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Abstract: The design of high–performance state estimators for future autonomous vehicles constitutes
a challenging task, because of the rising complexity and demand for operational safety. In this
application, a vehicle state observer with a focus on the estimation of the quantities position, yaw angle,
velocity, and yaw rate, which are necessary for a path following control for an autonomous vehicle,
is discussed. The synthesis of the vehicle’s observer model is a trade-off between modelling complexity
and performance. To cope with the vehicle still stand situations, the framework provides an automatic
event handling functionality. Moreover, by means of an efficient root search algorithm, map-based
information on the current road boundaries can be determined. An extended moving horizon state
estimation algorithm enables the incorporation of delayed low bandwidth Global Navigation Satellite
System (GNSS) measurements—including out of sequence measurements—as well as the possibility
to limit the vehicle position change through the knowledge of the road boundaries. Finally, different
moving horizon observer configurations are assessed in a comprehensive case study, which are
compared to a conventional extended Kalman filter. These rely on real-world experiment data from
vehicle testdrive experiments, which show very promising results for the proposed approach.

Keywords: automotive applications; nonlinear observer; Kalman filter; constrained estimation;
nonlinear gradient descent search; vehicle state estimation; moving horizon estimation; GNSS;
IMU; INS

1. Introduction

Many demanding mechatronic systems, like the German Aerospace Center’s (DLR’s) ROMO
(short for ROboMObil—DLR’s robotic electric vehicle) [1], employ state dependent nonlinear
optimization-based control (e.g., [2]), which needs an accurate knowledge of the system states.
Often, these states cannot be gathered directly through sensors, as an appropriate measurement
principle for the searched quantity is not available (e.g., determination of the state of charge of
a battery), or the sensor is expensive and therefore it is desirable to be economized (e.g., vehicle over
ground velocity sensing). Especially for future autonomous vehicles, it is necessary to determine an
accurate vehicle position so as to guarantee a reliable vehicle path/trajectory generation, and to follow
control functionality cf. [2–4].

Here, a novel nonlinear position estimator, relying on a moving horizon estimator approach,
which fuses inertial navigation system (INS) and Global Navigation Satellite System (GNSS) sensor data
based on a model-based observer framework [2] is proposed. This framework relies on multiphysical
prediction model design in Modelica [5], and an automated tool chain to incorporate these by means of
the Functional Mockup Interface (FMI) [6] technology, with well proven nonlinear Kalman filter-based
algorithms (cf. e.g., [2,7]).
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State of the Art in GNSS/INS Coupled Estimation

The topic of INS- and GNSS-based sensor fusion for different applications in ground or air vehicles
was a large scope in the research of the last decades. A quiet comprehensive overview of methods such as
dead reckoning can be found in the literature, for example, [8–10]. Moreover, in the literature [11], time
delayed sensor fusion for sigma point Kalman filters (SPKF) is presented. In this approach, the system
state is augmented with an N samples delayed state, and a cross correlation of the lagged measurement
with the covariance at tk−N and with the covariance of the actual time instance tk is performed. In the
literature [12], the inertial and magnetometer measurements are delayed to correspond with the GNSS
data, and then fused in an observer, resulting in delayed estimates. The current estimates are afterwards
calculated integrating the IMU data with the delayed estimates as the start values. Both approaches
try to incorporate the delayed information of the GNSS data with a postponed prediction [12] or
correction [11].

On the contrary, here, a methodology is proposed that incorporates all of the past, delayed data in
every estimation step by means of a nonlinear multiphysical vehicle prediction model and a real-time
capable nonlinear moving horizon estimation (MHE) algorithm. Additionally, the knowledge of the
road boundaries, for example, provided by a map system with a virtual horizon, are incorporated
so as to restrict the vehicle position within the carriage way. A different approach incorporating
a direct collocation technique in the MHE formulation was used for the estimation of an aircraft
trajectory in the literature [13]. On the contrary, in [14] a Gauss–Newton method was used to solve
the nonlinear least-squares problem of the MHE formulation of a Global Positioning System (GPS)
and dead reckoning integrated navigation system, by linearizing the optimization problem along the
previous state estimation in each iteration. Another method to compensate the missing data of the slow
sampled measurements in a (linear) MHE formulation with bounded measurement noise is proposed
by the authors of [15], by means of the introduction of prediction values in the missing data gaps.
The interested reader can find examples of the recent research advances in the development of new
moving horizon estimation techniques in the literature [16,17].

2. The Observer Setup–Problem Formulation of the MHE-Based GNSS/INS Fusion

In a realistic application with a consumer quality GPS sensor, a latency between 50–1000 ms [11,12]
is usually considered. This implies a drastic delay in comparison to other in-vehicle sensor systems,
for example, the inertial measurement unit (IMU). Here, this fact motivates the discussed observer
example with highly delayed measurements in a vehicle position estimation application.

For the experimental evaluation of the constrained state estimation of DLR’s ROboMObil, several
test campaigns were carried out at the ADAC (General German Automobile Club) vehicle testing
ground in Kempten, Germany. Here, tests of an advanced version of the interactive vehicle path
following control (PFC) [2,3] have been performed. In the top left of Figure 1, a portrait of the testing
track is shown. The green line depicts the preplanned vehicle path, while the road boundaries are
represented by the dotted-orange lines.

The ground-truth data was gathered with help of a differential GPS in order to guarantee high
fidelity vehicle state measurements for the experimental validation. In Figure 2, the situation of the
MHE estimator proposed here with delayed measurements is depicted. At the current time instance

tk, the estimator receives the measurements of the current vehicle yaw rate state (yk =
.
ψ

C
IMU) and

the delayed measurements (y∗k = pI
CGPS

=
{
xI

cGPS
, yI

cGPS

}
), which are delayed for nd samples, and thus

belong to the past vehicle state (xk−nd ). Later, it will be shown that the incorporation of these delayed
measurements in a conventional one-step estimation approach (i.e., a Kalman filter) leads to a poor
performance or even instability.
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Figure 1. Path following control (PFC) experiment with ROMO (short for ROboMObil—German 
Aerospace Center’s (DLR’s) robotic electric vehicle) at the General German Automobile Club’s 
(ADAC’s) test facilities in Kempten. 

 
Figure 2. Delayed Global Positioning System (GPS) measurements incorporation in vehicle position 
estimation. 

2.1. The Extended Single Track Prediction Model 

As the scope of the proposed observer (as implied in the introduction of this chapter) lies on the 
observation of the actual vehicle states, 𝒑େ౗ౙ౪୍ , 𝜓େ౗ౙ౪୍ , 𝒗ୟୡ୲େ ,  𝜓ሶ ୟୡ୲େ  for path following controllers in 
autonomous vehicles, as proposed by the authors of [2], an observer synthesis model reproduction 
depth has been chosen that meets the requirements of the computational efficiency and fidelity. An 
extended single track model (ESTM) was chosen for the forward driving operation mode 𝑣 ≥ 0, 
which incorporates vehicle standstill functionalities, rolling resistance, drag forces, and Pacejka’s Magic 
Formula [18] lateral characteristics of the tires. The following nomenclature is defined (cf. Figrue 3): 

 
• (∙)େ: Quantity expressed in the car coordinate system with origin in the center of gravity 
• (∙)େ: Car quantity expressed in the inertial coordinate system—short for (∙)େ୍ 

 

Figure 3. Vehicle dynamics quantities of the extended single track model. 
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Figure 1. Path following control (PFC) experiment with ROMO (short for ROboMObil—German
Aerospace Center’s (DLR’s) robotic electric vehicle) at the General German Automobile Club’s (ADAC’s)
test facilities in Kempten.
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Figure 2. Delayed Global Positioning System (GPS) measurements incorporation in vehicle
position estimation.

2.1. The Extended Single Track Prediction Model

As the scope of the proposed observer (as implied in the introduction of this section) lies on

the observation of the actual vehicle states, pI
Cact

,ψI
Cact

, vC
act,

.
ψ

C
act for path following controllers in

autonomous vehicles, as proposed by the authors of [2], an observer synthesis model reproduction
depth has been chosen that meets the requirements of the computational efficiency and fidelity.
An extended single track model (ESTM) was chosen for the forward driving operation mode v ≥ 0,
which incorporates vehicle standstill functionalities, rolling resistance, drag forces, and Pacejka’s Magic
Formula [18] lateral characteristics of the tires. The following nomenclature is defined (cf. Figure 3):

• (·)C: Quantity expressed in the car coordinate system with origin in the center of gravity

• (·)C: Car quantity expressed in the inertial coordinate system—short for (·)I
C
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Figure 3. Vehicle dynamics quantities of the extended single track model.
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The details of the extended single track model equation derivation are given in the Appendix A.
It is worth mentioning that with the Modelica modeling technology, it was easily possible to integrate
“if-else” constructs, which are efficiently processed by the event handling features of the compiler, while
experimenting with varying discretization methods and sample rates, as the model is in continuous-time
formulation. The vehicle state vector is denoted as follows, and is graphically exemplified in Figure 3:

xC =
{
βC, vC,

.
ψ

C
,ψC, xC, yC

}
(1)

2.2. Road Boundaries Constraint Formulation and Evaluation

In this section, a methodology is described for incorporating advance-known street boundaries
(e.g., from digital maps in combination with vision sensors) into the vehicle position estimation. It is
assumed that the initial vehicle position (pI

C) is sufficiently precisely known, and the corresponding path
parameter (s∗) (cf. Equation (2)) can be determined by means of a time independent path interpolation
(TIPI) [2,3], which is explained in the following.

