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The success of immune checkpoint inhibitors (ICIs), notably anti-cytotoxic T lymphocyte
associated antigen-4 (CTLA-4) as well as inhibitors of CTLA-4, programmed death 1 (PD-
1), and programmed death ligand-1 (PD-L1), has revolutionized treatment options for solid
tumors. However, the lack of response to treatment, in terms of de novo or acquired
resistance, and immune related adverse events (IRAE) remain as hurdles. One
mechanisms to overcome the limitations of ICIs is to target other immune checkpoints
associated with tumor microenvironment. Immune checkpoints such as lymphocyte
activation gene-3 (LAG-3), T cell immunoglobulin and ITIM domain (TIGIT), T cell
immunoglobulin and mucin-domain containing-3 (TIM-3), V-domain immunoglobulin
suppressor of T cell activation (VISTA), B7 homolog 3 protein (B7-H3), inducible T cell
costimulatory (ICOS), and B and T lymphocyte attenuator (BTLA) are feasible and
promising options for treating solid tumors, and clinical trials are currently under active
investigation. This review aims to summarize the clinical aspects of the immune
checkpoints and introduce novel agents targeting these checkpoints.
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BACKGROUND

Cancer cells have characteristics that allow diversification and sustenance of their neoplastic state
(Hanahan and Weinberg, 2011). One of the hallmarks of cancer is immune evasion; cancer cells
hamper immune activation by limiting T cell activation and expressing immune checkpoint proteins
on T cells (Vinay et al., 2015). Blocking cytotoxic T lymphocyte associated antigen-4 (CTLA-4) and
the interaction between programmed death 1 (PD-1) and programmed death ligand-1 (PD-L1) elicit
activation of the host immune system through T cell responses (Pardoll, 2012). These findings have
led to the development of immune checkpoint inhibitors (ICIs) to control one of the key mechanisms
utilized by cancer cells (Pardoll, 2012). In 2011, ipilimumab, the first anti-CTLA-4 monoclonal
antibody (mAb), was approved for treating metastatic melanoma (Cameron et al., 2011). Thereafter,
anti-PD-1 mAbs such as pembrolizumab, nivolumab, cemiplimab and as well as anti-PD-L1 mAbs
such as atezolizumab, avelumab, durvalumab, have been used to treat patients with cancer, especially
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in locally advanced and metastatic settings (Qin et al., 2019;
Vaddepally et al., 2020). Besides PD-L1 expression, several
emerging biomarkers have gained wide attention (Darvin
et al., 2018). Pembrolizumab was approved in solid tumors
harboring microsatellite instability-high (MSI-H) or mismatch
repair deficient (dMMR), and high tumor mutation burden
(TMB-H) defined as ≥10 mutations/megabase based on
FoundationOneCDx assay (Foundation Medicine, Inc.)
(Marcus et al., 2019; Marabelle et al., 2020).

Despite the feasibility and anti-tumor activity of ICIs, there
remain several hurdles in immunotherapy for cancer. Only a
subset of patients respond to treatment, and the majority of
patients who have durable responses eventually experience
disease progression (Trebeschi et al., 2019). Furthermore,
patients experience IRAE, some of which are highly toxic
(Boutros et al., 2016; Wang et al., 2018). To overcome these
impediments, treatment strategies such as combination with
chemotherapy, targeted agents, or radiotherapy have been
implemented (Gandhi et al., 2018; Wang et al., 2018; Rini
et al., 2019). Notably, treatment with a combination of
different ICIs has resulted in increased clinical responses, as
observed with the combination of nivolumab and ipilimumab
in melanoma, non-small cell lung cancer (NSCLC), and renal cell
carcinoma (RCC) (Rizvi et al., 2016; Hellmann et al., 2018;
Motzer et al., 2018).

Promising results from the combination of anti-CTLA-4 and
PD-L1 mAbs have resulted in the launch of several other ICI
combinations with non-overlapping mechanisms of action that
may increase efficacy and minimize toxicity (Barbari et al., 2020).
Currently, approximately 2/3 of all oncology trials are dedicated
to T cell-targeting immunomodulators, and there are more than
3,000 ongoing clinical trials (Xin Yu et al., 2019).

Resistance to immunotherapy is associated with loss of
immunogenic neoantigens, increase of immunosuppressive
cells, and upregulation of alternate immune checkpoint
receptors (Sharma et al., 2017). This review provides an
overview of the mechanisms and ongoing clinical trials
specifically on novel emerging immune checkpoints, including
lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin
and ITIM domain (TIGIT), T cell immunoglobulin and mucin-
domain containing-3 (TIM-3), V-domain immunoglobulin
suppressor of T cell activation (VISTA), B7 homolog 3 protein
(B7-H3), inducible T cell costimulatory (ICOS), and B and T
lymphocyte attenuator (BTLA) (Chapoval et al., 2001; Monney
et al., 2002; Yu et al., 2009; Paulos and June, 2010; Wang et al.,
2011; Andrews et al., 2017; Marinelli et al., 2018).

LAG-3

LAG-3 is a protein comprising four parts—the hydrophobic,
extracellular, transmembrane, and cytoplasmic domains.
LAG-3 shares structural similarity with CD4 in having four
extracellular regions (Triebel et al., 1990; Huard et al., 1997).
It is expressed mainly on activated CD4+ and CD8+ T cells,
regulatory T cells (Tregs), and natural killer (NK) cells, as well as
on B cells and plasmacytoid dendritic cells (DCs) (Table 1)

(Huard et al., 1995; Andreae et al., 2002; Huang et al., 2004;
Kisielow et al., 2005). LAG-3 binds its canonical ligand, major
histocompatibility complex class II (MHC-II), as well as other
ligands, including galectin-3, LSECtin, α-synuclein, and
fibrinogen-like protein 1 (FGL1), thereby inducing exhaustion
of immune cells and decreased cytokine secretion (Baixeras et al.,
1992; Huard et al., 1994; Kouo et al., 2015; Anderson et al., 2016;
Baumeister et al., 2016; Mao et al., 2016; Wang et al., 2019).

LAG-3 was found to be simultaneously co-expressed with
other targets, such as PD-L1, TIGIT, and TIM-3, in preclinical
settings (Woo et al., 2012; Baumeister et al., 2016). Blocking LAG-
3 alone did not restore T cell exhaustion; however, the
combination of LAG-3/PD-1 blockade resulted in reduced
tumor volume (Woo et al., 2012). These findings were
consistent across in vivo studies using murine models of other
tumors, including melanoma, ovarian cancer, and lymphoma
(Goding et al., 2013; Huang et al., 2015).

In humans, LAG-3 is expressed on CD8+ tumor-infiltrating
lymphocytes (TILs) and peripheral Tregs (Camisaschi et al., 2010;
Matsuzaki et al., 2010; Li et al., 2013; Llosa et al., 2015; Taube
et al., 2015). CD8+ TILs isolated from tumors such as
hepatocellular carcinoma (HCC), melanoma, ovarian cancer,
and microsatellite instability high (MSI) colorectal cancer
(CRC), have high levels of both PD-1 and LAG-3 (Matsuzaki
et al., 2010; Li et al., 2013; Llosa et al., 2015; Taube et al., 2015).
Peripheral Tregs have been observed in melanoma and
CRC (Camisaschi et al., 2010). In patients with hormone
receptor-positive breast cancer, treated with immunotherapy,
soluble LAG-3 (sLAG-3) detected in the serum was
correlated with better prognosis in terms of disease-free
survival (DFS) and overall survival (OS) (Triebel et al., 2006).
However, the mechanism of sLAG-3 has yet to be identified (Li
et al., 2007).

Clinical Trials on LAG-3
Co-expression of LAG-3 with immune checkpoints, such as PD-
1, and robust clinical data on the efficacy of LAG-3 and PD-1
dual blockade have prompted trials focusing on this
combination as well as other immune checkpoint inhibitors.
Currently, there are 17 agents targeting LAG-3 (Table 2), with
multiple combinations of treatments across various tumors
(Table 3). Eight of these agents have interim or final clinical
results, and nine of the investigational agents are ongoing
clinical trials.

A phase 1 study of eftilagimod alpha (IMP321), an antigen-
presenting cell (APC) activator for LAG-3, in combination with
pembrolizumab was conducted in 24 patients with metastatic
melanoma (NCT02676869) (Atkinson et al., 2020). The primary
endpoints were the recommended phase 2 dose (RP2D), safety,
and tolerability of the combined agents. The study included
cohort A of dose escalation and cohort B of extension, and the
patients received subcutaneous pembrolizumab and eftilagimod
alpha bi-weekly at doses of 1, 6, or 30 mg for up to 6 and
12 months for Cohorts A and B, respectively. There was no
dose-limiting toxicity (DLT) and the treatment was well
tolerated, with the injection site as the most common adverse
event (AE). The response to treatment was encouraging, with an
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overall response rate (ORR) of 33 and 50% for pembrolizumab-
refractory cohort A and PD-1 naive cohort B patients,
respectively.

