57

Bl
/6

20
09

(2
2
)

β-
ca
t

D
m
p1

-C
re
ER
t2
;β
-c
at

f/
f

♂
30

μg
/k
g/
da

y
rh
PT

H
(1
-3
4)

12
.5
–1

7.
5

w
ee
ks

Fe
m
ur

~
2.
11

5
N
D

N
D

C
57

Bl
/6

12
9

20
16

(2
3
)

β-
ca
t

D
m
p1

-C
re
ER
t2
;β
-c
at

f/
f

♂
30

μg
/k
g/
da

y
rh
PT

H
(1
-3
4)

12
.5
–1

7.
5

w
ee
ks

Ve
rt
eb

ra
e

~
2.
57

1
N
D

N
D

C
57

Bl
/6

12
9

20
16

(2
3
)

β-
ca
t

O
sx
-C
re
;β
-c
at

f/
f

♂
80

μg
/k
g/
da

y
rh
PT

H
(1
-3
4)

7–
11

w
ee
ks

Fe
m
ur

~
1.
12

0
N
D

N
D

C
57

Bl
/6

(6
th

ge
ne

ra
tio

n)
20

18
(2
4
)

β-
ca
t

O
sx
-C
re
;β
-c
at

f/
f

♂
80

μg
/k
g/
da

y
rh
PT

H
(1
-3
4)

7–
11

w
ee
ks

Ve
rt
eb

ra
e

~
3.
35

0
N
D

N
D

C
57

Bl
/6

(6
th

ge
ne

ra
tio

n)
20

18
(2
4
)

β 2
A
R

A
db

r�
/�

♀
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

10
–1

4
w
ee
ks

Fe
m
ur

~
�0

.0
81

N
D

D
ec
re
as
ed

C
57

Bl
/6

20
12

(2
5
)

(C
on

tin
ue
s)

Journal of Bone and Mineral Researchn 1982 ZWEIFLER ET AL.



TA
B
LE

2.
C
on

tin
ue

d

Ta
rg
et

ge
ne

G
en

ot
yp

e
G
en

de
r

PT
H
re
gi
m
en

A
ge

of
m
ic
e

du
rin

g
tr
ea
tm

en
t

Bo
ne

si
te

FC
in

tr
ab

ec
ul
ar

BV
/T
V

N
.O
b/
BS

N
.O
c/
BS

St
ra
in

Ye
ar

Re
fe
re
nc
e

β 2
A
R

A
db

r�
/�

♀
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)
(5

da
ys
/w

ee
k)

10
–1

4
w
ee
ks

Ve
rt
eb

ra
e

~
�0

.1
31

N
D

N
D

C
57

Bl
/6

20
12

(2
5
)

β 2
A
R

A
db

r�
/�

♀
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

54
–5

8
w
ee
ks

Fe
m
ur

~
�0

.1
13

N
D

N
o
ch
an

ge
C
57

Bl
/6

20
12

(2
5
)

BM
I1

Bm
i1
�
/�

♀♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

1–
4
w
ee
ks

Fe
m
ur

C
an

no
t

de
te
rm

in
e

(m
is
si
ng

ne
ce
ss
ar
y

co
nt
ro
ls
)

C
an

no
t

de
te
rm

in
e

(m
is
si
ng

ne
ce
ss
ar
y

co
nt
ro
ls
)

N
D

12
9O

la
FV

B/
N

hy
br
id

20
14

(2
6
)

Bm
p2

,
Bm

p4
R2

6C
re
ER
/R
26
Cr
eE
R
an

d
Bm

p2
C
/C
.B
m
p2

C
/C
;

Bm
p4

C
/C
;R
26
Cr
eE

R
/+

(B
m
p2

/4
D
CK

O
);
O
VX

♀
40

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

10
–1

2
to

16
–1

8
w
ee
ks

Fe
m
ur

C
an

no
t

de
te
rm

in
e

(m
is
si
ng

ne
ce
ss
ar
y

co
nt
ro
ls
)

N
D

N
D

N
I

20
16

(2
7
)