Ideally, the actual path position and the position of the car coincide, pP(s
∗) = pC (cf. Figure 4).

To approximate this condition, it is necessary to minimize the displacement (e(s)) between the vehicle
and reference path, as depicted in the following:
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The geometrical interpretation of this minimization objective is that pP(s
∗) can be determined by

projecting pC orthogonally on the path pP(s). For the TIPI this condition implies that the inverse of the
maximal curvature of the demanded vehicle path defines the maximum lateral displacement for which
s∗ exists: eP

y(s∗) ≤ 1/κP(s∗).
s∗ = argmin

s
‖pP(s) − pC︸      ︷︷      ︸

e(s)

‖

2

(2)

The interested reader can find details on how this optimization problem is solved in the literature [3].
The parametric path λc(s) contains the following quantities for the calculation of the road

boundaries constraints: the position xI
P(s) and yI

P(s) of the road middle lane, the positions of the left
(lIx(s), lIy(s)) and the right (rI

x(s), rI
y(s)) border, and the corresponding path orientation ψI

P(s) and its
curvature κP(s).

The extension of the vehicle prediction model (cf. Appendix A) with the roadway boundaries
interpolation yields an extra state (

.
s), which is a non-physical state that belongs to the estimation task.

The experimental tests considering
.
s as an estimated state showed that this configuration leads to

unsatisfactory results in the overall observer performance. Therefore, this state is separated from the
state correction step in the Kalman algorithms (cf. Section 3.2).

In Figure 5, the calculation of the roadway border constraints is graphically shown. By means of
the above described algorithm, a path parameter (si) can be found for which the longitudinal derivation
error of the vehicle’s actual position (pI

C) tends to zero.
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Figure 5. Graphical analysis of the street boundary calculation.

By means of the path normal vector (nI
P(si)), represented in the inertial coordinate system

(Equation (2)), an inequality function c(x) ≤ 0 is calculated that penalizes the positions outside of the
roadway borders, as follows:

nI
P(si) =

{
− sin

(
ψI

P(si)
)
, cos

(
ψI

P(si)
)}

(3)

c(x) =

 −lIx(si) + xI
Cact

−lIy(si) + yI
Cact

rI
x(si) − xI

Cact
rI

y(si) − yI
Cact

 · nI
P(si) (4)

This nonlinear inequality function, c(x), can be handled directly by a posteriori constraint
projection method for an (extended) Kalman filter. Details on the simplified Newton descent search
algorithm used here are given in Appendix B. For the real-time capable moving horizon estimation
algorithm in Section 3. it is necessary to linearize c(x) at all of the time instances tk, where it is likely
that a constraint may be violated by the estimator c(xk) > −ε, as follows:

c(x) � c(xk) +
∂c
∂x

∣∣∣∣∣
xk

· (x− xk) (5)

By rearranging Equation (4), the linearized inequality description in Equation (5) can be formulated
as follows:

Ck · x ≤ dk
yields
→

∂c
∂x

∣∣∣∣∣
xk︸︷︷︸

Ck

· x ≤
∂c
∂x

∣∣∣∣∣
xk

· xk − c(xk)︸               ︷︷               ︸
dk

(6)

Figure 6 shows an example for the calculation of the nonlinear constraint function. In the left
plot, a street is marked with the left l(s) and the right r(s) street boundaries, while the car (red line
with direction arrows) crosses the right boundary in the hairpin curve. This leads to a violation of the
right border constraint condition c1(x) > 0, ∀ t ∈ [19.6 22.1] ∧ [29.4 30], as can be seen in the right plot
of Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 6 of 26 
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Assuming that only the vehicle yaw rate (
.
ψ

C
act) is available to the (extended) Kalman filter,

the position estimate would drift away, as shown in Figure 7 dark green line). Making use of the
proposed boundary estimation approach used here, in combination with the inequality handling
feature from the author of [2], yields a bounded and valid result (light green line), as follows:
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3. Real-Time Nonlinear Moving Horizon Estimation

In this section, a nonlinear moving horizon estimator (MHE), which utilizes multiple past
measurements to estimate the state at the current time instance, is introduced. In addition to the state
constraints, delayed measurements can be directly incorporated into the problem formulation.

Referring to the literature [19], the approach of the moving horizon estimation is the reformulation
of the general optimization objective of the Kalman filter theory, also known as the full-information
filter. In the nonlinear case, the minimization problem can be written as follows:

min
ξk
‖ x0 − x̂0 ‖

2
I+0

+
N∑

i=1
‖ ym

i − h(xi) ‖
2
R−1 +

N−1∑
i=0
‖ xi+1 − f(xi, ui) ‖

2
Q−1

ξk =
(
xT

0 , xT
1 , . . . , xT

N

)T
(7)

where in the nomenclature of min
x
‖e(x)‖W is denoted a with W, and is a weighted least squares

minimization problem of a function e with respect to x. The functions f and h are the nonlinear state

functions, resprectivley, of the model output equations. The matrix I+0 =
(
P+

0

)−1
and the vector x̂0

represent the initial guess values of the covariance and the system state. The matrix Q denotes the
covariance of the system states, and its entries constitute the confidence in the underlying prediction
model and can be tuned by the application engineer. The second tuning matrix R represents the
confidence in the actual measurements. The well-known Kalman filter algorithms (e.g., extended
Kalman filter (EKF) and unscented Kalman filter (UKF)) are special cases of this optimization objective,
in the case that only the measurements at the current time instance (tk) are available [19]. As the
dimension, N, of the optimization problem would grow tremendously with proceeding time, in MHE
theory, the time span is limited to a predefined length of previous time instances and is shifted in every
sample step.

Therefore, a sliding window with M steps back from the actual time instance (tk), is considered
to smooth the state estimation. In every sample step (Ts), this window is shifted one-step ahead—in
Figure 8 this is illustrated for one measurement variable, ym. At the filter initialization (t0), only one
measurement is available, and therefore the measurement storage must be filled with r < M steps
before the window starts to move. Afterwards, the window length is kept constant and all of the past
M measurements are taken into account (the window with M measurements is colored in green in the
subsequent figures). In other words, MHE can be seen as a real-time calculable approximation of the
full-information filter.



Sensors 2019, 19, 2276 7 of 26

Sensors 2019, 19, x FOR PEER REVIEW 7 of 26 

 

optimization objective, in the case that only the measurements at the current time instance (𝑡௞) are 
available [19]. As the dimension, 𝑁, of the optimization problem would grow tremendously with 
proceeding time, in MHE theory, the time span is limited to a predefined length of previous time 
instances and is shifted in every sample step. 

Therefore, a sliding window with 𝑀 steps back from the actual time instance (𝑡௞), is considered 
to smooth the state estimation. In every sample step (𝑇௦), this window is shifted one-step ahead—in 
Figure 8 this is illustrated for one measurement variable, 𝑦୫. At the filter initialization (𝑡଴), only one 
measurement is available, and therefore the measurement storage must be filled with 𝑟 < 𝑀 steps 
before the window starts to move. Afterwards, the window length is kept constant and all of the past 𝑀 measurements are taken into account (the window with 𝑀 measurements is colored in green in 
the subsequent figures). In other words, MHE can be seen as a real-time calculable approximation of 
the full-information filter. 

 
Figure 8. Schematic representation of a moving measurement window. 

In this way, the estimate gets more robust against external disturbances, delayed measurements 
can be incorporated (cf. Chapter 3.2.3), and also constraints can be imposed directly [19]. 

By means of the proposed estimation framework presented in [2], it is also possible to 
incorporate complex nonlinear Modelica-based prediction models to moving the horizon estimation. 
In the context of toolchains for observer code generation and nonlinear constraint MHE, different 
research studies were recently published that utilize the ACADO toolbox for embedded [20] and real-
time moving horizon estimation [21,22]. They make use of the real-time iteration (RTI) scheme 
transferred to the MHE approach in he literature [23]. The basic strategy is to discretize the estimation 
problem with a multiple shooting discretization using numerical integration. Then, the main idea of 
the RTI scheme is to use the shifted state variables of the previous optimization run as the new 
linearization point, and to perform only one SQP step per sample time [20]. 