Similarly, the combination of eftilagimod alpha and
pembrolizumab has been investigated in NSCLC and head and
neck squamous cell carcinoma (HNSCC) (NCT03625323)
(Peguero et al., 2019). The AIPAC study, a placebo-controlled
randomized phase IIb study on eftilagimod alpha (or placebo)
with paclitaxel as the first-line treatment in patients with
metastatic breast cancer (MBC), is also under investigation
(NCT02614833) (Dirix and Triebel, 2019). Preliminary results
show that the agent could elicit durable immune responses.
Clinical data, including progression-free survival (PFS), ORR,
OS, and safety, are all awaiting results.

Relatlimab (BMS-986016), an IgG4mAb targeting LAG-3, has
been investigated in various settings and agents, notably with
well-established immune checkpoint inhibitors such as
nivolumab and ipilimumab and other novel agents such as
indoleamine 2,3-dioxygenase-1 (IDO1) inhibitors, CCR2/5
dual antagonist, and anti-TIGIT. Notably, clinical trials are
ongoing for phase II/III in previously untreated metastatic
melanoma, in combination with or without nivolumab
(NCT03470922), phase II of nivolumab and oxaliplatin-based
chemotherapy with or without relatlimab in GC or
gastroesophageal junction (GEJ) cancer (NCT03662659), and
phase II of relatlimab with nivolumab in mismatch repair
deficient (dMMR) cancers resistant to prior PD-1/PD-L1
inhibition (Lipson et al., 2018; Feeney et al., 2019; Bever et al.,

TABLE 1 | Overview of novel immune checkpoints.

Immune
checkpoints

LAG-3 TIGIT TIM-3 B7-H3 VISTA ICOS BTLA

Other names CD223 Vstm3, Vsig9,
WUCAM

HAVCR2 CD276 Dies1, DD1α,
Gi24, B7-H5,
PD-1H

CD278 CD272

Function Co-inhibition Co-inhibition Co-inhibition Co-inhibition or co-
stimulation

Co-inhibition Co-inhibition
or co-
stimulation

Co-inhibition or
co-stimulation

Cells that express
the immune
checkpoints

NK cells, DC, activated
T cells, Tregs, B cells,

NK cells,
T cells

NK cells, DCs,
activated T cells,
Tregs, B cells,
monocytes, cancer
cells

NK cells, DCs, activated
T cells, monocytes,
cancer cells

T cells,
myeloid cells

Activated
T cells

Mature T cells,
Tregs, B cells,
macrophages

Ligands or
receptors

MHC-II, galectin-3,
LSECtin, a-synuclein,
FGL1

CD155,
CD112

HMGB-1, galectin-
9, ceacam-1,
PtdSer

Unknown VSIG-3 ICOSL HVEM, LIGHT,
lymphotoxin-α

Immune
checkpoint
agents

APC activator, anti-LAG3
mAb, LAG3 and PD1DART
protein, LAG3 fusion
protein, bispecific Ab to
both LAG3 and PD-L1

Anti-
TIGIT mAb

Anti-TIM-3 mAb,
anti-PD-1/TIM3
bispecific Ab

Anti-B7-H3 mAb, B7-
H3-targeting ADC,
radiolabeled anti-B7-H3
mAb, CAR T-cell therapy

Anti-VISTA
mAb, small
molecule
VISTA

Anti-ICOS
agonist, anti-
ICOS
antagonist

No. of
investigational
agents

17 10 8 11 3 4 4

Clinical trials
Phase 1 Completed (eftilagimod

alpha, BI 754111, Sym022,
INCAGN02385), ongoing

Ongoing Completed
(Sym023), ongoing

Completed
(enoblituzumab),
ongoing

Completed
(CA-170),
ongoing

Ongoing Completed
(JTX-2011),
ongoing

Phase 2 Completed (eftilagimod
alpha, LAG525), ongoing

Ongoing Ongoing Ongoing NA NA NA

Phase 3 Ongoing (MGD013) Ongoing
(tiragolumab)

Ongoing
(sabatolimab)

Ongoing NA NA NA

Combination
treatment

Yes Yes Yes Yes No Yes Yes

Other immune
checkpoint
inhibitors

Yes Yes Yes Yes Yes Yes

Targeted agents Yes Yes Yes Yes Yes Yes
Chemotherapy Yes Yes Yes Yes Yes No
Radiotherapy Yes No No Yes No No

Abbreviations: APC, antigen presenting cell; BTLA, B and T-lymphocyte attenuator; CAR-T, chimeric antigen receptor T cell; DART, dual-affinity re-targeting proteins; DCs, dendritic
cells; Dies 1, differentiation of embryonic stem cells 1; HAVCR2, hepatitis A virus cellular receptor 2; HVEM, herpes-virus entry mediator; mAb, monoclonal antibody; ICOS, Inducible T cell
costimulator; ICOSL, Inducible T cell costimulatory ligand; LAG-3, lymphocyte-associated gene 3; NK cells, natural killer cells; PD-1H, PD-1 homologue; PD-L1, programmed death-ligand
1; PtdSer, phosphatidyl serine; T regs, ceacam-1, carcinoembryonic antigen cell adhesion molecule 1; T regs, regulatory T cells; TIGIT, T cell immunoglobulin and ITIM domain; TIM-3,
T-cell immunoglobulin and mucin domain-3; VISTA, V-domain immunoglobulin suppressor of T cell activation; VSIG-3, V-Set and Immunoglobulin domain containing 3; WUCAM,
Washington University cell adhesion molecule.
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TABLE 2 | Emerging immune checkpoint inhibitors and their mechanisms.

Target Name of agent Company Mechanism

LAG-3
Eftilagimod alpha (IMP321) Immutep APC activator
Relatlimab (BMS-986016) Bristol-Myers Squibb IgG4 mAb
LAG525 Norvatis IgG4 mAb
Cemiplimab (REGN3767) Regeneron mAb
BI 754111 Bohringer Ingelheim mAb
Sym022 Symphogen Fc-inert mAb
MGD013 MacroGenics LAG-3 and PD1 DART protein
Mavezelimab (MK-4280) Merck IgG4 mAb
TSR-033 Tesaro IgG4 mAb
INCAGN02385 Incyte Fc engineered IgG1k antibody
EOC202 EddingPharm Oncology LAG-3 fusion protein
89Zr-DFO-REGN3767 Memorial Sloan Kettering Cancer Center Anti-LAG-3 antibody labeled with 89Zr
XmAb®22,841 Xencor Bispecific antibody to both LAG3 and CTLA-4
LBL-007 Nanjing Leads Biolabs Co AlphaLAG-3 mAb

FS118 F-star Bispecific antibody to both LAG3 and PD-L1
RO7247669 Hoffmann-La Roche Bispecific antibody to both LAG3 and PD-L1
EMB-02 Shanghai EpimAb Biotherapeutics Bispecific antibody to both LAG3 and PD-L1

TIGIT
Tiragolumab (MTIG7192A/RG-6058) Genentech Anti-TIGIT mAb
Vibostolimab (MK-7684) Merck Anti-TIGIT mAb
Etigilimab (OMP-313M32) OncoMed Anti-TIGIT mAb
BMS-986207 Bristol-Myers Squibb Anti-TIGIT mAb
Domvanalimab (AB-154) Arcus Biosciences Anti-TIGIT mAb
ASP-8374 Potenza Anti-TIGIT mAb
IBI939 Innovent Biologics Anti-TIGIT mAb
BGB-A1217 BeiGene Anti-TIGIT mAb
COM902 Compugen Anti-TIGIT mAb
M6223 EMD Serono Anti-TIGIT mAb

TIM-3
Sym023 Symphogen Anti-TIM-3 mAb
LY3321367 Eli Lilly and Company Anti-TIM-3 mAb
Cobolimab (TSR-022) Tesaro Anti-TIM-3 mAb
Sabatolimab (MBG453) Novartis Anti-TIM-3 mAb
INCAGN2390 Incyte Anti-TIM-3 mAb
BMS-986258 Bristol-Myers Squibb Anti-TIM-3 mAb
SHR-1702 Jiangsu HengRui Anti-TIM-3 mAb
RO7121661 Roche Anti-PD-1/TIM-33 bispecific Ab

B7-H3
Enoblituzumab (MGA271) MacroGenetics Anti-B7-H3 mAb
DS-7300a Daiichi Sankyo B7-H3-targeting ADC
Orlotamab (MGD009) MacroGenetics B7-H3 and CD3 DART protein
131I-Omburtamab Y-mAbs Therapeutics Radiolabeled anti-B7-H3 mAb
124I-Omburtamab Y-mAbs Therapeutics Radiolabeled anti-B7-H3 mAb
177Lu-DTPA-Omburtamab Y-mAbs Therapeutics Radiolabeled anti-B7-H3 mAb
4SCAR-276 Shenzhen Geno-Immune Medical Institute CAR T-cell therapy
SCRI-CARB7H3 Seattle Children’s Hospital CAR T-cell therapy
B7-H3 CAR-T BoYuan RunSheng Pharma CAR T-cell therapy
CAR.B7-H3 UNC Lineberger Comprehensive Cancer Center CAR T-cell therapy
Second-generation 4-1BBζ B7H3-EGFRt-DHFR Seattle Children’s Hospital CAR T-cell therapy

