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Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with short

survival time. Unbalanced competing endogenous RNAs (ceRNAs) have been shown

to participate in the tumor pathogenesis and served as biomarkers for the clinical

prognosis. However, the comprehensive analyses of the ceRNA network in the prognosis

of MPM are still rarely reported. In this study, we obtained the transcriptome data

of the MPM and the normal samples from TCGA, EGA, and GEO databases and

identified the differentially expressed (DE) mRNAs, lncRNAs, and miRNAs. The functions

of the prognostic genes and the overlapped DEmRNAs were further annotated by the

multiple enrichment analyses. Then, the targeting relationships among lncRNA–miRNA

and miRNA–mRNA were predicted and calculated, and a prognostic ceRNA regulatory

network was established. We included the prognostic 73 mRNAs and 13 miRNAs and

26 lncRNAs into the ceRNA network. Moreover, 33 mRNAs, three miRNAs, and seven

lncRNAs were finally associated with prognosis, and a model including seven mRNAs,

two lincRNAs, and some clinical factors was finally established and validated by two

independent cohorts, where CDK6 and SGMS1-AS1 were significant to be independent

prognostic factors. In addition, the identified co-expressed modules associated with the

prognosis were overrepresented in the ceRNA network. Multiple enrichment analyses

showed the important roles of the extracellular matrix components and cell division

dysfunction in the invasion of MPM potentially. In summary, the prognostic ceRNA

network of MPM was established and analyzed for the first time and these findings shed

light on the function of ceRNAs and revealed the potential prognostic and therapeutic

biomarkers of MPM.
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INTRODUCTION

Malignant pleural mesothelioma (MPM), which is mainly
associated with the asbestos exposure and derived from the
pleural or peritoneal mesothelial cell surfaces, is an aggressive
tumor with very poor prognosis (median survival time <

12 months after diagnosis) (1). According to epidemiological
investigations, the number of patients has been increasing in
recent years, especially in developing countries, which leads
to ca. 40,000 deaths per year worldwide (2). Currently, it
is difficult to differentially diagnose MPM, since inclusion
of more biomarkers based on the latest research would
likely increase the accuracy and efficiency of prognosis. It
is therefore essential and urgent to identify new prognostic
biomarkers and therapeutic targets and to understand its
molecular mechanisms.

The competing endogenous RNA (ceRNA) theory illustrates
a novel regulatory mechanism for gene regulation, by which
one transcript (e.g., an lncRNA) can control and modulate the
expression of another transcript (e.g., an mRNA) by competitive
interactions with an miRNA (3). It has been demonstrated that
ceRNAs are widely involved in the occurrence and progression
of various cancers (4–6). Moreover, some ceRNAs have been
shown to be valuable targets for the treatment and prognosis
of multiple cancers (7, 8). With the development of high-
throughput sequencing technologies, more and more ceRNA
networks have been constructed and analyzed in multiple
cancers, such as gastric cancer and breast cancer (9, 10).
However, there are few studies focused on the function of ceRNA
networks in MPM. Some recent studies implicated that non-
coding RNA (ncRNA) dysfunction is closely associated with
the properties of MPM cells (11–13). Therefore, it is highly
likely that certain ceRNA networks may also be involved in the
pathogenesis of MPM.

In this study, we analyzed the differential expression of
mRNAs, lncRNAs, and miRNAs (DEmRNAs, DElncRNAs, and
DEmiRNAs) based on the RNA-Seq and miRNA-Seq data in
different subgroups of the MPM patients categorized according
to the overall survival of the MPM patients. The DEGs
related to the overall survival were further compared with
the DEGs between the MPM and the normal tissues in the
microarray data. Then, we constructed a ceRNA network of
the overlapped DERNAs based on their interactions obtained
from multiple databases. Furthermore, Kaplan–Meier survival
analyses and univariate, lasso, and multivariate Cox regression
analyses were conducted to explore the mRNA, miRNA, and
lncRNA biomarkers in the ceRNA network. Accordingly, the
risk assessment model combined with the multiple clinical
factors and the screened RNAs based on regression coefficients
were established, evaluated, and validated based on the two
independent MPM datasets. Weighted gene co-expression
network analysis (WGCNA) was used to further explore the
reliability of the ceRNA network as a prognostic marker as
well as its potential mechanism. This study provides new
insights on the biological functions related to the lncRNA
in MPM patients and the additional biomarkers for the
prognosis of MPM.