BS
P

Bs
p�

/�
♂

0.
8
μg

/μ
lP

TH
1-
84

(lo
ca
l

in
je
ct
io
n)

12
–1

4
w
ee
ks

C
al
va
ria

~
0.
98

5
(B
V

re
po

rt
ed

)
N
D

N
D

12
9/
C
D
-1

20
15

(2
8
)

C
-F
M
S

M
A
FI
A

♀
50

μg
/k
g/
da

y
hP

TH
(1
-3
4)

16
–2

2
w
ee
ks

Ti
bi
a

~
0.
12

7
N
D

D
ec
re
as
ed

C
57

Bl
/6
J

20
14

(2
9
)

C
-F
O
S

c-
fo
s�

/�
N
I

50
μg

/k
g/
da

y
hP

TH
(1
-3
4)

4–
21

da
ys

Ve
rt
eb

ra
e

~
0.
31

6
N
D

N
D

C
57

Bl
/6

(5
th

ge
ne

ra
tio

n)
20

02
(3
0
)

C
aS
R

C
o
l-
B
o
n
e C
aS
RΔ

fl
o
x/
Δ
fl
o
x

N
I

50
μg

/k
g/
da

y
hP

TH
(1
-3
4)

4–
17

da
ys

Ti
bi
a

~
0.
89

3
N
D

N
D

C
57

Bl
/6

C
D
-1

20
15

(3
1
)

C
D
40

L
CD

40
L�

/�
♀

80
μg

/k
g/
da

y
hP

TH
(1
-3
4)

12
–1

6
w
ee
ks

Fe
m
ur

0.
13

5
N
D

D
ec
re
as
ed

C
57

Bl
/6

20
14

(3
2
)

C
dh

2
O
sx
-C
re
::C
dh

2f
/f

♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

4
w
ee
ks

of
iP
TH

st
ar
tin

g
12

–1
6

w
ee
ks

Ti
bi
a

3.
81

5
N
o
ch
an

ge
D
ec
re
as
ed

C
57

Bl
/6

20
14

(3
3
)

C
dh

2
D
m
p1

-c
re
;C
dh

2f
/f

♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

8–
12

w
ee
ks

Fe
m
ur

3.
39

3
In
cr
ea
se
d

In
cr
ea
se
d

C
57

Bl
/6

20
16

(3
4
)

C
dk

1
O
sx
-C
re
;C
dk
1f
/f

♀
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Ve
rt
eb

ra
e

~
2.
01

8
In
cr
ea
se
d

N
o
ch
an

ge
C
57
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/6
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9S
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Ev
Ta
c

20
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(3
5
)
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ue
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e
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r
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H
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e
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g
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V

N
.O
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N
.O
c/
BS
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in

Ye
ar

Re
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re
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e

C
ox
2

Co
x2

�
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♂
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

20
–2

3
w
ee
ks

Fe
m
ur

1.
66

9
In
cr
ea
se
d

N
o
ch
an

ge
C
D
-1

(9
th

ge
ne

ra
tio

n)
20

10
(3
6
)

C
ox
2
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�
/�

♂
80

μg
/k
g/
da

y
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TH
(1
-3
4)

20
–2

3
w
ee
ks
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eb

ra
e

5.
68

8
N
D

N
D

C
D
-1

(9
th

ge
ne

ra
tio
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10
(3
6
)

C
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m

Cr
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�
/�

♂
16

0
μg

/k
g/
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y
hP

TH
(1
-3
4)

10
da

ys
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iP
TH

fr
om

11
–

12
w
ee
ks

Fe
m
ur

~
0.
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2
N
o
ch
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ge
In
cr
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d

12
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C
57
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/6

20
07

(3
7
)

C
x4
3

Cx
43

Δ
C
T/
fl
;D
M
P1
-8
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-C
re

♀
10

0
μg

/k
g/
da

y
hP

TH
(1
-3
4)

16
–1

8
w
ee
ks

Fe
m
ur

1.
15

4
N
D

N
D

C
57

Bl
/6

20
15

(3
8
)