VISTA
JNJ-61610588 Johnson & Johnson Anti-VISTA mAb
CI-8993 Curis Anti-VISTA mAb
CA-170 Curis Small molecule targeting VISTA and PD-L1

ICOS
GSK3359609 GlaxoSmithKline Anti-ICOS agonist
JTX-2011 Jounce Therapeutics Anti-ICOS agonist
MEDI-570 National Cancer Institute Anti-ICOS antagonist
KY1044 Kymab Limited Anti-ICOS antagonist

BTLA
INBRX-106 Inhibrx Hexavalent OX40 agonist Ab
PF-04518600 Pfizer OX40 agonist
Cudarolimab (IBI101) Innovent Biologics Anti-OX40 mAb
TAB004 (JS004) Shanghai Junshi Bioscience Anti-BTLA mAb

Abbreviations: ADC, antibody drug conjugate; APC, antigen-presenting cell; BTLA, B and T-lymphocyte attenuator; CAR, chimeric antigen receptor; CTLA-4, cytotoxic T-lymphocyte-
associated protein; DART, dual-affinity re-targeting proteins; ICOS, inducible T-cell costimulator; LAG3, lymphocyte-associated gene 3; mAb, monoclonal antibody; PD-L1, programmed
death-ligand 1; TIGIT, T cell immunoglobulin and ITIM domain; TIM, T-cell immunoglobulin and mucin domain-3; VISTA, V-domain immunoglobulin suppressor of T cell activation.
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2020). Relatlimab is being tested in a wide range of tumor types
and settings as front- or second-line treatment, in resectable
status, and in stage II/III.

An open label, phase 2 study including 72 patients treated with
LAG-525, which is an IgG4 mAb for LAG-3, and spartalizumab
(PDR001), an anti-PD-1, for advanced solid tumors and
hematologic malignancies showed promising activity, especially
in neuroendocrine tumors, small cell lung cancer (SCLC), and
diffuse large B-cell lymphoma (DLBCL), with a clinical benefit
rate at 24 weeks (CBR24) of 0.86, 0.27, and 0.804, respectively,
meeting its primary endpoint (NCT03365791) (Uboha et al.,
2019). In GEJ cancer, the CBR24 was 0.071, and enrollment
was stopped for these subsets of patients. Other tumors such as
triple-negative breast cancer (TNBC) (NCT03742349 and
NCT03499899) and melanoma (NCT03484923) are ongoing
trials in advanced and metastatic settings.

The preliminary results of a phase 1 study on cemiplimab
(REGN3767), an mAb for LAG-3, as monotherapy (n � 27), and
in combination with PD-1 mAb (n � 42) was conducted in
advanced malignancies (NCT03005782) (Papadopoulos et al.,
2019). No DLT was observed with in the monotherapy group,
whereas the combination group, during treatment with R3767
3 mg/kg every 3 weeks (Q3W) + cemiplimab 3 mg/kg Q3W,
experienced grade 4 elevated creatine phosphokinase levels in
addition to grade 3 myasthenia gravis. Overall, both treatments
were deemed tolerable; cemiplimab 20 mg/kg or 1600 mg as a
fixed dose of Q3W is ongoing further evaluation as monotherapy
and as a combination.

Similarly, BI 754111, an mAb for LAG-3, was also tested with
BI 754091 (anti-PD-1) in treatment-refractory solid tumors, in a
dose escalation phase 1 study, followed by an expansion phase in
microsatellite stable (MSS) CRC and anti-PD1/PD-L1 refractory
tumors including NSCLC (NCT03156114) (Johnson et al., 2020).
The primary endpoints for dose escalation and dose expansion
phase were DLT and the maximum tolerated dose (MTD) and
ORR, respectively. Biomarker analysis was performed in MSS
CRC refractory to immunotherapy; the patients who responded
to these agents with a partial response (PR) or stable disease (SD)
had increased treatment-associated IFN-γ gene signature scores
(Bendell et al., 2020). Furthermore, patients with high PD-L1
gene expression in pre-treatment biopsy samples responded
better to the treatment. Baseline immunohistochemistry of
LAG-3 was not a predictive factor for this subset of patients.

Sym022 (anti-LAG-3) was evaluated as a single agent or in
combination with sym021 (anti-PD-1) in phase 1 trials for solid
tumors or lymphomas (NCT03311412, NCT03489369, and
NCT03489343) (Lakhani et al., 2020). Interim analysis showed
that 15 patients who were administered monotherapy and 20
patients under combination treatment, had one unconfirmed PR.
Both treatment arms had tolerable safety profiles, with the
combination treatment showing one grade 3–4 immune-related
hypophysitis. Further assessments of the pharmacokinetic (PK)
and pharmacodynamic (PD) markers and the anti-tumor activity
of the monotherapy and combination are awaiting results.

MGD013 is a LAG-3 and PD-1 dual-affinity re-targeting
(DART) protein; its safety, tolerability, DLT, MTD, PK/PD,
and antitumor activity were analyzed in patients with

unresectable and metastatic tumors in a phase 1 study
(NCT03219268) (Luke et al., 2020). Fifty patients in the dose-
escalation phase and 157 patients in the dose-expansion phase,
with 46 and 32% of patients with prior exposure to
immunotherapy, respectively, were enrolled. No MTD was
reached, and the most common treatment-related adverse
events (TRAE), which were fatigue and nausea, were well
tolerated. Despite exposure to previous immunotherapy, both
cohorts included patients with objective responses. More mature
clinical data are awaiting results, and biomarker analysis of LAG-
3 and PD-L1 is ongoing.

Other agents that are undergoing clinical trials are: 1)
mavezelimab (MK-4280), an IgG4 mAb targeting LAG-3
(NCT03598608, NCT02720068, and NCT03516981); 2) TSR-
033, an IgG4 mAb targeting LAG-3 (NCT03250832); 3)
INCAGN02385, a Fc engineered IgG1k antibody for LAG-3
(NCT03538028, NCT04370704, and NCT03311412); 4)
EOC202, a LAG-3 fusion protein (NCT03600090); 5) 89Zr-
DFO-REGN3767, an anti-LAG-3 antibody labeled with 89Zr
(NCT04566978); 6) XmAb®22841, a bispecific antibody to
both LAG-3 and CTLA-4 (NCT03849469); 7) LBL-007, an
alphaLAG-3 mAb (NCT04640545), and 8) bispecific antibody
to both LAG-3 and PD-L1, which includes agents FS118
(NCT03440437), RO7247669 (NCT04140500), and EMB-02
(NCT04618393) treated as monotherapy or in combination for
patients with treatment refractory solid and/or hematologic
malignancies.

TIGIT

TIGIT, previously known as Vstm3, VSIG9, or Washington
University cell adhesion molecule (WUCAM), is a protein
comprising an extracellular IgV domain and an intracellular
domain with a canonical ITIM and an immunoglobulin
tyrosine tail (ITT) motif (Table 1) (Yu et al., 2009; Levin
et al., 2011). TIGIT expression is tightly restricted to
lymphocytes and is mainly observed in NK cells and T cell
subsets, including effector and regulatory CD4+ T cells,
follicular helper CD4+ T cells, and effector CD8+ T cells
(Boles et al., 2009; Yu et al., 2009; Lozano et al., 2012; Stengel
et al., 2012; Johnston et al., 2014; Joller et al., 2014). Three
ligands bind to TIGIT: 1) poliovirus receptor (PVR), also
known as CD155, Necl5, and Tage4; 2) CD112, also called
poliovirus receptor ligand2/nectin2 (PVRL2/nectin 2); and
3) PVRL3. PVR has a high affinity for TIGIT, whereas CD112
and PVRL3 bind to a lesser extent (Yu et al., 2009).

TIGIT plays multiple roles in the inhibition of cancer
immunity. TIGIT inhibits NK cell-mediated tumor killing,
induces immunosuppressive DCs, suppresses CD8 T cell
priming and differentiation, and prevents CD8 T cell-mediated
killing (Buisson and Triebel, 2005; Li et al., 2014; Fuhrman et al.,
2015; Kurtulus et al., 2015; Liu et al., 2015; Kourepini et al., 2016).
The interaction of TIGIT with other constituents of the tumor
microenvironments (TMEs), such as cancer-associated
fibroblasts and angiogenesis, remains to be elucidated (Manieri
et al., 2017).

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6813205

Lee et al. Immune Checkpoints in Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 3 | Clinical trials on novel immune checkpoint inhibitors.

Target Drug Clinical
trial no.