In this work, the problem formulation in Equation (7) is extended for nonlinear systems 
incorporating linear state constraints, tailored to meet real-time application restrictions by means of 
a nonlinear gradient descent search. Details on the reasons for this approach are given in the 
following chapter. 

min𝝃ೖ   𝑔(𝝃௞ = (𝒙௞ିெ் , 𝒙௞ିெାଵ் , … , 𝒙௞்)்) s. t.  𝑨 ⋅ 𝝃௞ = 𝒃 𝑪 ⋅ 𝝃௞ ≤ 𝒅 
(8) 

𝑔(𝝃௞) = ∥ 𝒙௞ିெ − 𝒙ෝ௞ିெା ∥𝑰ೖషಾశଶ + ෍ ∥ 𝒚௜୫ − 𝒉(𝒙௜) ∥𝑹షభଶ௞
௜ୀ௞ିெ + ෍ ∥ 𝒙௜ − 𝒙୧୬୲,௜ ∥𝑸షభଶ௞

௜ୀ௞ିெାଵ  (9) 

𝒙୧୬୲,௞ିெ = 𝒙ෝ௞ିெା  𝒙୧୬୲,௜ =  𝒇௜|௜ିଵ൫𝒙୧୬୲,௜ିଵ, 𝒖௜ିଵ൯    (𝑖 = 𝑘 − 𝑀 + 1, … , 𝑘) 
(10) 

All of the system function evaluations were done by the FMI [6] (cf. also Chapter 3.2) and are 
marked in red in the following chapters. The optimization vector ( 𝝃௞ ) is assembled with 𝑀 

0 2 4 6 8 100
1
2
3
4
5

𝑡𝑘−𝑀−1 𝑡𝑘−𝑀  𝑡𝑘−1 
𝑡𝑘  

𝑦m  
Time [s]

Figure 8. Schematic representation of a moving measurement window.

In this way, the estimate gets more robust against external disturbances, delayed measurements
can be incorporated (cf. Section 3.2.3), and also constraints can be imposed directly [19].

By means of the proposed estimation framework presented in [2], it is also possible to incorporate
complex nonlinear Modelica-based prediction models to moving the horizon estimation. In the context
of toolchains for observer code generation and nonlinear constraint MHE, different research studies
were recently published that utilize the ACADO toolbox for embedded [20] and real-time moving
horizon estimation [21,22]. They make use of the real-time iteration (RTI) scheme transferred to the
MHE approach in he literature [23]. The basic strategy is to discretize the estimation problem with
a multiple shooting discretization using numerical integration. Then, the main idea of the RTI scheme
is to use the shifted state variables of the previous optimization run as the new linearization point, and
to perform only one SQP step per sample time [20].

In this work, the problem formulation in Equation (7) is extended for nonlinear systems
incorporating linear state constraints, tailored to meet real-time application restrictions by means
of a nonlinear gradient descent search. Details on the reasons for this approach are given in the
following section.

min
ξk

g(ξk=
(
xT

k−M, xT
k−M+1, . . . , xT

k

)T
)

s.t.A · ξk= b

C · ξk≤ d

(8)

g(ξk) =‖ xk−M − x̂+k−M ‖
2
I+k−M

+
k∑

i=k−M

‖ ym
i − h(xi) ‖

2
R−1 +

k∑
i=k−M+1

‖ xi − xint,i ‖
2
Q−1 (9)

xint,k−M = x̂+k−M
xint,i = fi|i−1(xint,i−1, ui−1)

(i = k−M + 1, . . . , k)
(10)

All of the system function evaluations were done by the FMI [6] (cf. also Section 3.2) and are
marked in red in the following section. The optimization vector (ξk) is assembled with M subsequent
discrete state vectors within the current estimation window. The optimization cost function g(ξk) in
Equation (9) is composed of the following three parts.

The first argument ‖ · ‖I+k−M
is the arrival cost, which summarizes all of the available information

prior to the estimation window; this can also be seen as a regulation term on the states at tk−M [21].
It is introduced so as to guarantee that the oldest estimation (xk−M) is coincident with the corrected
Kalman filter state estimation (x̂+k−M) weighted with the information matrix (I+k−M). Note that in every
moving horizon estimation step, a Kalman filter step from k −M− 1 to k −M is performed to fulfill
the Kalman state estimation theory—Equation (7). The information matrix, I+k−M, is calculated via the

inverse of the covariance matrix
(
P+

k−M

)−1
. As direct matrix inversion should be avoided, because of

the numerical stability and accuracy, the author proposes using a square root (SR)-UKF or SR-EKF
Kalman filter algorithm that uses square-root decomposition and rank 1 updates to propagate the
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covariance matrix in a lower triangular form, P = L ·U. The inverse of the lower triangular (L) can
be efficiently calculated by the LAPACK routine DTRTRI, and therefore, the propagated information
matrix results in I+k−M = L−1

· L.
The second argument, ‖ · ‖R−1 is the, over the time instances (k−M to M) summarized and with

R−1 weighted, difference between the available measurements ym
i and the output equations of the

underlying prediction model h(xi) as function of the states of the current optimization vector ξk.
Finally, the third argument, ‖ · ‖Q−1 , denotes the, over the time instances (k−M to M) summarized

and with Q−1 weighted, difference between the optimized states xi and the open loop integrated
prediction model states xint in Equation (10). xint is calculated only once per optimization step by
a simulation using x̂+k−M as start vector and ui as input vector.

In Figure 9, a qualitative graphical interpretation of the optimization problem for a scalar problem
with nx = ny = 1 is shown. The circle points of the quantities denote the particular values at
a discrete-time instance, which is evaluated in the objective function Equation (9).
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The complete algorithm is summarized in Algorithm 1. In the first step, all of the past measurements
are stored in a first in first out (FIFO) ring buffer. As long as not enough measurements for the complete
window M are available, the measurements and the model inputs are appended to the buffer.

Algorithm 1. Algorithm for a nonlinear MHE

Set k = 0 (k ∈ N+) and set xk = x0

while (brake==false) do
Fill ring buffer with measurements and system inputs:

if k < M then
append uk to u and ym

k to ym

else
left shift one entry of u and ym

and append uk respectively ym
k

end if
Optimize over stored measurement window (Equation (8)):

if k > M then
Propagate x̂+k−M−1 via a Kalman Filter step (e.g., EKF or UKF cf. 2):
xKF( x̂+k−M−1)→ x̂+k−M, I+k−M
Project states on the constrained area (c.f. Appendix B)
min

x
‖x− x̂+k−M‖ s.t. c(x) ≤ 0

end if
k = k + 1
end while
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3.1. A Nonlinear Gradient Descent Opimization Algorithm for MHE

For the solution of the proposed MHE problem formulation, Equation (8) to Equation (10),
a nonlinear gradient descent search algorithm (NG) was chosen, because for this solver, only
the first derivatives of the minimization objective (Equations (8)–(10)) are needed, which is an
important constraint for the available interfaces of the extended FMI 2.0 co-simulation interface
(see [2]—Section 4.2.2). Furthermore, linear equality and inequality constraints can be incorporated
easily, and the method can be stopped after every optimization step, still offering a reliable sub-optimal
solution. The latter is important if the optimization is not finalized at the next sample instant.
The algorithm of the constrained NG is given in Algorithm 2, for more details see, for example [24].
This gradient descent search algorithm is already successfully being used on a rapid-prototyping
real-time system. For example, it was employed—similar to the one proposed in this manuscript—in
previous research on path planning tasks [4]. This gradient descent optimization has been implemented
and successfully tested on a dSpace real-time control system with a sample time of 100 ms. The gradient
descent algorithm has a fixed number of maximum iterations so as to guarantee the real-time constraint.
Even if the global optimum is not found, the suboptimal solution will be better than the initial start
solution. Here, the implemented NG algorithm for the observer framework is tailored for the nonlinear
moving horizon estimator to meet the maximum flexibility in the calculation of the gradient, and the
objective function calculation. That is, it is possible for the user to modify the calculation in Modelica
with replaceable function pointers, without modifying the optimization algorithm itself. This will be
shown later in an example in Section 3.2.