D
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1

D
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1
TG
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.3
-k
b
ra
t
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lla
ge
n
ty
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Ia
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N
I

95
μg

/k
g/
da

y
hP

TH
(1
-3
4)

34
da

ys
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iP
TH

fr
om

12
–

14
w
ee
ks

Ti
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a

N
D

D
ec
re
as
ed

D
ec
re
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ed

C
57

Bl
/6

C
D
-1

20
11

(3
9
)

Eg
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Eg
fr
W
a
5
(im
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d
EG

FR
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gn
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♀
80

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Fe
m
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~
0.
70
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*

N
D

D
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ed

C
57
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/6
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(4
0
)
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�
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♂
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μg
/k
g/
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y
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4)
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ee
ks
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m
ur

0.
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7
D
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o
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k
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s
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9S
v
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(4
1
)
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�
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♀
80

μg
/k
g/
da

y
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TH
(1
-3
4)
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–6

4
w
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ks
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ur

0.
13

9
N
D

N
D
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k
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s

12
9S
v
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(4
1
)

Fg
f2

3.
6C
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FP
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g
;

Fg
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�
/�

♀
20

μg
/k
g/
da

y
PT

H
(1
-3
4)

12
w
ee
ks

(8
h)

Ti
bi
a

N
D

N
D

N
D

Bl
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k
Sw
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s

12
9S
v;
FV

B/
N

20
18

(4
2
)

Fg
f2
3
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3�

/�
N
I

10
0
μg

/k
g/
da

y
hP

TH
(1
-3
4)

8–
22

da
ys

Fe
m
ur

~
1.
07

7
N
o
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ge
N
D

C
57

Bl
/6
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9S
v
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(4
3
)
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3
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♂
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μg

/k
g/
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y
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TH
(1
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4)
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–2

0
w
ee
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Fe
m
ur

~
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3
D
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ea
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d

C
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(4
4
)
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3
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I
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μg

/k
g/
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y
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4)

8–
12

w
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ks
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m
ur

~
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81

4
N
D
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D
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)

G
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D
M
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H
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♀
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4)
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0.
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4
D
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(4
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)

G
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6

O
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♀♂
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μg
/k
g/
da

y
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4)
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Fe
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~
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5
N
D

N
D
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(4
7
)
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2
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G
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t
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O
G
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♀♂
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μg
/k
g/
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y
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(1
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4)
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0
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ra
e
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y
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)
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H
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A
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D
M
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♀
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0
μg
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y
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(1
-3
4)

(5
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ys
/w

ee
k)

8–
12

w
ee
ks

N
I

~
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1
N
D

N
D

C
57
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/6

20
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(5
0
)

H
D
A
C
5

H
D
A
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�
/�

♀
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0
μg

/k
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y
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(1
-3
4)
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/w

ee
k)

8–
12

w
ee
ks

N
I

~
2.
11

1
N
D

N
D

C
57

Bl
/6

20
16

(5
0
)

H
if-
1α

O
cn
-C
re
;H
if-
1α

f/
f

♀
20

μg
/k
g/
da

y
hP

TH
(1
-3
4)

10
–1

6
w
ee
ks

Fe
m
ur

~
1.
51

1
N
D

N
D

C
57

Bl
/6

20
14

(5
1
)

H
if-
1α

O
cn
-C
re
;H
if-
1α

f/
f

♀
40

μg
/k
g/
da

y
hP

TH
(1
-3
4)

10
–1

6
w
ee
ks

Fe
m
ur

~
1.
22

3
N
D

N
D

C
57

Bl
/6

20
14

(5
1
)

Ig
f-
1

Ig
f-
1�

/�
N
I

16
0
μg

/k
g/
da

y
hP

TH
(1
-3
4)

5–
6.
5

w
ee
ks

Fe
m
ur

N
D

N
D

N
D

N
I

20
01

(5
2
)

Ig
f-
1

B6
.C
3H

-6
T

♀
50

μg
/k
g/
da

y
hP

TH
(1
-3
4)