Phase Settings Tumor types Treatment arms Status

LAG-3 Eftilagimod alpha
(IMP321)

NCT03252938 1 Advanced/metastatic Solid tumors Eftilagimod alpha Active, not
recruiting

NCT00351949 1 Advanced/metastatic RCC Eftilagimod alpha Completed
NCT00349934 1 First line Breast cancer Eftilagimod alpha Completed
NCT02614833 2 Advanced/metastatic Breast cancer Eftilagimod alpha Active, not

recruiting
NCT00324623 1 Advanced/metastatic Melanoma Cyclophosphamide, fludarabine followed by melan-A VLP vaccine and

eftilagimod alpha
Completed

NCT00365937 1,2 Adjuvant Melanoma Eftilagimod alpha±HLA-A2 peptides Terminated
NCT01308294 1,2 Stage II-IV Melanoma Eftilagimod alpha+tumor antigenic peptides+monatide Terminated
NCT00732082 1 Advanced/metastatic Pancreatic cancer Eftilagimod alpha+gemcitabine Terminated
NCT02676869 1 Stage III-IV Melanoma Eftilagimod alpha+pembrolizumab Completed
NCT03625323 2 Advanced/metastatic NSCLC and HNSCC Eftilagimod alpha+pembrolizumab Recruiting

Relatlimab (BMS-986016) NCT02966548 1 Advanced/metastatic Solid tumors Relatlimab±nivolumab Recruiting
NCT01968109 1,2 First, second line Solid tumors Relatlimab±nivolumab Recruiting
NCT03623854 2 Advanced/metastatic Chordoma Relatlimab+nivolumab Recruiting
NCT03743766 2 Advanced/metastatic Melanoma Relatlimab+nivolumab Recruiting
NCT03470922 2,3 Advanced/metastatic Melanoma Relatlimab±nivolumab Recruiting
NCT03642067 2 Advanced/metastatic MSS CRC Relatlimab+nivolumab Recruiting
NCT04658147 1 Resectable HCC Relatlimab±nivolumab Not yet

recruiting
NCT02061761 1,2 Advanced/metastatic Hematologic malignancies Relatlimab+nivolumab Active, not

recruiting
NCT04567615 2 Advanced/metastatic HCC Relatlimab+nivolumab Not yet

recruiting
NCT03607890 2 Advanced, prior PD-(L)1

inhibitor
MSI-H solid tumors Relatlimab+nivolumab Recruiting

NCT04326257 2 Advanced, prior PD-(L)1
inhibitor

HNSCC Relatlimab+nivolumab or ipilimumab Recruiting

NCT03493932 1 Recurrent Glioblastoma Relatlimab+nivolumab Recruiting
NCT02658981 1 Recurrent Glioblastoma Relatlimab±nivolumab or urelumab (anti-CD137) Active, not

recruiting
NCT03610711 1,2 Advanced/metastatic GC, GEJ cancer Relatlimab±nivolumab Recruiting
NCT03044613 1 Stage II/III GC, GEJ cancer Nivolumab, carboplatin, paclitaxel, radiation±relatlimab Recruiting
NCT03662659 2 Advanced/metastatic GC, GEJ cancer Relatlimab or nivolumab±investigator’s choice of chemotherapy Active, not

recruiting
NCT03335540 1,2 Advanced/metastatic Solid tumors Relatlimab+nivolumab or cabiralizumab or ipilimumab or IDO1 inhibitor or

radiation therapy
Recruiting

NCT04611126 1,2 Advanced/metastatic Ovarian cancer Relatlimab, nivolumab, cyclophosphamide, fludarabine phosphate, tumor
infiltrating lymphocytes infusion ± ipilimumab

Not yet
recruiting

NCT02488759 1,2 Neoadjuvant and
metastatic

Virus-associated tumors Nivolumab±relatlimab or ipilimumab or daratumumab Active, not
recruiting

NCT02519322 2 Neoadjuvant and adjuvant Melanoma Nivolumab±relatlimab or ipilimumab Recruiting
NCT03459222 2 Advanced/metastatic Solid tumors Relatlimab, nivolumab±ipilimumab Recruiting
NCT02996110 2 Advanced/metastatic RCC Nivolumab+ipilimumab or BMS-986205 (IDO1i) or BMS-813160 (CCR2/5

dual antagonist)
Recruiting

NCT02935634 2 Advanced/metastatic GC, GEJ cancer Nivolumab±relatlimab or ipilimumab or rucaparib or BMS-986205;
ipilimumab+ucaparib; nivolumab+ipilimumab+rucaparib

Recruiting
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TABLE 3 | (Continued) Clinical trials on novel immune checkpoint inhibitors.

Target Drug Clinical
trial no.

Phase Settings Tumor types Treatment arms Status

NCT02750514 2 Advanced/metastatic NSCLC Nivolumab± relatlimab or ipilimumab or BMS-986205 or dasatinib Active, not
recruiting

NCT02060188 2 Advanced/metastatic CRC Nivolumab±relatimab or daratumumab or ipilimumab±cobimetinib Active, not
recruiting

NCT04150965 1,2 Advanced/metastatic Multiple myeloma Relatlimab±pomalidromide and dexamethasone; BMS-986207 (anti-
TIGIT)±pomalidromide and dexamethasone; elotuzumab

Recruiting

LAG525 NCT02460224 1,2 Advanced/metastatic Solid tumors LAG525±spartalizumab (PDR001) Active, not
recruiting

NCT03365791 2 Advanced/metastatic Solid or hematologic
malignancy

LAG525+spartalizumab Completed

NCT03742349 1 Advanced/metastatic TNBC LAG525+spartalizumab+NIR178 or capmatinib or lacnotuzumab
(MCS110) or canakinumab

Recruiting

NCT03499899 2 Advanced/metastatic TNBC LAG525±spartalizumab±carboplatin; LAG525+carboplatin Active, not
recruiting

NCT03484923 2 Advanced/metastatic Melanoma Spartalizumab+lag525 or ribociclib or canakinumab or capmatinib Recruiting
Cemiplimab (REGN3767) NCT03005782 1 Advanced/metastatic Solid tumors or lymphomas REGN3767±cemiplimab (REGN2810) Recruiting
BI 754111 NCT03433898 1 Advanced/metastatic Solid tumors BI 754111±BI 754091 (anti-PD-1) Recruiting

NCT03156114 1 Advanced/metastatic Solid tumors BI 754111+BI 754091 Active, not
recruiting

NCT03780725 1 Advanced/metastatic NSCLC and HNSCC BI 754111+BI 754091 Completed
NCT03697304 2 Advanced/metastatic Solid tumors BI 754111 or BI 836880 (bispecific VEGF and Ang2 Ab)+BI 754091 (anti-

PD-1)
Recruiting

NCT03964233 1 Advanced/metastatic Solid tumors BI 754111+BI 754091±BI 907828 (MDM2-p53 antagonist) Recruiting
Sym022 NCT03489369 1 Advanced/metastatic Solid tumors or lymphomas Completed
MGD013 NCT03219268 1 Advanced/metastatic Solid or hematologic

malignancy
MGD013+margetuximab (anti-HER2 monoclonal antibody) Recruiting

NCT04082364 2,3 Advanced/metastatic GC, GEJ cancer margetuximab+INCMGA00012 (anti-PD-1);
margetuximab+chemotherapy±MGD013 or INCMGA00012;
trastuzumab+chemotherapy (XELOX or mFOLFOX-6)

Recruiting

Mavezelimab (MK-4280) NCT03598608 1,2 Measurable disease Hematologic malignancies MK-4280+pembrolizumab Recruiting
NCT02720068 1 Advanced/metastatic Solid tumors MK4280+pembrolizumab±FOLFIRI or mFOLFOX7 or lenvatinib Recruiting
NCT03516981 2 First line NSCLC MK4280+pembrolizumab or lenvatinib or quavonlimab (MK-1308) Recruiting

TSR-033 NCT03250832 1 Advanced/metastatic Solid tumors TSR-033±dostarlimab (TSR-042)±mFOLFOX or FOLFIRI Recruiting
IN-CAGN02385 NCT03538028 1 Advanced/metastatic Solid tumors Completed

NCT04370704 1,2 Advanced/metastatic Solid tumors INCAGN02385+INCAGN02390 (Anti-TIM-3)±INCMGA00012 (anti-PD-1) Recruiting
NCT03311412 1 Advanced/metastatic Solid tumors or lymphomas Sym022+Sym021 (anti-PD-1)±Sym023 (anti-TIM-3) Recruiting

ECO202 NCT03600090 1 Advanced/metastatic Breast cancer ECO202+paclitaxel Recruiting
89Zr-DFO-REGN3767 NCT04566978 1 Measurable disease by

Lugano criteria
DLBCL Recruiting

XmAb®22,841 NCT03849469 1 Advanced/metastatic Solid tumors XmAb®22841±pembrolizumab Recruiting
LBL-007 NCT04640545 1 Advanced/metastatic Melanoma LBL-007+toripalimab (anti-PD-1) Not yet

recruiting
FS118 NCT03440437 1 Advanced/metastatic Solid or hematologic

malignancy
Active, not
recruiting

RO7247669 NCT04140500 1 Advanced/metastatic Solid tumors Recruiting
EMB-02 NCT04618393 1,2 Advanced/metastatic Solid tumors Not yet

recruiting
(Continued on following page)
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TABLE 3 | (Continued) Clinical trials on novel immune checkpoint inhibitors.

Target Drug Clinical
trial no.