MATERIALS AND METHODS

TCGA MPM Dataset
Data for patients with MPM collected from the TCGA database
was regarded as a training group. The criteria of exclusion
were set as follows: (1) patients without lncRNA and mRNA
information; (2) survival time of patients was unavailable or
survival time of alive patients was<30 months. Overall, 80 MPM
patients were included in our study. Next, the 80 patients were
further screened to be included into two groups according to the
survival time: high-risk group and low-risk group. The criteria
of grouping were set as follows: patients with overall survival
<12 months were included into high-risk group, and patients
with overall survival >30 months were included in the low-
risk group. Finally, the expression profiles of the patients in
the two groups were used for the differential expression gene
(DEG) analyses. In addition, the clinical information and the
expression profiles of all 80 patients were used for the univariate,
the lasso andmultivariate Cox regression analyses, andWGCNA.
Similarly, another study from the EGA database including 211
MPM patients was used to validate the RNA expression results.
The GSE12345 (four normal tissues and nine MPM tissues) and
GSE42977 (nine normal tissues and 39 MPM tissues) datasets
were downloaded from the GEO database to explore the DEGs
between the normal tissues and the MPM tissues for cross
comparison of DEG associated with overall survival.

Data Processing
The normalized read-count data and the Fragments Per Kilobase
of transcript per Million fragments of RNA-Seq by RNASeqV2
were obtained from the TCGA database as well as the STAD
level 3 microRNA sequencing (miRNA-seq) data. The cleaned
fastq files were downloaded from the EGA database. According
to the protocol in the TCGA database, the STAR software was
used to align the fastq files to the human GRCh38 genome file,
and the Htseq-Count software was used to count the reads.
Next, the Edge R package was applied to analyze the gene
expression profiles to identify the DEmRNAs, DElincRNAs, and
DEmiRNAs (log2-fold change > 1.0, false discovery rate (FDR)
< 0.05). The TPM (Transcripts Per Million) were calculated
for the subsequent analyses and validation. The GSE12345
dataset obtained from the Affymetrix Human Genome U133
Plus 2.0 Array was annotated by GPL570. The GSE42977 dataset
based on the Illumina HumanRef-6 v2.0 expression beadchip
was annotated by GPL6790. The two microarray datasets were
normalized by the robust multi-array average algorithm. When
multiple probes were mapped to the same gene, the mean of
the probe intensities will be used. After that, the differential
expression analyses of the microarray data were performed using
limma package [fold change > 2.0, false discovery rate (FDR)
< 0.05].

Functional Enrichment Analysis
The functional enrichment analyses of the DEGs, including
GO function analyses and KEGG pathway analyses,
were carried out by the clusterProfiler package. For
the GO analyses, cellular component (CC), biological
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process (BP), and molecular function (MF) terms were
analyzed. FDR < 0.05 was used as the statistically
significant cutoff in these analyses. Besides, we also
performed the gene set enrichment analysis (GSEA) for

all the mRNAs using the clusterProfiler package with the
c2.all.v6.2.entrez.gmt and c5.all.v6.2.entrez.gmt gene set
collections. Gene sets with FDR < 0.05 were considered to be
significantly enriched.

TABLE 1 | The characteristics of the included MPM patients.