16
–2

0
w
ee
ks

Fe
m
ur

0.
70

4
N
D

N
D

C
57

Bl
/6

(1
0t
h
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ne

ra
tio

n)
20
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(5
3
)

Ig
f-
1

Ig
f1

fl
/fl
;A

lb
um

in
-C
re

♂
50

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks

Ve
rt
eb

ra
e

~
2.
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0
N
D

N
D

FV
B/
N
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57
BL

,
an

d
12

9S
v

20
06

(5
4
)
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f-
1

A
LS

�
/�

♂
50

μg
/k
g/
da

y
hP

TH
(1
-3
4)

(5
da

ys
/w

ee
k)

12
–1

6
w
ee
ks
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rt
eb

ra
e

~
�0
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00

N
D

N
D

C
57
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/6
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ra
tio

n)
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4
)
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f-
1
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A
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♂
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μg
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y
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ks
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ra
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D
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D
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N
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9S
v
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)
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1

H
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1
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♂
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μg
/k
g/
da
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6
w
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m
ur

~
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2
N
D

N
D
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N
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(5
5
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H
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♂
50

μg
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y
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6
w
ee
ks
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m
ur

~
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9
N
D

N
D
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B/
N
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10

(5
5
)
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F-
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O
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-C
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f-
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f

N
I

80
μg
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y
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t
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H
(1
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4
w
ee
ks
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a
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d
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m
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N
D

N
D

N
D
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N
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(5
6
)
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N
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d
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N
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N
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gration site (Wnt) family, bone morphogenetic protein (BMP)
family, insulin-like growth factor (IGF), and growth hormone
(GH), epidermal growth factor (EGF) family; and cell regulatory

factors including apoptotic, immunity, extracellular matrix
(ECM), cytoskeletal, and calcium regulation. The summation of
these data demonstrated the gene deletions with the greatest

FIGURE 2. Trabecular bone response inWTmice. (A–F) Trabecular bone volume is graphed for vehicle-treated (x axis) and PTH-treated (y axis)WTmice. Each plot
stratifies a different variable, including (A) sex, (B) bone site analyzed, (C) duration (days per week of treatment), (D) age at the start of treatment, (E) duration
(weeks of treatment), or (F) dose of treatment. Linear regression of the slope was analyzed for each group and compared within a variable. The p values are
reported in the charts under eachgraph, and correspond to the analysis between the column and rowheaders (i.e., in (A), the slope of the line formale and female
has a p-value of 0.0011). (G) Control trabecular bone volume inWTmice and the FC of trabecular bone volume in response to PTH inWTmice is plotted. The AIC is
a statistical predictor of error between two models, and was used to confirm an inverse exponential relationship between control bone volume and the FC in
bone volume with PTH in WT mice. Abbreviations: AIC, Akaike Information Criterion; PTH, parathyroid hormone; WT, wild-type; FC, fold change.
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FIGURE 3. FC of PTH-/control-treated trabecular bone volume per total volume per targeted gene model. The response to PTH treatment in gene tar-
getedmurinemodels was calculated using the bone volume FC inmutantmice relative to the FC of control treatedmice. The x axis lists the targeted gene.
Some genes are listed multiple times, each of which represents a different study or cohort of animals listed in Table 2. If there was no change between
control and genetically modified treated animals, the FC is 1, indicated by the marked line. Abbreviations: FC, fold change; PTH, parathyroid hormone.
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increase in response to iPTH. These included PTH and 1-α-
hydroxylase (Pth;1α(OH)ase, 62-fold)(70), amphiregulin (Areg,
15.8-fold),(17) and PTH-related protein (Pthrp, 10.2-fold).(14)

(Table 2). The deletions with the greatest inhibition of the ana-
bolic response include deletions of: proteoglycan 4 (Prg4,
�9.7-fold),(71) low-density lipoprotein receptor-related protein
6 (Lrp6, 1.3-fold),(64) and low-density lipoprotein receptor-related
protein 5 (Lrp5, �1.0-fold)(63) (Table 2). Several notable genes
demonstrated no alteration of the anabolic action of PTH, includ-
ing major histocompatibility complex II knockout mice (Mhc
II),(72) bone sialoprotein (Bsp),(28) and histone deacetylase
4 (Hdac4).(50) The models with the most study were insulin-like
growth factor-1 (Igf-1).(52-55)