Algorithm 2. Nonlinear gradient search algorithm for MHE

Set j = 0 ( j ∈ N+) and ξ0
k =

(
xT

int,k−M, . . . , xT
int,k

)T

while
∣∣∣∣g(ξ j

k

)
− g

(
ξ j+1

k

)∣∣∣∣ > 10 · ε do

if unconstrained then
r j = −∇g

(
ξ j

k

)
elseif constrained then

rpro, j = −P†(A) · ∇g
(
ξ j

k

)
rf, j = rpro, j −

(
Gpa,irpro, j

)
GT

pa,i
end if
Determine step size via line search: η j = argmin

0≤η
g
(
ξ j

k + η · r j
)

Optimization step: ξ j+1
k = ξ j

k + η jr j

j = j + 1
end while

In step 1 (line 1), an initial solution, ξ0
k , is needed. Well-proven strategies for its calculation are an

open loop integration of the prediction model from xk−M to xk, or a left shift of the last optimization
vector ξk−1 and appending an open loop integration from xk−1 to xk. In the unconstrained (lines 3–4)
case of the second step, the gradient ∇g

(
ξ j

k

)
of the descent direction can be directly calculated, as shown

in Algorithm 3.
Also, if equality constraints (lines 5–7) should be incorporated, A · ξ = b, the descent direction

must be projected on these by means of the Moore–Penrose pseudoinverse [25] rpro, j = P†(A) · ∇g
(
ξ j

k

)
.

In most of the MHE applications, this step can be neglected (i.e., P†(A) = I), as only inequality
constraints are of mayor interest in order to limit the boundaries of the states. To guarantee that the
descent direction does not violate the inequality constraints, a set of possible active constraints, Gpa,i,
in the null space of the linear constraints must be determined. The descent direction is projected on
the active constraints

(
Gpa,irpro, j

)
GT

pa,i. More algorithm implementation details can be found in the
literature [24].
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Algorithm 3. MHE calculation by means of functional mockup unit (FMU) evaluations

Define: R∗ =
(
R ·RT

)−1
and Q∗ =

(
Q ·QT

)−1

∇g1:n =
(
I+k−M + (I+k−M)

T
)(

xk−M − x̂+k−M

)
− 2 ∂h(xk−M)

∂xk−M

T
R∗

(
ym

k−M − h(xk−M)
)

for i = k−M + 1 to k do

∇g1+(i−k+M)·n:(i−k+M+1)·n =
∂g(ξk)
∂xi

= 2Q∗
(
xi − xint,i

)
− 2 ∂h(xi)

T

∂xi
R∗

(
ym

i − h(xi)
)

end for

In step 3 (line 9), an iterative free line search via quadratic approximation by a second order
Taylor series polynomial is performed (Equation (11)). Unfortunately, the derivatives of g

(
ξ j

k

)
must be

calculated via numerical differences, as the extended FMU 2.0 co-simulation interface only supports
directional derivatives with respect to the system states and inputs (see [6]—Section 2.1.9). Note that
the necessary determination of g

(
ξ j

k + ∆s
)

in the differential quotient causes only evaluations of the
algebraic output equations of the FMI (cf. Equation (9)), as the calculation of the initial guess xint,i is
only performed once in this approach.

g
(
ξ j

k + η · r j
)
≈ G(η)g

(
ξ j

k

)
+ g′

(
ξ j

k

)
η+

1
2

g′′
(
ξ j

k

)
η2

∂G(η)

∂η
!
= 0 = g′

(
ξ j

k

)
+ g′′

(
ξ j

k

)
η,

⇒ η j = −
g′

(
ξ j

k

)
g′′

(
ξ j

k

)
(11)

In step 4 (line 10), the actual optimization step, ξ j+1
k , is computed. Finally, in the last step,

it is checked whether the stop criterion has been reached. This can be, on the one hand, with a criterion

that controls whether the change in the last iteration, j, is small
∣∣∣∣g(ξ j

k

)
− g

(
ξ j+1

k

)∣∣∣∣ < 10 · ε, and, on the
other hand, a real-time constraint that stops the search in order to guarantee the cycle-time of the
real-time system. In this case, it is assumed that the initial guess (ξ0

k ), calculated by the high fidelity
Modelica model, has been already a valid suboptimal solution, and the iterations of the NG did further
improve it (cf. Algorithm 2), before the stop (ξ j

k).

3.2. Moving Horizon Estimation Algorithm Extensions

Here, for the analyzed ESTM MHE observer, different extensions are discussed, in comparison
to the nominal MHE algorithm formulation in Section 3. First, a computationally reliable method
is introduced for the calculation of the prediction model and the observer constraints, by means of
two multi-rate extended FMUs 2.0 for co-simulation (cf. [2,6,26]). It enables enlarging the sampling
time of the observer, inspite of the fact that the constraint calculation needs to be executed in a 50 times
faster sampling rate, which gives large benefits to the real-time capability. Second, advanced methods
for the coupling of discrete optimization variables are proposed. These enforce the physical coupling of
the discrete tuner states (ξk) to overcome an unrealistic solution of the state trajectory. Third, a heuristic
method is discussed to prevent optimization freezing through intelligent recalculation of the reference
trajectory (xint) in segments where no measurements are available.

3.2.1. Constraint Evaluation with a Multi-Rate FMU Model Splitting Concept

The first implementations of the constrained observer were based on a single prediction FMU that
combined the ESTM prediction model (Section 3) and the boundary constraint evaluation (Section 2.2).
To separate the estimated states from the state of the constraint evaluation (the path parameter s),
Modelica’s logical vector indexing feature was used. However, a simulation experiment analysis
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showed that in this configuration, it is necessary to run the whole estimator with a fast sampling
rate of Ts = 4 ms. This is due to the fast dynamics of the control loop to determine the current path
parameter (s) in the constraint calculation module (cf. Section 2.2). To overcome this issue, the ESTM
and the boundary constraint (BC) model were split into two separate FMUs with different sample
times (TESTM

s = 200 ms, TBC
s = 4 ms). The connection of the multi-rate FMUs and the estimation

algorithm are sketched in Figure 10. Through the model splitting, the states of the ESTM FMU

(x = {βC, vC,
.
ψ

C
,ψC, xC, yC}) are the inputs of the boundary constraints of FMU, which only has one

state, the corresponding path parameter s. The sample time of the constrained FMU is 50 times higher
than the one of the ESTM, so as to guarantee numerical stability. Z denotes the permutation matrix
between the inputs of the BC FMU and the states of the ESTM FMU.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 26 

 

The first implementations of the constrained observer were based on a single prediction FMU 
that combined the ESTM prediction model (Chapter 3) and the boundary constraint evaluation 
(Chapter 2.2). To separate the estimated states from the state of the constraint evaluation (the path 
parameter 𝑠 ), Modelica’s logical vector indexing feature was used. However, a simulation 
experiment analysis showed that in this configuration, it is necessary to run the whole estimator with 
a fast sampling rate of 𝑇௦ = 4 ms. This is due to the fast dynamics of the control loop to determine 
the current path parameter (𝑠) in the constraint calculation module (cf. Chapter 2.2). To overcome 
this issue, the ESTM and the boundary constraint (BC) model were split into two separate FMUs with 
different sample times (𝑇௦୉ୗ୘୑ =  200 ms,  𝑇௦୆େ = 4 ms). The connection of the multi-rate FMUs and 
the estimation algorithm are sketched in Figure 10. Through the model splitting, the states of the 
ESTM FMU (𝒙 =  {𝛽େ, 𝑣େ, 𝜓ሶ େ, 𝜓େ, 𝑥େ, 𝑦େ}) are the inputs of the boundary constraints of FMU, which 
only has one state, the corresponding path parameter 𝑠. The sample time of the constrained FMU is 50 times higher than the one of the ESTM, so as to guarantee numerical stability. 𝒁 denotes the 
permutation matrix between the inputs of the BC FMU and the states of the ESTM FMU. 

 
Figure 10. Two encapsulated multi-rate functional mockup units (FMUs) as one prediction model. 

With this implementation, all of the necessary quantities for the constrained MHE are nested 
within the multi-rate FMU block, whose interfaces to the outside (denoted with blue arrows) are the 
same as if no inner model separation was performed. This gives a large benefit in the matter of 
computational effort, not only caused by the larger integration step, but it also enables the possibility 
to calculate the constraint only if it is necessary for the estimation algorithm. This benefit is shown in 
the following simplified flow diagram of the extended MHE algorithm proposed here (see Figure 11). 
By means of a forward integration in step 1 from 𝑡௞ିெ to 𝑡௞, it is checked whether any constraint 
may be potentially activated (𝑐ୟ) and if so, the constraints are linearized along the open loop state 
trajectory. In step 2, the nonlinear gradient algorithm performs the optimization over the estimation 
window, incorporating the linearized constraints if necessary. In the last step, step 3, the Kalman 
filter is updated with the consideration of the system constraints to guarantee that the initial state of 
the moving window in the next iteration step lies within the feasible region. 