Characteristic TCGA EGA

All case numbers Case numbers used

in DEG analysis

All case numbers Case numbers used in

DEG analysis

Sample type MESO 80 30 211 128

Age Median 64.5 62.5 65.4 64.15

Range [years] 28–81 28–81 18.8–86 27.3–86

Sex Male 65 27 176 108

Female 15 3 35 20

Vital status Alive 8 0 48 0

Dead 72 30 163 128

Survival time Median 15.06 8.32 12.6 7.8

Range [months] 0.65–91.73 0.65–91.73 0.24–132.6 0.24–132.6

FIGURE 1 | Differential expression gene analyses. (A,B) DEG heatmap of the RNA-Seq and the miRNA-Seq. (C–E) Screening of the DEmRNA, DElncRNA, and

DEmiRNA. Black points represent the insignificant genes, red points represent the upregulated genes, and green points represent the downregulated genes. FC, fold

change. Threshold criteria: FC > 2 and FDR < 0.05.
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FIGURE 2 | GO, KEGG pathway, and GSEA enrichment analyses. (A–C) Top 10 enriched terms in GO-BP, GO-CC, and GO-MF. (D) The significant terms in the KEGG

pathway. (E,F) TOP 5 enriched terms of GSEA in the c5.all.v6.2.entrez.gmt gene sets and the c2.all.v6.2.entrez.gmt gene sets. P-value adjusted by FDR < 0.05.
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Construction of an lncRNA-Related ceRNA
Network
The overlapped DEGs between the RNA-Seq and the microarray
were used for the construction of the prognostic ceRNA network.
We used starBase v3.0 (http://starbase.sysu.edu.cn/) to retrieve

the lncRNA–miRNA interactions and then used miRBase targets
(http://mirdb.org/miRDB/), miRTarBase (http://mirtarbase.mbc.

nctu.edu.tw/), and TargetScan (http://www.targetscan.org/) to
predict lmiRNA–mRNA interactions (14–17). To increase the

reliability of the results, only the miRNA–mRNA interactions

FIGURE 3 | Compared the DEmRNAs obtained from the RNA-seq data and the microarray data. (A) The overlapped upregulated genes. (B) The overlapped

downregulated genes. (C) The enrichment analyses of the overlapped upregulated genes. (D) The enrichment analyses of the overlapped downregulated genes.
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FIGURE 4 | The construction of the ceRNA network among the 26 lncRNAs, 13 miRNAs, and 73 mRNAs. (A) The ceRNA network among lncRNA–miRNA–mRNA.

Ellipse represents mRNA. Rectangle represents lncRNA. Diamond represents miRNA. Red represents upregulation, and blue represents downregulation. (B–D) The

Pearson correlation analyses among the miRNA–mRNA, 26 lncRNAs, and 73 mRNAs.
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intersecting in all three databases were included into the ceRNA
network. Moreover, the Pearson correlations of the pairs between
miRNAs and mRNAs were calculated and the absolute values
of the pairs more than 0.4 were regarded as interacted pairs.
Finally, a ceRNA network was constructed and visualized by
Cytoscape v3.7.1.

Survival Prediction Model Construction
and Evaluation
The mRNAs, miRNAs, and lncRNAs from the ceRNA network
were used for the univariable Cox regression analyses to screen
for the RNAs associated with overall survival, and only the RNAs
with P < 0.05 were enrolled into the followed Kaplan–Meier
survival analyses based on the log-rank test according to the
grouping by the median value of the expression quantities. After
Kaplan–Meier survival analyses, the mRNAs and lncRNAs with
P < 0.05 were included into the lasso Cox regression analyses to
further screen the variables. Accordingly, the survival prediction
model was constructed through the regression coefficients of
the multivariable Cox regression analysis, as described in the
following equation: risk score = R1G1 + R2G2 + R3G3 +

. . . . . . RnGn (R is the regression coefficient obtained from the final
multivariable Cox analysis and L is the expression value of each
gene or the type of different clinical factor). Then, the patients
were divided into two groups (high-risk-score group and low-
risk-score group) according to the cutoff value obtained from
the OptimalCutpoints package, and the Kaplan–Meier survival
analyses were performed between the two groups. Moreover,
the receiver-operating characteristic (ROC) curve analyses were
performed to estimate the efficiencies of the model under the

same grouping; only AUC values > 70% were regarded as
efficient models.