By detailing comparisons between reported iPTH studies,
we are able to assimilate the role of different genes in the ana-
bolic response. For example, Table 2 shows that mice with
mutations in Igf-1 can range in their response to iPTH, with
bone volume fold changes relative to control mice from �0.3
-fold to 2.1-fold.(52-56) There has been long-standing interest
in this gene; it was the first genetic model to be studied with
iPTH in 2001 because of the increase in IGF-1 production from
osteoblasts in response to PTH.(52) A detailed analysis in the
Supplemental Material compares the study design, mouse
genetics, and conclusions of each report. These studies sup-
port a necessary role of IGF-1 in the anabolic response, as well
as downstream targets, such as insulin receptor substrate-1
(IRS-1).(59)

DISCUSSION

When mice are administered anabolic doses of PTH, signaling
cascades affect proliferation and development of osteoblasts.
There are many protein interactions and regulatory factors
involved in this process, and it is unsurprising that when they
are disrupted, the anabolic response does not achieve its full
potential. The purpose of this study was to further elucidate
PTH mechanisms by collectively analyzing the extensive work
performed using mouse models.

The anabolic response in wild-type mice was analyzed to
understand baseline differences and influences. Of the variables
analyzed, the greatest responses to iPTH were in male mice, with
treatment starting later than 12 weeks of age, a treatment dura-
tion lasting 5 to 6 weeks, and a PTH dose of 30 to 60 μg/kg/day.
This data should be used to inform future study design for effi-
cient use of resources. For example, based on the correlation
data, male and female mice should be analyzed separately when
treated with iPTH.

Collectively, the data suggests that starting treatment at greater
than 12 weeks of age yields the highest response to iPTH. Mice are
considered mature adults at this stage, but peak bone mass is
closer to 16 to 18 weeks. The murine skeleton continues to grow
past sexual maturity (about 7 weeks), whereas the human skeleton
does not. PTH is commonly prescribed in postmenopausal women,
and this populationwould bemore comparative tomice that are at
least 12 months old. Of themore than 130 cohorts ofmice studied,
only one was in this age range.(25)

Administering PTH for at least 5 days per week is sufficient to
yield an anabolic response. Although it is well documented that
whereas continuous PTH is catabolic, iPTH is anabolic,(73) this
analysis has focused on the anabolic studies. Frolik et al.(74) used
a rat model to determine that the pharmacokinetics of PTH(1-34)
varies with differing treatment regimens. They found giving the

same 80 μg/kg of PTH in a single injection or via six injections
over 1 h resulted in an anabolic response. However, administer-
ing the same 80 μg/kg of PTH over 6 or 8 h produced a catabolic
response. They associated the anabolic iPTH in a temporal man-
ner with the rapid increase in serum calcium, followed by
tapering.

Analyses for this examination focused on the tibias, femurs,
and vertebrae. Although studies analyzing calvariae are reported
in Table 2, there were not enough to include in the correlation
analysis. In humans, bone mineral density in postmenopausal
women that were randomly assigned to PTH or placebo showed
a larger percent change in the lumbar spine than femoral neck.(7)

Of note, this is comparing different outcomes (bone volume for
murine studies and bone mineral density for human), measured
by different variables, and in a quadrupedal versus a bipedal
species.