Qualitatively, the incorporation of the constraints is depicted in Figure 12. The feasible region of 
the constraint is limited through the function of 𝑐ଵ and 𝑐ଶ (orange-dotted). In this example, the state 
propagation of the Kalman filter (step 3) causes a violation of 𝑐ଶ, and therefore, the a posteriori 
propagated state must be constrained by a method (e.g., state constraint projection in Appendix B. 
The boundary constraints control (step 1) now starts with the corrected a posteriori estimate, 𝒙ෝ௞ିெାౙ౩౪౨, 
and detects a constraint violation between the third and fourth sample point. This is only possible as 
the BC model is integrated fifty times between every ESTM evaluation and correction step. To 
guarantee that the initial solution of the NG solver lies in the feasible region, the 𝒙୧୬୲ୡୱ୲୰ is limited via 
the simplified Newton descent search, as described in Appendix B. 

Moving horizon estimator algorithm

FMU 
ESTM

𝒙𝑘ESTM 𝒖𝑘−1BC

𝒄 𝑘 

superSample 

50 

𝑡0, 𝒙0 = {𝒙0ESTM , 𝑠0BC }, 𝒑 initial values 

𝑡𝑘  𝜕𝒉BC 𝜕𝒖BC Transformation: 𝒖𝑘−1BC = 𝒁 ⋅ 𝒙𝑘ESTM  𝒉 𝑘BC  

𝜕𝒄𝜕𝒙⁄  

FMU 
boundary

constraints

𝜕𝒇/𝜕𝒙 𝜕𝒉/𝜕𝒙
 

𝒙𝑘−1ESTM
𝒙 𝑘 

𝒖𝑘−1ESTM
Multi-rate FMUs

𝒚 𝑘 

Figure 10. Two encapsulated multi-rate functional mockup units (FMUs) as one prediction model.

With this implementation, all of the necessary quantities for the constrained MHE are nested
within the multi-rate FMU block, whose interfaces to the outside (denoted with blue arrows) are
the same as if no inner model separation was performed. This gives a large benefit in the matter of
computational effort, not only caused by the larger integration step, but it also enables the possibility
to calculate the constraint only if it is necessary for the estimation algorithm. This benefit is shown in
the following simplified flow diagram of the extended MHE algorithm proposed here (see Figure 11).
By means of a forward integration in step 1 from tk−M to tk, it is checked whether any constraint
may be potentially activated (ca) and if so, the constraints are linearized along the open loop state
trajectory. In step 2, the nonlinear gradient algorithm performs the optimization over the estimation
window, incorporating the linearized constraints if necessary. In the last step, step 3, the Kalman filter
is updated with the consideration of the system constraints to guarantee that the initial state of the
moving window in the next iteration step lies within the feasible region.

Qualitatively, the incorporation of the constraints is depicted in Figure 12. The feasible region of
the constraint is limited through the function of c1 and c2 (orange-dotted). In this example, the state
propagation of the Kalman filter (step 3) causes a violation of c2, and therefore, the a posteriori
propagated state must be constrained by a method (e.g., state constraint projection in Appendix B.
The boundary constraints control (step 1) now starts with the corrected a posteriori estimate, x̂+cstr

k−M , and
detects a constraint violation between the third and fourth sample point. This is only possible as the
BC model is integrated fifty times between every ESTM evaluation and correction step. To guarantee
that the initial solution of the NG solver lies in the feasible region, the xcstr

int is limited via the simplified
Newton descent search, as described in Appendix B.
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3.2.2. Multiple Shooting Inspired Optimization Objective Extension

In the original MHE problem formulation (Equation (8) to Equation (10)), the discrete system states

within the moving window ξk =
(
xT

k−M, xT
k−M+1, . . . , xT

k

)T
are not coupled with each other between

the sample points (tk). This implies that the optimization algorithm does not have any information
about the dynamic behavior of the ESTM prediction model between the sample points within the
estimation window. In the case of the ESTM, with a large sample time Ts = 200 ms, this may lead to
a physically unfeasible set ξk, which however minimizes the optimization criteria. A consideration to
overcome this weak point is the introduction of coupling penalty terms between the time instances in
the minimization criterion in Equations (9) and (10). Figure 13 exemplifies the approach developed
here, namely: the initial open loop integration from the time instance tk−M to the current time instance
tk is denoted as x0

int. The set of optimized state vectors ξ j
k in the j-th NG descent step (cf. Algorithm 2)

is marked with green circles.
The temporal evolution from these discrete states by means of the FMU yields a set of system

states xL
int,i denoted with a red circle, as follows:

xL
int,i = fi|i−1(xi−1, ui−1), (i = k−M, . . . , k) (12)

In the depicted qualitative example (cf. Figure 13), one can see, that through the evolution of the
optimization process a displacement xL

int,i , xp is caused in the j-th iteration step of the NG algorithm
(see Algorithm 2). To minimize this gap, the MHE optimization objective is changed to the following:
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g(ξk) =‖ xk−M − x̂+k−M ‖
2
I+k−M

+
∑k

i=k−M ‖ ym
i − h(xi) ‖

2
R−1

+
∑k

i=k−M+1 ‖ xi − xint,i ‖
2
Q−1

+
k∑

i=k−M

‖ xi − xL
int,i ‖

2
QMS︸                      ︷︷                      ︸

Additional penalty

(13)
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In comparison to the original formulation, the quality functional is extended with an additional
weighted least squares expression so as to enforce a stronger coupling of the piecewise integration
(xL

int,i) and the optimized stated vector (xi) by means of the user tunable weighting matrix (QMS).

Besides performing the integration (xL
int,i) by means of the FMU (Equation (12)), it is necessary

to approximate the integration rule for the gradient g(ξk) calculation. It is proposed that it is more
important to generate a good approximated descent direction for the optimizer than the exact
reproduction of the integration method xL

int,i used in the FMU.
In the simplest case, this is achieved by the consideration of the directional derivative at the past

instance (later called V1). In the second version (V2), the integrator is approximated as an Euler 1
integration rule. The last optimization variable coupling approximation is formulated by a trapezoid
integration rule (V3), as follows:

V2→ xL
E1,i = fi|i−1(xi−1, ui−1) ≈ xi−1 + fi−1 · Ts

V3→ xL
Tr,i = fi|i−1(xi−1, ui−1) ≈ xi−1 +

1
2 · (fi−1 + fi) · Ts

(14)

With these three versions, the complete extended MHE gradient computation is given in Algorithm
4. Comparing this gradient calculation to the original formulation in Algorithm 3, the main difference
is the additional “for loop” with the index j, in which the operator ± denotes that all of the values are
additively added to the existing entries from the earlier loop.
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Algorithm 4. Multiple shooting MHE gradient calculation

Define: R∗ = (R ·R)−1; Q∗ = (Q ·Q)−1; E = eye(n)
Define: i1(i) := 1 + (i− k + M)n : (i− k + M + 1)n

∇g1:n =
(
I+k−M + (I+k−M)

T
)(

xk−M − x̂+k−M

)
− 2 ∂h(xk−M)

∂xk−M

T
R∗

(
ym

k−M − h(xk−M)
)

for i = k−M + 1 to k do

∇gi1(i) =
∂g(ξk)
∂xi

= 2Q∗
(
xi − xint,i

)
− 2 ∂h(xi)

T

∂xi
R∗

(
ym

i − h(xi)
)

if version == V3 then

∇gi1(i)− =
(

1
2 · Ts ·

∂ fi
∂xi

)T
· 2 ·QMS ·

(
xi − xL

int,i

)
end if

end for
Define: j1( j) := 1 + ( j− k + M)n : ( j− k + M + 1)n
for j = k−M to k− 1 do

∇g j1( j)+ =
∂g(ξk)
∂x j

switch(version)
case V1:

∇g j1( j)+ = −
∂f j

∂x j
· 2 ·QMS ·

(
x j+1 − xL

int, j+1

)
case V2:

∇g j1( j)+ = −
(

1
2 · Ts ·

∂ f j

∂x j

)T
· 2 ·QMS ·

(
x j+1 − xL

int, j+1

)
case V3:

∇g j1( j)− =
(
E + 1

2 · Ts ·
∂f j

∂x j

)T
· 2 ·QMS ·

(
x j+1 − xL

int, j+1

)
end switch

end for

3.2.3. Multi-Rate, Triggered, or Delayed Measurements in MHE

For the nonlinear MHE approach of Section 3, it is proposed to keep the lagged sensor data
in a ring buffer, to interconnect them with past measurements of non-lagged sensors, and to index
the active sensors at the particular time instance. Comparing this with the formulation of Equation
(9), all of the expressions that are connected with the measured output (the middle part) have to be
calculated separately in each time step so as to incorporate the changing amount of available sensor
information at the dedicated time step.