Phase Settings Tumor types Treatment arms Status

TIGIT Tiragolumab
(MTIG7192A/RG-6058)

NCT02794571 1 Locally advanced or
metastatic

Solid tumors Tiragolumab±atezolizumab±chemotherapy Recruiting

NCT03563716 2 Locally advanced or
metastatic

NSCLC Atezolizumab±tiragolumab Active, not
recruiting

NCT04294810 3 Locally advanced or
metastatic

NSCLC Atezolizumab±tiragolumab Recruiting

NCT04256421 3 First line, extensive stage SCLC Atezolizumab+carboplatin+etoposide±tiragolumab Recruiting
NCT03281369 1,2 Advanced/metastatic Esophageal cancer Atezolizumab+tiragolumab; atezolizumab+cisplatin/5-FU±tiragolumab;

cisplatin/5-FU
Recruiting

GC, GEJ cancer Atezolizumab+cobimetinib with mFOFLOX6; atezolizumab+cobimetinib
or tiragolumab or mFOFLOX or linagliptin or PEGPH20 or BL-8040;
pactliaxel+ramucirumab

Recruiting

Vibostolimab (MK-7684) NCT02964013 1 Advanced/metastatic Solid tumors Vibostolimab±pembrolizumab+pemetrexed/carboplatin;
carboplatin+cisplatin+etoposide

Recruiting

NCT04305054 1,2 First line Melanoma pembrolizumab±vibostolimab or quavonlimab (MK-1308)±lenvatinib Recruiting
NCT04305041 1,2 Stage III-IV Melanoma pembrolizumab+quavonlimab+ vibostolimab or lenvatinib Recruiting
NCT04303169 1,2 Stage III Melanoma pembrolizumab±vibostolimab or V937 (oncolytic virus) Recruiting

Etigilimab (OMP-313M32) NCT03119428 1 Locally advanced or
metastatic

Solid tumors Etigilimab±nivolumab Terminated

BMS-986207 NCT02913313 1,2 Advanced/metastatic Solid tumors BMS-986207±nivolumab Active, not
recruiting

NCT04570839 1,2 Advanced/metastatic Solid tumors Nivolumab±BMS-986207 with COM701 (anti-PVRIG Ab) Recruiting
Domvanalimab (AB-154) NCT03628677 1 Advanced/metastatic Solid tumors Dombvanalimab+zimberelimab (AB122, anti-PD-1) Recruiting

NCT04262856 2 Locally advanced or
metastatic

NSCLC Zimberelimab±dombvanalimab±etrumadenant Recruiting

ASP-8374 NCT03945253 1 Advanced/metastatic Solid tumors Completed
NCT03260322 1 Advanced/metastatic Solid tumors ASP-8374±pembrolizumab Active, not

recruiting
IBI939 NCT04353830 1 Advanced/metastatic Solid tumors IBI939±sintilimab (anti-PD-1) Recruiting

NCT04672369 1 Advanced/metastatic NSCLC IBI939±sintilimab Not yet
recruiting

NCT04672356 1 Advanced/metastatic NSCLC and SCLC IBI939±sintilimab Not yet
recruiting

BGB-A1217 NCT04047862 1 Advanced/metastatic Solid tumors BGB-A1217+tiselizumab±chemotherapy Recruiting
COM902 NCT04354246 1 Advanced/metastatic Solid tumors Recruiting
M6223 NCT04457778 1 Advanced/metastatic Solid tumors M6223±bintrafusp alfa (M7824) Recruiting

TIM-3 Sym023 NCT03489343 1 Advanced/metastatic Solid tumors or lymphomas Completed
LY3321367 NCT03099109 1 Advanced/metastatic Solid tumors LY3300054 (anti-PD-L1)+LY3321367 Active, not

recruiting
NCT02791334 1 Advanced/metastatic Solid tumors LY3300054±LY3321367 or abemaciclib or ramucirumab or merestinib Active, not

recruiting
Cobolimab (TSR-022) NCT02817633 1 Advanced/metastatic Solid tumors Cobolimab±nivolumab or TSR-042±TSR-033±docetaxel Recruiting

NCT03307785 1 Advanced/metastatic Solid tumors Dostarlimab (TSR-042)±TSR-022+chemotherapya;
dostarlimab+bevacizumab±niraparib or chemotherapya

Active, not
recruiting

NCT03680508 2 BCLC stage B or C HCC Cobolimab+dostarlimab Recruiting
NCT04139902 2 Neoadjuvant Melanoma Cobolimab±dostarlimab Recruiting

Sabatolimab (MBG453) NCT02608268 1,2 Advanced/metastatic Solid tumors Sabatolimab±spartalizumab; decitabine Active, not
recruiting
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TABLE 3 | (Continued) Clinical trials on novel immune checkpoint inhibitors.

Target Drug Clinical
trial no.

Phase Settings Tumor types Treatment arms Status

NCT03961971 1 Advanced/metastatic GBM Sabatolimab+spartalizumab Recruiting
NCT04623216 1,2 Received one prior

aHSCT
AML Sabatolimab±azacitidine Not yet

recruiting
NCT03066648 1 Relapse/refractory AML or high risk MDS Sabatolimab±spartalizumab±decitabine Recruiting
NCT03940352 1 Relapse/refractory AML or high risk MDS HDM201 (p53-MDM2 inhibitor)+sabatolimab or venetoclax Recruiting
NCT03946670 2 IPSS-R intermediate, high,

or very high risk
MDS hypomethylating agents±sabatolimab Active, not

recruiting
NCT04266301 3 IPSS-R intermediate, high,

or very high risk for MDS
MDS or CML Sabatolimab+azacitidine Recruiting

INCAGN2390 NCT03652077 1 Advanced/metastatic Solid tumors Active, not
recruiting

BMS-986258 NCT03446040 1,2 Advanced/metastatic Solid tumors BMS-986258+nivolumab or rHuPH20 Recruiting
SHR-1702 NCT03871855 1 Advanced/metastatic Solid tumors SHR-1702±camrelizumab Unknown
RO7121661 NCT03708328 1 Advanced/metastatic Solid tumors Recruiting

B7-H3 Enoblituzumab (MGA271) NCT01391143 1 Advanced/metastatic Solid tumors Completed
NCT02982941 1 Advanced/metastatic Pediatric solid tumors Completed
NCT02923180 2 Localized intermediate

and high-risk
Prostate cancer Active, not

recruiting
NCT04634825 2 Advanced/metastatic HNSCC Enoblituzumab+retifanlimab (anti-PD-1 antibody) or tebotelimab (PD-1

and LAG-3 bispecific DART molecule)
Not yet
recruiting

NCT02381314 1 Advanced/metastatic Solid tumors Enoblituzumab+ipilimumab Completed
NCT02475213 1 Advanced/metastatic Solid tumors Enoblituzumab+pembrolizumab or retifanlimab Active, not

recruiting
NCT04129320 2,3 Advanced/metastatic HNSCC Enoblituzumab+retifanlimab or tebotelimab Withdrawn

DS-7300a NCT04145622 1,2 Advanced/metastatic Solid tumors Recruiting
Orlotamab (MGD009) NCT02628535 1 Advanced/metastatic solid tumors Terminated

NCT03406949 1 Advanced/metastatic Solid tumors Orlotamab+retifanlimab Active, not
recruiting

131I-Omburtamab NCT01099644 1 Peritoneal involvement DSRCT Active, not
recruiting

NCT00089245 1 Advanced/metastatic CNS or leptomeningeal
cancer

Active, not
recruiting

NCT03275402 2,3 Recurrent Neuroblastoma, CNS, or
leptomeningeal metastases

Recruiting

124I-Omburtamab NCT01502917 1 Prior external beam
radiotherapy

Gliomas 124I-Omburtamab+external beam radiotherapy (prior to study entry) Recruiting

177Lu-DTPA-
Omburtamab

NCT04167618 1,2 Recurrent Medulloblastoma Not yet
recruiting

NCT04315246 1,2 Advanced/metastatic Leptomeningeal metastasis
from solid tumors

Not yet
recruiting

4SCAR-276 NCT04432649 1 Advanced/metastatic Solid tumors Recruiting
SCRI-CARB7H3 NCT04185038 1 Advanced/metastatic Pediatric CNS tumors Recruiting
B7-H3 CAR-T NCT04385173 1 Recurrent GBM B7-H3 CAR-T+temozolomide Recruiting

NCT04077866 1,2 Recurrent GBM B7-H3 CAR-T±temozolomide Recruiting
CAR.B7-H3 NCT04670068 1 Advanced/metastatic Epithelial ovarian cancer B7-H3 CAR-T+fludarabine+cyclophosphamide Not yet

recruiting
Second generation 4-
1BBζB7H3-EGFRt-DHFR

NCT04483778 1 Recurrent Non-primary CNS solid
tumors

Second generation 4-1BBζ B7H3-EGFRt-DHFR±second generation 4-
1BBζ CD19-Her2tG

Recruiting
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TABLE 3 | (Continued) Clinical trials on novel immune checkpoint inhibitors.

Target Drug Clinical
trial no.