Relative to specific genetic aberrations that may inform PTH
mechanisms, several trends are apparent from this analysis of
more than 90 gene-targeted studies. Bone health and energy
metabolism are linked formulating a vital area of research inter-
est. Many clinical conditions are also linked to altered energy
expenditure, as reviewed by Motyl et al.(75) Among these tar-
geted murine models with the largest increases in anabolic
response to iPTH were AMP-activated protein kinase α1
(Ampkα1), hypoxia-inducible factor 1-alpha (Hif-1α), and
cyclooxygenase-2 (Cox2). Ampkα1 regulates energy consump-
tion in the cell, working to promote adenosine triphosphate
(ATP) conservation or expenditure depending on current condi-
tions.(76) Mice lacking Ampkα1 have a low bone mass with an
increased anabolic response to iPTH.(16) Hif-1α is referred to as
the master regulator of hypoxia because it is an oxygen-sensitive
subunit of the Hif-1 complex (with Hif-1β). When oxygen is not
present, Hif-1α is stabilized and translocated to the nucleus to
bind to hypoxia-response elements.(77) Cox2 has been identified
as a hypoxia responsive gene in colorectal cancer.(78) Authors of
the work with Cox2 and iPTH were interested in its role regulat-
ing prostaglandin production, but it is possible that part of the
effect of deleting this gene is affected by changes in energy
metabolism. When these genes are deleted, the responsiveness
to iPTH in bone is enhanced. Because these genes are activated
when the cell is under metabolic stress and their actions limit
the PTH response, it is conceivable that they allow the cell to
work at the capacity allowed by current energy conditions, lim-
ited by oxygen concentrations.

Ampkα1 and Hif-1α both regulate autophagy.(79,80) PTH pre-
vents osteoblast apoptosis, prolonging the life of these cells.(81)

It is also possible that in the absence of these genes, cell survival
is further enhanced, leading to an increased response to iPTH. A
presentation at the American Society for Bone and Mineral
Research Annual Meeting in 2019 further connected autophagy
and PTH mechanisms.(82) Using mice that had autophagy-
deficient osteoblasts (Fip200flox/flox; Osterix–cyclic recombinase
[Osx-cre]), Qi et al.(82) showed a blunted anabolic response.
Taken together, the evidence supports a relationship between
autophagy and iPTH.

Canonical Wnt signaling promotes osteoblast expansion and
function. Soluble ligands bind to the receptors (including LRPs)
that induce stabilization of β catenin (β-cat), allowing it to trans-
locate to the nucleus and alter gene expression.(83) In mice with
mutations in Lrp6 and β-cat, there were similar anabolic
responses to PTH (vertebrae and femur when β-cat deletion
was under control of dentin matrix acidic phosphoprotein
1 [DMP1], and in the vertebrae when under control of Osx). Other
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Wnt family member proteins have been studied with iPTH, and it
is clear that this pathway is critical for its anabolic effects in bone.
N-cadherin restrains Wnt signaling and bone formation in osteo-
blasts.(84) Interestingly, when the gene for N-cadherin, Cdh2, is
disrupted, the anabolic response to iPTH is increased. When both
positive and negative regulators of Wnts are affected, the
response to iPTH increases, suggesting anabolic PTH is sensitive
to slight changes in Wnts.

N-cadherin may affect PTH responsiveness through other
mechanisms as well. Expression of Cdh2 is increased with matu-
rity of osteoblasts and decreased expression is associated with
osteosarcoma.(85,86) N-cadherin mediates cell-to-cell adhesion,
highlighting the effect of interaction with the microenvironment
on osteoblasts. Mdx mice have a mutation in dystrophin, a pro-
tein that also helps osteoblasts interact with their environment
by connecting the cytoplasm to the extracellular matrix in a com-
plex. Disruption in dystrophin function increases the anabolic
response to iPTH. Both N-cadherin and dystrophin are affected
by calcium. N-cadherin is a calcium dependent glycoprotein,
whereas Mdx mice exhibit increased intracellular calcium
levels.(87) It is possible that these changes in calcium regulation
alter responsiveness to iPTH.

This work summarizes decades of work aimed to outline the
mechanisms of anabolic iPTH, with more studies surely forth-
coming. The reports described highlight the importance of many
cell types in the bone microenvironment. Signaling starts in the
osteoblast, depends on intracellular second messengers, and is
then affected by/affects microenvironmental cues and other
organ systems, formulating a complex and dynamic process that
results in bone formation and bone accrual. The insights from
the analysis of the pooled data provide better direction for future
experiments and appropriate interpretation.
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