g(ξk)= · · · +
k∑

i=k−M

‖ ym
i,a − ha(xi) ‖

2
R−1

k
+ · · ·

σra=
{
σri

∣∣∣i ∈ yk

}
Rk= diag(σra)

ha=
{
hi

∣∣∣i ∈ yk

}
ym

a =


ym

k−M,1 . . . ym
k,1

... . . .
...

ym
k−M,ny

. . . ym
k,ny



(15)

In Equation (15), all of the active measurements are denoted with an additional subscript ((·)a)
for the active sensors. In the construction of the active measurement matrix (ym

a ), the time-delays of
the single sensors are already considered. To cope with the varying dimensions in the optimization
problem, the implementation could utilize the vector indexing feature in the Modelica language.
The same technique is used in the Kalman filter propagation (cf. Algorithm 1) for the reduced
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indexed measurements. This procedure is valid according to the Kalman theory, and can be seen in an
analogy to sequential Kalman filtering (see [10] – Section 6.1). In these implementations, the matrix
vector notation of the Kalman filter algorithm is replaced by sequentially solving a scalar problem for
each measurement. Therefore, more sensor information can improve the estimation in the sense of
minimizing the covariance, P+

k−M. In the case that less sensor information is available, larger values of
det(P+

k−M) occur, but the validity of the Kalman theory still holds. In the same manner, the dimension
of the available measurements at tk−M for the calculation of the information matrix I+k−M and the initial
guess x̂+k−M also needs to be considered in the Kalman step.

3.2.4. Adaptive Initial Reference Refreshing for Delayed Measurements

In Section 3.2.3, a theory extension to MHE is given that enables the assignment of measurements
to their particular time instance by intelligent measurement storage and temporal activation indexing.
In Figure 14, the measurement signal ym

a is schematically sketched, which is only available at the time
instances highlighted with a yellow flash. For example, between time instances tk−M+1 and tk−M+3,
no new measurement information is available.
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Different algorithm experiments have shown that this may force the NG optimizer to tune the
variable ξk,3 towards the initial guess of the open loop state trajectory (xint). To overcome this very
conservative solution, a heuristic method is introduced in Equation (16) to refresh x j+1

int after the
optimization step (line 10 in Algorithm 2). It determines the gaps in the logical vector indexing
matrix of the active measurements ym

indexa
and integrates from the last time instance where all of the

measurements are available, as follows:

x j+1
int,i =


x0

int,i, ∀
{
i
∣∣∣∣(i ∈ ym

a

)
∧

(
i + 1 ∈ ym

a

)}
fi|i−1

(
ξ j

k,i−1, ui−1
)
, ∀

{
i
∣∣∣∣(i ∈ ym

a

)
∧

(
i + 1 < ym

a

)}
, (i = k−M, . . . , k)

fi|i−1

(
x j+1

int,i−1, ui−1
)
,∀

{
i
∣∣∣∣(i < ym

a

)
∧

(
i + 1 < ym

a

)} (16)

4. Experimental Results

The following experimental results rely on the test measurement data that were recorded during
the driving experiments using ROboMObil, as described in Section 2. Two real-time rapid prototyping
systems were used to record all of the variables from the wheel robot controllers as well as the senor
system of ROboMObil. The arrangement, shown in Figure 15, is designed to meet the robotics inspired
central control architecture with two synchronized rapid prototyping controllers (dSPACE MABX2
and ABX), which represent ROboMObil’s central control unit. The wheel robots with the traction
and steering drive torques (τ(ST),W), angular velocities (ω(ST),W), and steering angles (δW) quantities,
as well as the Correvit optical measurement unit (used to measure the vehicle’s longitudinal and
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lateral speed vC
act =

{
vC

actx
, vC

acty

}
), are connected via high-speed controller area network (CAN) busses.

The inertial measurement system with a differential corrected Global Navigation Satellite System

(GNSS) to measure the vehicle states, such as the positon pI
Cact

, yaw angle ψI
Cact

and yaw rate
.
ψ

I
Cact

, or

the velocity vC
act, is wired to the central control by an Ethernet bus. Additionally, the wheel (aW) and

chassis body (abody) accelerations, as well as wheel travel sensors (sW) are tethered via analog inputs.
Both the inertial measurement unit from Oxford Technical Solutions Ltd. (OxTS) measurement unit
and the optical odometry sensor are suited for the experimental evaluation of the driving experiments.Sensors 2019, 19, x FOR PEER REVIEW 16 of 26 
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II (embedded rapid prototyping real-time controller).

4.1. Observer Configuration

The preliminary observer case studies showed that with the modeling approach chosen here
(cf. Section 2.1), in combination with a Runge–Kutta 4 integrator, the vehicle position estimator can be

run with a cycle time of Ts = 200 ms. Moreover, the usage of the vehicle yaw rate (
.
ψ

C
) can actively

contribute to improve the measurement, whereas the incorporation of the vehicle lateral acceleration

(aC
y ) downgrades the observer performance. The output equation, aC

y = vC
· (

.
ψ

C
+

.
β

C
), shows clearly

that the lateral acceleration is algebraically cross-coupled to the vehicle yaw rate (
.
ψ

C
). In fact, this causes

the aforementioned observations, as it is, to the best knowledge of the author, impossible to find a
covariance configuration—even by optimization—which makes reasonable use of both the sensor
information and overcomes the negative effects of, for example, minimal jittering relative delays
between both signals.

In Figure 16, different simulation results of the same vehicle position estimator are given.
Again, the road boundaries are marked in a dotted-orange color. The vehicle completed three rounds
through the circuit. The red trajectory denotes the open loop result—the ESTM model is simulated
with the actual system inputs u—and the position is strongly drifting away from the planned trajectory,
caused by the evolving position integration error (compare equations for dxC/dt, dyC/dt—in Equation
(A1)). The green and the blue curves denote the results with a single step Kalman filter, under the
assumption that no delays are in the measurements.

The best observation results could be achieved by the use of a square root extended Kalman
filter (SR-EKF) algorithm (cf. e.g., [2]), whereas the square root unscented Kalman filter (SR-UKF)
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(cf. e.g., [2]) was less robust. The reason for this is the sigma point propagation through the Pacejka tire
model, which evidently leads to a wrong state propagation caused by its high sensitivity around the
actual state estimation point.
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4.2. Moving Horizon Estimation Algorithm Assessment

In this last subSection, the complete MHE ESTM algorithm with its extensions to couple the
optimization variables (cf. Section 3.2), refreshment of the initial guess, and efficient road boundary
constraint handling are demonstrated (cf. Figure 7). In Table 1, the outcome of a comprehensive
simulation case study is summarized. The window length has been set to M = 4 and the GPS time delay
varies between nd = 0 . . . 3 steps. All of the parameters for the respective observer configuration have
been optimized with the DLR multi-objective parameter synthesis (MOPS) optimizer framework [27]
to guarantee comparable results.

Table 1. Comparison of the vehicle position observer performance indicators. SR-EKF—square-root
extended Kalman filter; MHE—moving horizon estimation/estimator; MS—multiple shooting;
SS—single shooting.

Algorithm Tmean xCFit yCFit
ψCFit ψ̇C

Fit vC
Fit βC

Fit

nd = −
Open Loop 6.4 75.5 62.2 96.4 80.2 77.7 81.0

Open Loop Cstr. 6.4 87.7 87.5 96.4 80.2 77.7 81.0
nd = 0

SR-EKF
.
ψ

C
act

4.4 78.9 95.2 99.1 95.5 77.3 87.4

SR-EKF
.
ψ

C
act Cstr. 4.8 88.2 89.2 99.1 95.5 77.3 87.4

SR-EKF 6.4 97.9 97.2 99.2 93.3 82.4 85.2
MHE SS 67.2 97.3 96.5 99.4 95.5 83.1 81.3

MHE MS V1 46.4 98.5 97.8 99.3 86.9 86.4 80.4
nd = 1

MHE SS up 78.8 98.2 97.8 99.4 98.4 84.6 80.9
MHE MS up V1 93.6 98.3 97.8 99.4 86.8 85.3 81.0

nd = 2
MHE SS fix 77.6 98.4 97.8 99.2 98.9 85.9 80.1
MHE SS up 75.2 98.7 98.1 99.2 98.2 85.9 80.3

MHE MS up V1 61.6 98.8 98.2 99.3 86.9 86.4 80.4
MHE MS fix V2 64.8 98.5 98.1 99.2 86.3 86.7 80.0
MHE MS up V2 110.0 98.7 98.2 99.2 86.8 86.7 80.0
MHE MS fix V3 67.2 98.5 98.0 99.2 86.5 86.6 80.3
MHE MS up V3 136.8 98.7 98.3 99.2 86.6 86.6 80.3

nd = 3
MHE SS up 56.8 97.7 97.1 98.9 97.3 86.8 79.6

MHE MS up V1 79.6 97.7 97.1 99.1 87.9 87.3 80.1

The results in Table 1 are sorted with respect to the number of delayed samples (nd) of the GPS
signal. The results that differ tremendously (good or bad) in a group of the same number of delays are
highlighted in green or red, respectively. The first column denotes the used observer setup, in which
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the acronyms for SS (single shooting; standard formulation), MS (multiple shooting), fix (constant
initial guess), and up (anti optimization freezing) are used. The second column gives the average
execution time per estimation step Tmean in [ms] of the experiment executed on a standard 64-bit
Windows-based system (Intel i7-4600U 2,7 GHz, 8 GB Ram, SSD), and can be interpreted as a measure
for the increase of computational complexity in comparison to the improvement of the estimation.
It can be seen that even in the most computationally demanding configuration (MHE MS up V3
Tmean = 136.8 ms), the algorithm can be executed faster than in real-time (Tmean � Ts). In the third to
eighth columns, the percentage goodness of fit (normalized root mean square error between to time
series) in comparison to the reference measures of the experiment (cf. Section 2) are summarized.