Phase Settings Tumor types Treatment arms Status

VISTA JNJ-61610588 NCT02671955 1 Advanced/metastatic Solid tumors Terminated
CI-8993 NCT04475523 1 Advanced/metastatic Solid tumors Recruiting
CA-170 NCT02812875 1 Advanced/metastatic Solid tumors or lymphomas Completed

ICOS GSK3359609 NCT04428333 1,2 Advanced/metastatic HNSCC GSK3359609±pembrolizumab+fluouracil-platinum based chemotherapy Recruiting
NCT04128696 3 Advanced/metastatic HNSCC GSK3359609+pembrolizumab Recruiting
NCT03693612 2 Advanced/metastatic Solid tumors GSK3359609+pembrolizumab; docetaxel+paclitaxel+cetuximab Recruiting

JTX-2011 NCT02904226 1,2 Advanced/metastatic Solid tumors JTX-2011+pembrolizumab or nivolumab or ipilimumab Completed
MEDI-570 NCT02520791 1 Advanced/metastatic Lymphoma Recruiting
KY1044 NCT03829501 1,2 Advanced/metastatic Solid tumors KY1044±atezolizumab Recruiting

BTLA INBRX-106 NCT04198766 1 Locally advanced or
metastatic

Solid tumors INBRX-106+pembrolizumab Recruiting

Cudarolimab (IBI101) NCT03758001 1 Advanced/metastatic Solid tumors Cudarolimab+sintilimab (anti-PD-1) Recruiting
PF-04518600 NCT02315066 1 Advanced/metastatic Solid tumors PF-04518600±utomilumab (PF-05082566, anti-TNFRSF9) Completed
TAB004 (JS004) NCT04137900 1 Advanced/metastatic Solid tumors or lymphomas Recruiting

NCT04278859 1 Advanced/metastatic Solid tumors Recruiting
NCT04477772 1 Advanced/metastatic Lymphoma Recruiting

Abbreviations: AML, acute myeloid leukemia; anti-PD-1, anti-programmed death-1; BCLC, Barcelona Clinic Liver Stage; BTLA, B and T-lymphocyte attenuator; CML, chronic myelogenous leukemia; CNS, central nervous system; CRC,
colorectal cancer; DART, dual-affinity re-targeting proteins; DLBCL, diffuse large B cell lymphoma; DSRCT, desmoplastic small round cell tumor; GBM, glioblastoma multiforme; GC, gastric cancer; GEJ, gastroesophageal junction cancer;
HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; ICOS, Inducible T cell costimulator; IDO1i, indoleamine 2,3-dioxygenase-1 inhibitor; IPSS-R, revised international prognostic scoring system; LAG3,
lymphocyte-associated gene 3; MDM2, mouse double minute 2 homolog; MDS, myelodysplastic syndrome; MSI-H, microsatellite instability-high; MSS, microsatellite stable; NSCLC, non-small cell lung cancer; PEGPH20, pegylated
recombinant human hyaluronidase; RCC, Renal cell carcinoma; rHuPH20, recombinant human hyaluronidase PH20 enzyme; SCLC, small cell lung carcinoma; TIGIT, T cell immunoglobulin and ITIM domain; TIM, T-cell immunoglobulin and
mucin domain-3; TNBC, triple negative breast cancer; TNFRSF9, tumor necrosis factor receptor superfamily member 9; VEGF, vascular endothelial growth factor; VISTA, V-domain immunoglobulin suppressor of T cell activation.
Regimens:mFOLFOX, oxaliplatin 85 mg/m2 intravenous (IV), leucovorin 400 mg/m2 IV, and fluorouracil 2400 mg/m2 IV over 46–48 h every 2 weeks (Q2W) FOLFIRI, irinotecan 180 mg/m2 IV, leucovorin 400 mg/m2 IV, and 5-FU 2400 mg/
m2 IV over 46–48 h (Q2W).
aChemotherapy: carboplatin/pemetrexed, carboplatin/nab-paclitaxel, or carboplatin/paclitaxel.
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Recently, several studies have highlighted that TIGIT is
co-expressed and associated with PD-1 expression (Johnston
et al., 2014; Chauvin et al., 2015). Dual blockade of TIGIT
and PD-1 resulted in the restoration of T-cell immunity in
preclinical settings and provided a rationale for combination
with these agents as a feasible anti-cancer therapeutic
strategy (Johnston et al., 2014; Kurtulus et al., 2015;
Zhang et al., 2018).

Clinical Trials on TIGIT
Among the 10 anti-TIGIT mAbs undergoing clinical trials, one of
the most promising agents is tiragolumab (GO30103) (Table 2).
In a randomized, double-blind, phase 2 trial, 135 treatment-naïve
patients with unresectable and metastatic NSCLC, positive for
PD-L1 expression, were treated with tiragolumab (or placebo) in
combination with atezolizumab (anti-PD-L1) (NCT03563716)
(Rodriguez-Abreu et al., 2020). Primary analysis of CITYSCAPE
showed that the result was significant and durable, especially in
patients with a PD-L1 tumor proportion score (TPS) ≥50% in the
tiragolumab and atezolizumab groups, with an ORR of 31.3 vs.
16.2% and median PFS of 5.4 and 3.6 months in the combination
treatment and atezolizumab monotherapy, respectively (hazard
ratio 0.57, 95% confidence interval [CI] 0.37–0.90). The
combination was well tolerated and had acceptable safety
profiles. The positive and robust results of this trial prompted
initiation of phase III in select patients with high PD-L1
expression (SKYSCRAPER-1, NCT04294810). Furthermore,
the combination was supplemented with chemotherapy in
chemotherapy-naive extensive stage SCLC (SKYSCRAPER-2,
NCT04256421). Phase 1 and 2 clinical trials on tiragolumab
are also ongoing for esophageal and gastric cancers
(NCT03281369) in metastatic settings.

Vibostolimab (MK-7684) is also an anti-TIGIT mAb. The
preliminary results of a phase 1 dose-finding study of vibostolimab
(200 or 210mg)with pembrolizumab (200mg) onday 1 of eachQ3W
cycle administered to patients with advanced/metastatic solid tumors
without prior anti-PD-1/PD-1, showed acceptable toxicity profiles
(NCT02964013) (Niu et al., 2020). The ORR and median PFS were
29% and 5.4months for all patients, and 46% and 8.4months for 13
patients with TPS ≥1%, respectively. The effects of vibostolimab are
also being investigated inmelanoma, in combinationwith other agents
(NCT04305054, NCT04305041, and NCT04303169).

Other anti-TIGIT mAbs under investigation include BMS-
986207 (NCT02913313 and NCT04570839), domvanalimab
(AB-154) (NCT03628677 and NCT04262856), ASP-8374
(NCT03945253 and NCT03260322), IBI939 (NCT04353830,
NCT04672369, and NCT04672356), BGB-A1217
(NCT04047862), COM902 (NCT04354246), and M6223
(NCT04457778) as monotherapy or in combination with other
agents in the treatment of refractory solid tumors. These agents
are being tested in phase 1/2 trials and the results are awaited.

TIM-3

TIM-3, previously known as hepatitis A virus cellular receptor 2
(HAVCR2), is a member of the TIM gene family, encoding

proteins such as TIM-1 and TIM-4 (Table 1) (Monney et al.,
2002). It is structured with type-1 cell surface glycoproteins, an
extracellular Ig variable region (IgV)-like domain, a mucin-like
and transmembrane domain, and an intracellular cytoplasmic tail
composed of five tyrosine residues (Monney et al., 2002). Once
the two tyrosine residues, Y265 and 272, are phosphorylated by
Src kinases or interleukin inducible T cell kinase, the downstream
signaling of TIM-3 is activated (van de Weyer et al., 2006;
Nagahara et al., 2008).

TIM-3 is expressed in tumor cells and immune cells, such as
helper T cells (Th1), IL-17-producing CD4+ effector cell lineage
(Th17), CD8+ T cells, Tregs, TILs, and innate immune cells
(Monney et al., 2002; Huang et al., 2010; Jan et al., 2011;
Anderson, 2012). Four ligands bind to TIM-3: two soluble
ligands, high-mobility group protein B1 (HMGB1) and
galectin-9, and two surface ligands, including
carcinoembryonic antigen cell adhesion molecule 1
(ceacam-1) and phosphatidyl serine (PtdSer) (Zhu et al.,
2005; Nakayama et al., 2009; Chiba et al., 2012; Huang
et al., 2015; Kang et al., 2015). Interaction of TIM-3 with its
ligands has been shown to induce T cell inhibition. TIM-3 is
unique compared to other immune checkpoints in that its
upregulation is initiated only by CD4+ and CD8+ cells that
produce IFN-γ (Sakuishi et al., 2010; Gao et al., 2012).

Similar to PD-L1, TIM-3 is expressed in TILs is associated
with disease progression in certain cancers (Ngiow et al.,
2011). Meta-analysis of TIM-3 overexpression in solid
tumors has shown that higher TIM-3 expression is
associated with worse OS and may potentially be a
prognostic marker (Zhang et al., 2017). Blocking TIM-3
expression results in T cell proliferation and cytokine
production, thereby eliciting immune activation (Gao
et al., 2012). In addition, targeting TIM-3 with PD-1 in
preclinical settings has shown a synergistic effect by
reinvigorating T cell function and increasing anti-tumor
immunity (Sakuishi et al., 2010; Koyama et al., 2016).
Thus, the dual blockade of PD-1 and TIM-3 is a feasible
and promising therapeutic option.