Identification and Annotation of Gene
Modules Related to the Risk Model
According to WGCNA
The WGCNA algorithm was used to construct the gene co-
expression network (18). We first conducted the WGCNA
analysis to identify the gene modules closely related to the overall
survival and the risk scores. Then the significant modules were
further selected for further analyses, and the mRNAs of the
ceRNA network co-expressed in the significant modules were
further input in the String database (string.org) to predict the
protein–protein interaction (PPI) relationship. The PPI network
was then visualized by Cytoscape v3.7.1, and the hub genes were
identified using 12 algorithms of the CytoHubba plugin. Then,
the results were cross-compared to generate a final list of hub
genes. Besides, the genes enrolled into these significant modules
were used for GO-BP, GO-MF, and KEGG pathway enrichment
analyses by clusterProfiler package.

Evaluation of the Tumor Infiltrating
Immune Cells With the Risk Model
To infer the infiltrating immune cells of MPM associated with
the ceRNA axes, we used the mRNAs in the ceRNA network to
estimate the proportions of the 22 types of infiltrating immune
cells by deconvolution of the CIBERSORT algorithm (19).
According to the grouping, we obtained the significant changes
of the immune cell types between the high- and low-risk-score
groups using Student’s t-test.

TABLE 2 | The concrete interactions among the lncRNAs, miRNAs, and mRNAs in the ceRNA network.

miRNA lncRNA mRNA

hsa-miR-1 LINC-PINT, HOTAIR, AL035661.1, SMIM25, AC087741.1 NOTCH2, FN1, TM4SF1, SMIM14, SLC7A11, SH3PXD2B, CDK6,

SNAI2, ADAM12, WEE1, BDNF, CORO1C, GPR137C, NOTCH3, AXL

hsa-miR-129 AC087741.1, XIST CDK6

hsa-miR-141 AL359852.1, LINC01176, RUNDC3A-AS1, XIST TGFB2, CDC25A, FOXL2, EPHA7, PAPPA, ADRB1, KIAA1549L,

FRMD6, IGF1R, PHLPP2, LHX1

hsa-miR-196b LOXL1-AS1, XIST HAND1, EPHA7, HOXA9, CPEB3, PPFIBP1, HMGA2, IGF2BP1,

SALL3

hsa-miR-200c MSC-AS1, SGMS1-AS1, LINC02568, LINC02128, AC022150.4, XIST FN1, DCBLD2, DNAJB9, SH3PXD2A, NCAM1, AVPR1A, HNF1B,