The first two rows in Table 1 give reference of the ESTM without any observer correction, but in
the second row has the roadway constraint incorporation. The next two rows are the first results

using an observer that only incorporates the measured vehicle yaw rate (
.
ψ

C
act). Both still have a large

positional deviation, albeit the estimation of the vehicle yaw rate, and the angle and side slip angle are
improved in comparison with the open loop tests. The next section highlights three versions of the

ESTM observer, with all measurements
.
ψ

C
act, pI

Cact
available and not delayed. The best results can be

achieved with the multiple shooting objective V1. The following two experiments incorporate a delay
of one sample step.

Unfortunately, the SR-EKF algorithm could not be stabilized to give a feasible estimate for all
of the measures, especially the side slip angle (βC) is heavily oscillating (cf. Figure 17—bottom left).
Here, for the first time, the delayed measurement compensation in the MHE formulation can show its
advantage in the single shooting as well as in the multiple shooting objective formulations.
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Figure 17. Extended single track model (ESTM) square-root extended Kalman filter (SR-EKF) (nd = 1)
setup state estimations (red) vs. reference (black).

The section with nd = 2 is the largest section, which correlates to a delay of 400 ms. All of the
modifications introduced in Section 3.2 are tested here for their performance. Even though all of the
results are very close to each other, the multiple shooting V1 with reference updating gives the best
performance in positioning accuracy and computational reliability (cf. state plots in Figure 18).
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Figure 18. ESTM moving horizon estimation/estimator multiple shooting (MHE MS) up V1 (nd = 2)
state estimations (blue) vs. reference (black).
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In the last two rows of the simulation study, two configurations with nd = 3 are assessed.
The single shooting (see Figure 19) and multiple shooting do benefit from the proposed update
mechanism, and even if the GPS signal is delayed by 600 ms, the results are still reliable.Sensors 2019, 19, x FOR PEER REVIEW 19 of 26 
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Figure 19. ESTM MHE single shooting (SS) up (nd = 3): x–y position estimations results.

In total, it can be stated that the time delay incorporation in a MHE is very effective and gives
good stability, especially when the sample steps are large. The competitive SR-EKF algorithm failed
already with a delay of nd = 1, although its computational time is up to 20 times lower. The influence
of the extension of the objective function with multiple shooting penalties needs to be analyzed from
case to case, whereas the anti-freezing feature in the optimizer can be seen as a good improvement to
the solution at time instance tk (cf. Figure 20).
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Future investigations will be performed with methods other than the NG solver methods,
as recently proposed in the literature [28], which are capable of handling nonlinear (in-)equality
constraints in real-time. With this extension, it is likely that the multiple shooting approaches might be
even more effective.

5. Conclusions

The outcome of the ESTM MHE observer can be summarized as follows:

• A continuous-time Modelica vehicle model with event handling for vehicle standstill (cf. Section 2.1)
could be derived (see estimation experiment in Figure 21, starting from standstill and coming
back to standstill for about 20 s) and automatically discretized via Dymola, the extended FMU 2.0
for co-simulation technology and the model-based observer framework.

• The derivation of the roadway limit constraint has been designed by extending the principle of
the path interpolation introduced in Section 2.2.

• The nominal MHE algorithm of Section 3 was augmented with a multiple shooting formulation
in the objective function, a heuristic optimization freezing prevention, a multi-rate model,
and a constraint calculation splitting methodology.
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• For the experimental investigations, real test data from ROMO was selected, and additionally,
the GPS position measures were delayed for the experimental setup.

• All together with the technique for delayed measurements in the MHE application (Section 3.2.3),
a comprehensive simulative assessment with the different objective configuration and anti-freezing
features, as well as varying delays in comparison to a standard Kalman filter, have been given.

• The proposed estimation approach could achieve a position xC, yC estimate fit of about 98%,
and by mean of the delay compensation technique, this value is, even with a delay of nd = 3,
only reduced to about 97%. The estimate of the vehicle velocity is even 4% improved by the use of
the MHE technique in comparison to the EKF. The yaw angle estimate (ψC) quality for all of the

configurations is very high, whereas the yaw rate (
.
ψ

C
) and side slip angle (βC) do vary about 5%,

but still have reasonable estimates.
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Appendix A. The Extended Nonlinear Single Track Model Equations

The set of ordinary differential equations of the ordinary differential equation form

xC =
{
βC, vC,

.
ψ

C
, ψC, xC, yC

}
can be given as follows:

dβC

dt
=
− sin

(
βC

)
FC

x + cos
(
βC

)
FC

y

m · vC
mod

−
.
ψ

C

dvC

dt
=

cos
(
βC

)
FC

x + sin
(
βC

)
FC

y

m

d
.
ψ

C

dt
= MC

Z/JC
Z

dψC

dt
=

.
ψ

C

dxC

dt
= vC

· cos
(
ψC + βC

)
dyC

dt
= vC

· sin
(
ψC + βC

)

(A1)

The vehicle side slip (βC) is the angle between the vehicle origin coordinate system and the

actual vehicle velocity vector (vC). The yaw angle (ψC) and yaw angle rate (
.
ψ

C
) describe the rotation
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with respect to a fixed inertial system (xI, yI), in which the vehicle positions xC, yC are also expressed.
Additional quantities are the vehicle mass (m), the yaw moment around the center of gravity (MC

Z),
and the corresponding vehicle yaw inertia (JC

Z ). To prevent division by zero, the denominator of the

vehicle side slip state (
.
β

C
) is calculated by use of Equation (A2), which limits the minimum velocity to

vC
min (only valid for small values of vC

min).

vC
mod =

√
vC · vC + 4 · vC

min · v
C
min + vC

2
(A2)

The inputs to the model are the commanded torque set-points to the in-wheel motors and the per
axle averaged steering angles uC =

{
τW1 , τW2 , τW3 , τW4 , δW f , δWr

}
. The forces (marked blue in Figure 3)

to the vehicle body center of gravity are calculated by considering the geometric dependencies to the
instantaneous steering angles δ(·), as follows:

FC
x = − sin

(
δWf

)
FWf

s − sin
(
δWr

)
FWr

s + cos
(
δWf

)
FWf

l + cos
(
δWr

)
FWr

l − FC
Airx

FC
y = cos

(
δWf

)
FWf

s + cos
(
δWr

)
FWr

s + sin
(
δWf

)
FWf

l + sin
(
δWr

)
FWr

l − FC
Airy

MC
Z = lf · cos

(
δWf

)
FWf

s

−lr · cos
(
δWr

)
FWr

s + lf · sin
(
δWf

)
FWf

l
−lr · sin

(
δWr

)
FWr

l + eCoG · FC
Airy

FC
Airy

= 0.5 · cwy · ρ ·Ay · vC
Airy

2

(A3)

In this set of equations, F(·)
s denotes the wheel side forces and F(·)

l the corresponding longitudinal
forces. The distances from the center of gravity (CoG) to the rear and front wheels are given by l(·),
and the external longitudinal FC

Airx
and lateral FC

Airy
air drag forces are applied to the vehicle body.