Clinical Trials on TIM-3
There are seven anti-TIM-3 mAbs and one anti-PD-1 and
TIM-3 bispecific Ab (RO7121661) undergoing clinical trials
(Table 2). Sym021 (anti-PD-1), sym022 (anti-LAG-3), and
sym023 (anti-TIM-3) were evaluated as single agents or
combinations in phase 1 trials for solid tumors or
lymphomas (NCT03311412, NCT03489369, and
NCT03489343) (Lakhani et al., 2020). Sym023 monotherapy
(n � 24) and in combination with Sym021 (n � 17) was
administered; however, Sym023 and its combination did not
reach their MTD. One patient in the monotherapy group had
grade 3–4 immune-mediated arthritis. Overall, monotherapy
and combination therapy were well tolerated, with two PRs
observed in the combination group.

LY3321367 is also an anti-TIM-3 mAb; an interim analysis of
a phase 1a/1b, dose-escalation and -expansion study showed that
intravenous infusion of 3–1200 mg LY3321367 Q2W
monotherapy (Arm A, 23 patients) or 70–1200 mg LY3321367
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+ 200–700 mg LY3300054 (anti-PD-L1) Q2W combination
therapy (Arm B, 18 patients) was well tolerated in the
treatment of refractory solid tumors; further, no DLT was
observed and most TRAEs observed were grade ≤2
(NCT03099109) (Harding et al., 2019). Two patients in arm A
showed >20% tumor reduction. Overall, there was no effect on
the pharmacokinetics, and the antidrug antibody titers were low;
thus, Eli Lily dropped the agent from its pipeline.

Other investigational agents targeting TIM-3 include
cobolimab (TSR-022), sabatolimab, INCAGN2390, BMS-
986258, SHR-1702, and RO7121661, which are currently
ongoing clinical trials. Cobolimab is administered in
combination with chemotherapy, targeted agents, or immune
checkpoints in solid tumors (NCT02817633, NCT03307785,
NCT03680508, and NCT04139902). Sabatolimab (MBG453) is
administered with other agents in solid tumors (NCT02608268
and NCT03961971) or in acute myeloid lymphoma (AML)
(NCT04623216), high-risk myelodysplastic syndrome (MDS)
(NCT03066648, NCT03940352, and NCT03946670), and
chronic myelogenous leukemia (CML) (NCT04266301). In
solid tumors, INCAGN2390 is administered as a monotherapy
(NCT03652077), BMS-986258 is administered in combination
with nivolumab or rHuPH20 (NCT03446040), SHR-1702 is
administered with or without camrelizumab, an anti-PD-1
agent (NCT03871855), and RO7121661, a TIM-3 bispecific
Ab, is administered as a monotherapy (NCT03708328).

B7-H3

B7-H3, also called CD276, is a member of the B7 family. It was
initially recognized as a co-stimulatory molecule that activates
T cells and IFN-γ production (Table 1) (Chapoval et al., 2001).
B7-H3 is found in activated immune cells such as antigen-
presenting cells (APCs), NK cells, T cells, and monocytes
(Janakiram et al., 2017). In addition, B7-H3 is expressed in
several tumors. Notably, high levels of B7-H3 expression in
NSCLC, RCC, CRC, and prostate cancer are correlated with
disease progression (Li et al., 2014; Jin et al., 2015; Benzon
et al., 2017; Mao et al., 2017). In NSCLC, B7-H3 with Tregs was
associated with poor prognosis, and co-expression of B7-H3
and CD14 was found to play a role in angiogenesis and tumor
progression in RCC (Li et al., 2014; Jin et al., 2015). Patients
with CRC, harboring B7-H3 and CD133 expression, have
shorter survival (Castellanos et al., 2017). Similarly, high
levels of B7-H3 are associated with higher Gleason grade,
advanced stage, and poor outcomes in prostate cancer
(Benzon et al., 2017).

Recently, the co-inhibitory function of B7-H3 in CD4+ and
CD8+ T cells was discovered (Suh et al., 2003; Prasad et al., 2004).
Studies are ongoing to identify the receptor for B7-H3, and the
contradictory roles of B7-H3 in immune activity are yet to be fully
elucidated (Yang et al., 2020). In addition to the immunological
aspects of B7-H3, other signaling pathways, including PI3K/AKT/
mTOR, JAK2/STAT3, and TLR4/NF-κB signaling, can activate B7-
H3 expression (Kang et al., 2015; Zhang et al., 2015; Xie et al., 2016;
Fan et al., 2017; Zhang et al., 2017). Other studies have highlighted

that B7-H3 is associated with resistance to chemotherapy and
targeted agents (Liu et al., 2011; Jiang et al., 2016; Flem-Karlsen
et al., 2017; Flem-Karlsen et al., 2019).

Clinical Trials on B7-H3
Eleven agents targeting B7-H3 are currently under investigation
in clinical trials (Table 2). Generally, patients harboring B7-H3
are enrolled in clinical trials. Enoblituzumab (MGA271), an anti-
B7-H3 mAb with antibody-dependent cellular toxicity (ADCC)
function, has been investigated in multiple solid tumors,
including pediatric tumors. Interim analysis of enoblituzumab
in refractory solid tumors revealed that it was well tolerated up to
15 mg/kg, with no DLT and MTD (Powderly et al., 2015).
Although TRAEs, such as fatigue (30%) and infusion-related
reactions (26%), occurred in 71% of the patients, most of these
AEs were tolerated with adequate supportive care
(NCT01391143). Enoblituzumab is currently being used as a
monotherapy or in combination with anti-PD-1 antibody
(retifanlimab or pembrolizumab), tebotelimab, a PD-1 and
LAG-3 bispecific DART, or ipilimumab, as shown in Table 3.

DS-7300a is a B7-H3-targeting antibody drug conjugate
(ADC) with DXd, a payload that is an exatecan derivative,
which inhibits topoisomerase I (Bendell et al., 2020). The
phase 1/II study is ongoing with patients enrolled in the dose-
escalation part (NCT04145622). Orlotamab (MGD009) is a B7-
H3 and CD3 DART protein, and its monotherapy
(NCT02628535) and combination with retifanlimab
(NCT03406949) are under investigation in heavily treated
solid tumors. Orlotamab with radioactive labeling such as
131I-Omburtamab (NCT01099644, NCT00089245, and
NCT03275402), 124I-Omburtamab (NCT01502917), and
177Lu-DTPA-Omburtamab (NCT04167618 and
NCT04315246) are also ongoing trials. In patients with
desmoplastic small round cell tumor (DSRCT), treatment with
131I-Omburtamab via intraperitoneal administration followed
by external beam intensity-modulated whole-abdominopelvic
radiotherapy (WAP-IMRT) to 3,000 cGy was tolerable with a
satisfactory safety profile, and appeared to demonstrate micro-
metastatic activity in a phase 1 trial (Modak et al., 2018). The
biodistribution, organ, and whole-body exposure were measured
with 124I-8H9-directed radioimmuno-PET, and the RP2D for
131I-Omburtamab was set at 80 mCi/m2.

Other investigational agents include chimeric antigen receptor
(CAR) T cell therapy targeting B7-H3: 4SCAR-276 in solid
tumors (NCT04432649), SCRI-CARB7H3 in pediatric CNS
tumors (NCT04185038), B7-H3 chimeric antigen receptor
T cells (CAR-T) treated alone (NCT04385173) or with
temozolamide (NCT04077866) in glioblastoma, CAR.B7-H3
with other agents in epithelial ovarian cancer (NCT04670068),
and second-generation 4-1BBζ B7H3-EGFRt-DHFR in non-
primary CNS solid tumors (NCT04483778).

VISTA

VISTA has several names such as differentiation of embryonic
stem cells 1 (Dies1), DD1 α, Gi24, and B7H5 (Table 1). (Ceeraz
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et al., 2013). Notably, it is also named PD-1 homologue (PD-
1H), as its extracellular domain shows structural similarity to
PD-1; however, it is different, as it lacks the classical ITIM or
ITSM motif in the cytoplasmic domain (Flies et al., 2011).
Furthermore, VISTA differs from PD-1, which functions in the
effector stage, as VISTA is expressed on resting T cells,
indicating its regulatory role in earlier stages (Kondo et al.,
2016). Compared to that in peripheral lymph nodes, VISTA is
more abundant in myeloid-derived suppressor cells (MDSCs)
in the tumor microenvironment (TME) (Le Mercier et al.,
2014).

High levels of VISTA are expressed by mature APCs with
CD11b, whereas relatively low expression is found on Tregs,
CD8+, CD4+, and TILs (Lines et al., 2014). Although the counter
structures for VISTA have not been comprehensively elucidated,
recent in vitro findings on V-Set and immunoglobulin domain
containing 3 (VSIG-3) have shown that VISTA also acts as a co-
inhibitory ligand on tumor cells (Wang et al., 2019). VISTA
promotes Treg maturation and prevents T cell activation
independent of PD-1 expression (Yoon et al., 2015; Torphy
et al., 2017; Popovic et al., 2018). The non-overlapping
mechanisms of VISTA and PD-L1 make their combination an
ideal treatment strategy to overcome immune suppression. In
mouse models, dual blockade of VISTA and PD-1, using
monoclonal antibodies specific for these immune checkpoints,
led to synergistic activity against T-cells with anti-tumor
responses (Liu et al., 2015).