PMAIP1, DNMT3B

hsa-miR-302a TENM3-AS1, LINC00689, MSC-AS1, LINC00484, SGMS1-AS1,

AC091057.1, AC022150.4, XIST

PSD3, ATAD2, CKS2, WEE1, GDF11, KPNA2

hsa-miR-302b TENM3-AS1, LINC00689, MSC-AS1, LINC00484, SGMS1-AS1,

AC091057.1, AC022150.4, XIST

SLC26A9, SATB2, SLC7A11, CDK6, PSD3, ATAD2, C9orf40,

TMEFF1, WEE1, GDF11, KPNA2

hsa-miR-372 TENM3-AS1, LINC00689, MSC-AS1, LINC00484, SGMS1-AS1,

AC091057.1, AC022150.4, XIST

PKP1, ENAH, SORBS2, DCDC2, CDK6, PSD3, MCM4, ATAD2,

TRIB1, WEE1, GDF11, WDR76, PHLPP2, PRR11, KPNA2, CHAF1B

hsa-miR-483 AL365361.1, LINC01176, LINC00689, AC022150.4, XIST ALCAM, CACNG8

hsa-miR-503 AC022167.2, AC106886.2 ANLN, RECK, WEE1, CHEK1, CDCA4, CHAC1, KIF23, CBX2

hsa-miR-552 TENM3-AS1, LINC01176, AC091057.1, AC022150.4, XIST,

LOXL1-AS1

IFITM1, RACGAP1, NPTXR

hsa-miR-888 LINC02015, SGMS1-AS1, AC090181.2, RUNDC3A-AS1,

AP000526.1, XIST

PMAIP1

hsa-miR-3129 MIR200CHG, AL035661.1, XIST BCAT1, TSPAN3
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Statistical Analysis
The differential expression gene analyses of the RNA-seq
data were performed by the R package “edge R.” The
differential expression gene analyses of the microarray data
were conducted by the R package “limma.” The enrichment
analyses were performed by R package “clusterProfiling.” All
of these analyses involved in the multiple-hypothesis test
were finally corrected by the FDR method. The univariate
and the multivariate Cox regression analyses were performed
by R package “survival.” The lasso regression analyses were
performed by the R package “glmet.” Moreover, the Kaplan–
Meier analyses were carried out by R package “survival,” whose
statistical significances were assessed by the two-sided log-rank
test. The statistical analyses between the clinical traits and the
risk model were performed by the chi-square test or Fisher
exact test according to the distribution of the data. The R
software version 3.6.3 was used for the study. All statistical tests
were two-sided.

RESULTS

Screening of Patients and Identification of
DEGs
A total of 80 patients with MPM were downloaded from the
TCGA database. Thereinto, the RNA expression profiles of
21 low-risk (overall survival > 30 months) samples and nine
high-risk (overall survival < 12 months) samples were used
to explore the DEmRNAs, DElncRNAs, and DEmiRNAs. The
clinical and pathological characteristics of MPM patients are
shown in Table 1. According to the results of the DEGs, the
patients were clearly clustered into two groups, indicating that
the overall gene expression patterns are significantly different in
the two groups (Figures 1A,B). A total of 1,499 DEmRNAs, 358
DElncRNAs, and 29 DEmiRNAs were obtained according to the
criteria (P < 0.05 and fold change > 2, Figures 1C–E).

To explore the functional features of these DEGs related
to overall survival, we performed GO and KEGG enrichment
analyses (FDR-corrected P < 0.05). The top 10 significant GO
terms are mainly involved in the processes and the components
related to the extracellular matrix, the cell division, and the
receptor regulator activity (Figures 2A–C). Four pathways were
enriched in the KEGG analysis (Figure 2D). These results
all suggested that abnormal extracellular matrix components,
cell cycle, and immune-response components are potentially
important causes in the progression of MPM, which have been
closely associated with growth and metastasis of other cancer
cells (20).

In addition, to explore the changes of the overall gene
expression levels of MPM, 17746 mRNAs were input to
implement GSEA based on the fold change order using the
gene sets of c2.all.v6.2.entrez.gmt and c5.all.v6.2.entrez.gmt. One
hundred eighty terms in c5.all.v6.2.entrez.gmt gene set and 188
terms in the c2.all.v6.2.entrez.gmt gene set were enriched (FDR
< 0.05), the top five of which were exhibited in Figures 2E,F.
Morphogenesis and differentiation of epithelium, cell movement,
and extracellular matrix were significantly enriched in the

c5.all.v6.2.entrez.gmt gene set (Figure 2E), supporting the role
of the extracellular matrix in the progression of MPM and
indicating the convergence between the invasion of MPM
and the morphogenesis and differentiation of the epithelium.
Some specific targets and pathways were mainly enriched in
the c2.all.v6.2.entrez.gmt gene set (Figure 2F), suggesting that
progression of MPM may partly be involved in the invasive

TABLE 3 | Statistical analyses associated with the OS of the mRNAs and

lncRNAs in the ceRNA network.

Gene symbol Univariate analysis (Kaplan–Meier

survival curves,

log-rank test)