The lateral forces of the tire are calculated by trigonometric functions based on Pacejka’s tire model [18],
whose input variable is the wheel’s side slip angle αW(·) , as follows:

FWf
s = D · sin

(
C · atan

(
B · αWf − E ·

(
B · αWf − atan

(
B · αWf

))))
FWr

s = D · sin
(
C · atan

(
B · αWr − E ·

(
B · αWr − atan

(
B · αWr

))))
αWf =

(
δWf

)
− atan

 vC
mod·sin(βC)+lf·

.
ψ

C

vC
mod·cos(βC)


αWr =

(
δWr

)
− atan

 vC
mod·sin(βC)−lr·

.
ψ

C

vC
mod·cos(βC)


(A4)

Herein, the factor B denotes the tire’s stiffness, C is an aspect ratio for the calculated force,
D the maximum value of the curve, and E is the modulus of bending rupture. For the longitudinal
tire dynamics, a simplified modeling without the consideration of the actual wheel slip was
used, as experiments in combination with observer algorithms yielded poor and unstable results,
and the vehicle’s acceleration range of the maneuvers considered here is limited, as follows:

FWf
L = τW1

R + τW2
R − frv ·

(
m·lr·g
lf+lr

)
FWr

L = τW3
R + τW4

R − frv ·

(
m·lf·g
lf+lr

) (A5)

Finally, the speed dependent rolling resistance ( frv( and the longitudinal air drag (FC
Airx

) are
calculated according to Equation (A6). By use of the “if-statement”, the vehicle is prevented from
rolling backwards in case of standstill on a planar surface, and no braking torque is applied, as follows:
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if vC > vC
min

frv = fR0 +
fR1·vC

mod
100 + fR4 ·

(
vC

mod
100

)4

FC
Airx

= 1
2 · cwx · ρ ·Ax · vC

Airx
2

else
frv = 0

FC
Airx

= 0
end

(A6)

In the following the result of the STM parameter, identification by means of a nonlinear model
based optimization is given (cf. Table A1). The derived model is implemented in Modelica and
later exported as an FMU for the observer, described in Section 3.2. For the optimization process,
the DLR Optimization Library [29] has been utilized. As a tuning algorithm, the pattern search method
was chosen. For training and validation, data real world experiments on vehicle test tracks with
ROboMObil have been used. ROMO’S ESTM optimized parameters are given in Table A1.

Table A1. ROMO’s ROboMObil’s—(German Aerospace Center’s (DLR’s) robotic electric vehicle)
extended single track model (ESTM) optimized parameters.

Parameter Value Description

fR0 0.009 First parameter of roll resistance
fR1 0.2811588 Second parameter of roll resistance
fR4 0.44906 Fourth parameter of roll resistance
B 5.1088547 Parameter of Pacjeka’s MF
C 2.0280 Parameter of Pacjeka’s MF
D 724.70 Parameter of Pacjeka’s MF
E 0.8903703 Parameter of Pacjeka’s MF

cwx 0.3 Longitudinal air drag coefficient
ρ 1.249512

[
N/m2

]
Air density

Ax 1.2323485
[
m2

]
Effective flow surface front

m 1013 [kg] ROboMObil mass
lf 1.218 [m] CoG to front wheel
lr 1.182 [m] CoG to rear wheel
R 0.3722 [m] Wheel radius
JC
Z 1130

[
kgm2

]
Chassis moment of yaw inertia

Appendix B. A Constraint Projection Method for Kalman Filters

In the literature [2], a survey on different methods for incorporating inequality constraints to
Kalman filter algorithms is given, and three methods for nonlinear Kalman filters that fit for constraints
of the type c(x) ≤ 0, which are neither contradictory nor redundant, and only one constraint is active
at the same time, are discussed. The algorithm applied here is based on a simplified Newton descent
search (i.e., without considering the second order derivative), which projects the a posteriori estimation
(x̂+k ) of a Kalman filter on the constrained surface. The optimization objective is formulated as follows:

x̂P
k = argmin

x
‖x− x̂+k ‖

s.t.c(x) <= 0
(A7)

The idea behind this algorithm is to perform a descent search along the gradient (∇c
(
x̂+k

)
) calculated

at the point x̂+k , until the constraint equation c
(
x̂P

k

)
≤ 0 holds again. Graphically this can be interpreted

as shown in Figure A1.
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This optimization task can be formulated with the method of Lagrange multipliers. Equation (A8)
denotes the above formulated optimization objective in a general description, as follows:

minL(x,µ) = f (x) − µ · (g(x) − d) (A8)

Therefore, the optimal solution of this unrestricted minimization problem is formulated as follows:

∇x,µL(x,µ) = 0 (A9)

This approach is now applied to the estimation projection optimization problem (Equation (A7))
and the searched restricted estimate (x̂P

k ) is calculated using the Lagrange multiplier (µ) and the gradient
of the active constraint (c(x)), as follows:

x̂P
k = x̂+k + µ · ∇c(x) s.t.c(x) = 0

c
(
x̂+k + µ · ∇c(x)

)
= 0

(A10)

To fulfill Equation (A10), the approach is expressed with a simplified Newton descent search
algorithm by means of a scalar zero search F(µ) = 0, with respect to the Lagrange variable µ, as follows:

∇c(x)≈ ∇c
(
x̂+k

)
yields
→ F(µ)= c

(
x̂+k + µ · ∇c

(
x̂+k

)) !
= 0

∂F
∂µ

= ∇c
(
x̂+k + µ · ∇c

)T
· ∇c

(
x̂+k

)
∂F
∂µ

∣∣∣∣∣
µ=0

= ∇c
(
x̂+k

)T
∇c

(
x̂+k

)
(A11)

This can be implemented as an iterative search algorithm, which determines µ such that the
condition F(µ) = 0 holds within a predefined maximum number of calculation steps. The pseudo
code for the algorithm is given in Algorithm A1.
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Algorithm A1. Simplified Newton descent search algorithm for constrained estimation projection.

1. Set µo = 0 and k = −1 and iter=1 and max_iter=30

Set α = (∇c(x̂+k )
T
· ∇c(x̂+k ))

−1

while

∣∣∣∣∣∣α · c
(
x̂+k + µk+1 · ∇c

(
^
x
+

k

))∣∣∣∣∣∣ ≥ εNewton and iter < max_iter do

k = k + 1
∆µk+1 = −α · c

(
x̂+k + µk · ∇c

(
x̂+k

))
µk+1 = µk + ∆µk+1
iter = iter + 1

end while
Solution: x̂P

k = x̂+k + µk+1 · ∇c
(
x̂+k

)
Appendix C. Lists of Symbols, Nomenclatures, and Abbreviations

Formula symbol Unit Description

βC [rad] Vehicle’s side slip angle
vC [m/s] Vehicle’s velocity over ground
.
ψ

C
[rad/s] Vehicle’s yaw rate

ψC [rad] Vehicle’s yaw angle
xC [m] Vehicle’s position in x direction
yC [m] Vehicle’s position in y direction

Nomenclature Explanation

e Lower case letter variable is a scalar
e Bold lower case letter variable is a vector
E Bold upper case letter variable is a matrix

e = {e1, e2}

= (e1, e2)
T

Equivalent vector notations

E =

[
e11 e12
e21 e22

]
Matrix notation

(·)Wx Quantity expressed in the x-th wheel robot coordinate system parallel to the car
coordinate system

(·)C Quantity expressed in the car coordinate system with origin in CoG

(·)P
C Car quantity expressed in the path coordinate system with origin in CoG

(·)C Car quantity expressed in the inertial coordinate system – short for (·)I
C

(·)P Quantity expressed in the path coordinate system

min
x
‖e(x)‖W
s.t.

With W weighted least squares minimization of function e with respect to x“subject to” if
the problem is restricted

Abbreviation Explanation

ABX AutoBox—rapid prototyping real-time controller from dSPACE GmbH

ACADO
Software environment and algorithm collection for automatic control and dynamic

optimization [20]
ADAC General German Automobile Club

BC Boundary constraint
CAN Controller area network—vehicle bus standard
CoG Center of gravity
DLR German Aerospace Center

Dymola Modelica simulator from Dassault Systèmes
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Abbreviation Explanation

EKF Extended Kalman filter
ESTM Extended single track model
FIFO First in first out (buffer)
FMI Functional mockup interface
FMU Functional mockup unit
GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial measurement unit
INS Inertial navigation system

LAPACK Linear algebra package

MABX2
MicroAutoBox II—embedded rapid prototyping real-time controller from dSPACE

GmbH
MHE Moving horizon estimation/estimator

Modelica Object oriented modeling language for multiphysical systems
NG Nonlinear gradient (descent search)

OxTS Inertial measurement unit from Oxford Technical Solutions Ltd.
PFC Path following control
QP Quadratic program

ROboMObil see ROMO
ROMO short for ROboMObil—DLR’s robotic electric vehicle

RTI Real-time iteration
SPKF Sigma point Kalman filter
SQP Sequential quadratic program
SR Square-root

SR-EKF Square-root extended Kalman filter
SR-UKF Square-root unscented Kalman filter

TIPI Time independent path interpolation
TM Traction motor

UKF Unscented Kalman filter
Wheel robot Wheel unit that integrates propulsion, steering, and brake c.f. [1]
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