A wide array of tumors has been studied to determine the
prognostic and predictive roles of VISTA. High-grade serous
ovarian cancer patients with tumor cells expressing VISTA
showed longer PFS and OS (Zong et al., 2020). Furthermore,
VISTA expression on TILs in pT1/2 esophageal
adenocarcinoma was associated with improved OS
compared to the TILs negative for VISTA (Loeser et al.,
2019). Similarly, VISTA+ and CD8+ TIL subtypes are
associated with better OS in HCC (Zhang et al., 2018).
Contrary to these findings, VISTA+ and CD8+ TIL subtypes
were associated with worse prognosis in oral squamous cell
carcinoma and cutaneous melanoma with VISTA expression,
whereas VISTA had no correlation with survival outcome in
GC expressing VISTA(Böger et al., 2017; Wu et al., 2017;
Kuklinski et al., 2018).

Clinical Trials on VISTA
Ongoing clinical trials on VISTA include two anti-VISTA
mAbs and one small-molecule antagonist of VISTA (Table 2).
JNJ-61610588 (NCT02671955) and CI-8993 (NCT04475523)
are anti-VISTA mAbs, currently under investigation in phase
1 trials for the treatment of refractory solid tumors. CA-170 is
a small molecule that targets both VISTA and PD-L1
(Musielak et al., 2019). A phase 1 study in patients with
advanced solid tumors or lymphomas showed no DLT during
dose escalation in 19 patients treated across six dose levels
(50–800 mg) (NCT02812875) (Powderly et al., 2017).
Exploratory analysis showed an increased proportion of
both circulating CD8+ and CD4+ cells after oral dosing
with CA-170. Further data on dose escalation, the

recommended phase 2 dose, and anti-tumor responses are
awaiting results.

ICOS

ICOS, also known as cluster of differentiation 278 (CD278) in
T cells, is a member of the CD28 coreceptor family, which
includes costimulatory CD28 and coinhibitory receptor
CTLA-4 (Table 1) (Hutloff et al., 1999). The ICOS ligand
(ICOSL) is expressed in APCs such as macrophages, DCs, and
B cells (Yoshinaga et al., 1999). In contrast to the expression of
CD28 in both naive and memory T cells, the majority of ICOS
is expressed only after the activation of memory T cells, with
only small fractions expressed in resting memory T cells.
Further, unlike CD28 and CTLA-4 ligands, which are
expressed primarily on lymphoid tissues, ICOSL is
expressed in non-lymphoid cells, such as endothelial cells,
epithelial cells, mesenchymal cells, and fibroblasts, via the
activation of tumor necrosis factor-α (Swallow et al., 1999;
Khayyamian et al., 2002; Martin-Orozco et al., 2010).
Activation of the ICOS pathway induces the production of
cytokines, such as IL-4, IL-10, and IL-21, by CD4+ Th cells,
CD4+ forkhead box P3 (FoxP3+) Tregs, and CD8+ cytotoxic T
lymphocytes (CTL) (Hutloff et al., 1999; Gigoux et al., 2009;
Solinas et al., 2020). ICOS interacts with its ligand (ICOSL) to
increase anti-tumor effects via the regulation of memory and
effector T cell development and humoral immune responses
(Marinelli et al., 2018). The rationale for targeting the ICOS/
ICOSL axis with agonists and antagonists is its capacity to
trigger both anti-tumor T cell responses by Th1 and other
effector T cells, as well as its protumor responses via Tregs
(Solinas et al., 2020).

In preclinical studies, ICOS expression on FoxP3+ Tregs and
other Th subsets has been identified in multiple arrays of solid
tumors, including melanoma, gastric, colorectal, and breast
cancers (Strauss et al., 2008; Zhang et al., 2016; Gu-Trantien
et al., 2017; Nagase et al., 2017). ICOS+ Treg TILs have been
found to be associated with worse survival in GC, whereas high
levels of ICOS in Th1 TILs in colorectal cancer indicated better
survival outcomes (Zhang et al., 2016; Nagase et al., 2017). Dual
blockade of ICOS with anti-CTLA-4 has been effective in eliciting
anti-tumor responses in ICOS knockout mice that were
unresponsive to anti-CTLA-4 monotherapy (Fu et al., 2011;
Fan et al., 2014). More importantly, the utilization of ICOS-
targeted agents is gaining attention in hematological
malignancies owing to the enhancement of co-stimulatory
receptor 4-1BB in CD4+ CAR T cells by ICOS (Guedan et al.,
2018).

Clinical Trials on ICOS
Currently, both anti-ICOS agonists and anti-ICOS
antagonists are under clinical investigation (Table 2). The
phase 1 trial of GSK3359609 (INDUCE-1), a humanized anti-
ICOS agonist monoclonal antibody, comprised two
treatment groups: part 1 patients were treated with a
monotherapy of GSK3359609, and part 2 patients were
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administered a combination with pembrolizumab or other
immunotherapy in the treatment of advanced solid tumors.
The study is ongoing, with no dose-limiting toxicities from
the first three dose-limiting cohorts (Angevin et al., 2017). In
head and neck cancer, the efficacy of GSK3359609 and
pembrolizumab with or without platinum-based
chemotherapy is currently under investigation
(NCT04428333 and NCT04128696).

Another investigational anti-ICOS agonist monoclonal
antibody is JTX-2011, used in combination with either anti-
PD1 (pembrolizumab or nivolumab) or anti-CTLA-4
(ipilimumab) in advanced solid tumors (NCT02904226) (Yap
et al., 2018). In phase 1/II of the trial, anti-tumor activity was
observed with JTX-2011 monotherapy and in combination with
nivolumab, in heavily treated GC and TNBC with manageable
toxicity profiles. Exploratory analysis showed that the peripheral
blood CD4 ICOShigh T cell subsets may be a potential biomarker
for the response.

Further, agonistic antibodies such as MEDI-570 alone and
KY1044 with atezolizumab are under investigation in phases 1
and phase 1/II, respectively (NCT02520791 and NCT03829501).

BTLA

BTLA (CD272) is also a member of the CD28 coreceptor
family (Table 1) (Ceeraz et al., 2013). It is a co-inhibitory
molecule with a structure and function similar to those of
PD-1 and CTLA-4 (Paulos and June, 2010). When expressed
on mature lymphocytes, such as B cells and T cells,
macrophages, and DCs, BTLA binds to herpes virus entry
mediator (HVEM), a member of the tumor necrosis factor
receptor superfamily (TNFRSF), as well as to LIGHT and
lymphotoxin-α, two members of the tumor necrosis factor
(TNF) superfamily (Han et al., 2004; Sedy et al., 2005;
Steinberg et al., 2011). Binding of BTLA to HVEM via
CD160 transmits inhibitory signals to T cells, which are
necessary for proliferation and cytokine production,
whereas binding to LIGHT induces co-stimulatory signals
(Sedy et al., 2005; Murphy et al., 2006; Cai et al., 2008). Thus,
the complexity of the BTLA receptor and ligand activity
poses a challenge for BTLA blockade treatment.

Recently, the possibility of BTLA as a potential therapeutic
target in cancer immunotherapy has been established in vivo,
wherein human melanoma tumor antigen-specific effector
CD8+ T cells expressing high levels of BTLA were
downregulated with a vaccine formulated using CpG
oligodeoxynucleotides, a toll-like receptor 9 (TLR9) agonist
that triggers innate immunity, thereby proving that inhibition
of BTLA may partially reverse the function of human CD8+

cancer-specific T cells (Derré et al., 2010; Paulos and June,
2010).

Clinical Trials on BTLA
There are four agents targeting BTLA (Table 2): 1) INBRX-
106, a hexavalent OX40 agonist Ab (NCT04198766), 2) PF-
04518600 (NCT02315066), an OX40 agonist; 3)
cudarolimab (IBI101) (NCT03758001), an anti-OX40
mAb, and 4) TAB004 (JS004) (NCT04278859), an anti-
BTLA mAb. These agents target the OX40 receptor, also
known as CD134 and tumor necrosis factor receptor
superfamily member 4 (TNFRSF4), thereby preventing its
interaction with BTLA (Croft et al., 2009). These phase 1
clinical trials are ongoing as monotherapy for patients
with advanced/metastatic solid tumors and are awaiting
results. TAB004 is also under investigation for the
treatment of refractory lymphomas (NCT04137900 and
NCT04477772).

CONCLUSION

Cancer immunotherapy is one of the major pillars in the field of
medical oncology, especially for the treatment of unresectable,
metastatic, and recurrent cancers. The success of ICIs, such as anti-
CTLA-4 and anti-PD-1/PD-L1, in combination with chemotherapy,
immunotherapy, and targeted agents, has changed the paradigm of
cancer treatment. Nonetheless, the limited efficacy and IRAEs of ICIs
have paved way for the discovery of novel checkpoints. Among the
immune checkpoint inhibitors, anti-LAG-3 and anti-TIGIT are
promising targets, and their efficacy in combination with anti-PD-
1/PD-L1 may help overcome the limitations seen in prior treatments.
More robust data are yet to follow on agents targeting TIM-3, B7-H3,
VISTA, ICOS, and BTLA.
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