HR CI95 P-value P-value

KPNA 1.02 1.01–1.02 <0.0001 3.53e-10

PRR11 1.25 1.16–1.34 <0.0001 4.82e-08

CDC25A 2.14 1.68–2.73 <0.0001 9.28e-08

KIF23 1.19 1.12–1.23 <0.0001 1.92e-07

ANLN 1.06 1.04–1.09 <0.0001 6.64e-07

CHAF1B 1075 1.46–2.1 <0.0001 1.20e-06

RACGAP1 1.21 1.14–1.29 <0.0001 4.29e-06

CHEK1 1.20 1.1–1.31 0.00001 4.30e-06

SATB2 1.58 1.19–2.11 <0.0019 4.35e-06

DNMT3B 3.01 1.85–4.49 <0.0001 5.10e-06

MCM 1.11 1.06–1.16 <0.0001 8.06e-06

CORO1C 10.4 1.03–1.05 <0.0001 2.21e-05

AXL 1.01 1.01–1.02 <0.0001 2.48e-05

CDCA4 1.14 1.08–1.2 <0.0001 3.35e-05

TMEFF1 129.56 4.61–3643.52 0.043 4.54e-05

WEE1 1.17 1.07–1.28 0.0006 5.15e-05

CKS2 1.03 1.02–1.04 <0.0001 7.01e-05

CDK6 1.13 1.08–1.18 <0.0001 9.47e-05

C9orf40 1.78 1.46–2.16 <0.0001 0.000147

ENAH 1.11 1.06–1.16 <0.0001 0.000354

GDF11 1.64 1.26–2.12 <0.0001 0.000413

WDR76 1.45 1.24–1.71 <0.0001 0.001005

ATAD2 1.26 1.14–1.39 <0.0001 0.00202

CPEB3 0.50 0.34–0.74 <0.0001 0.002249

NPTXR 1.25 1.12–1.39 <0.0001 0.002846

PAPPA 1.19 1.08–1.3 <0.0002 0.004774

SNAI2 1.07 1.04–1.1 <0.0001 0.006123

DCDC2 1.12 1.05–1.2 0.0014 0.006189

DNAJB9 0.98 0.96–0.99 0.0027 0.006755

AC026470.1 0.75 0.69–0.88 0.0001 0.008526

DCBLD2 1.03 1.01–1.05 0.0007 0.01441

FRMD6 1.10 1.05–1.15 0.0001 0.035087

SMIM14 0.93 0.9–0.97 0.0007 0.041198

hsa-miR-302a 1.02 1–1.04 0.0118 0.000125

hsa-miR-302b 1.01 1–1.02 0.0109 0.000134

hsa-miR-503 1.01 1–1.01 0.0062 0.007793

AC091057.1 3.92 2.21–6.97 <0.0001 0.000565

AC022150.4 3.99 2.1–7.6 <0.0001 0.000763

SGMS1.AS1 0.03 0–0.19 2.00E-04 3.56E-05

LINC00689 0.4 0.23–0.71 0.0017 0.030472

AC087741.1 0.58 0.41–0.83 0.0025 0.036343

MSC.AS1 1.26 1.08–1.48 0.0031 0.00131

RUNDC3A.AS1 10.26 1.98–53.1 0.0055 0.010718

Bold: the genes in the survival model.
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pathways of breast cancer and pathways related to TCF21 and
SMARCA2 targets.

We next performed the differential expression analyses to
explore the DEGs between the MPM tissues and the normal
tissues by the limma algorithm based on the microarray
data. A total of 1351 DEGs (725 upregulated genes and 626
downregulated genes) were obtained from the GSE12345 dataset,
and 1211 DEGs (556 upregulated genes and 655 downregulated

genes) were obtained from the GSE42977 dataset (Figures 3A,B).
To screen the DEGs associated with the development of the
MPM, we further compared the DEGs related to the overall
survival from the RNA-Seq dataset with the DEGs related
to MPM obtained from the two microarray datasets, which
showed the 32 overlapped upregulated DEGs and the 77
downregulated DEGs (Figures 3A,B). Similar to the above
results, the enrichment analyses of the overlapped downregulated

FIGURE 5 | Construction, estimation, and validation of the risk model. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 40

genes. The value was chosen by 10-fold cross-validation. (B) The numbers above the graph represent the number of genes involved in the LASSO model. (C,D)

Survival curve and ROC curve of the risk model according to the dataset of EGA. (E) Forest plot showing associations between the selected nine genes, the reported

clinical factors, and the overall survival in the model. (F–H) Validation of the risk model based on the survival curve, the ROC curve, and the multivariate Cox analysis

according to the EGA dataset. The significances of the survival curves were calculated by log-rank test. Also, the AUC values of ROC curves > 70% were regarded as

efficient models.
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TABLE 4 | Statistical analyses between the clinical traits and the risk model.

Subgroup Low

score

High

score

P-value

Age

<60 12 11 0.8049

≥60 28 29

Sex

Male 32 33 0.7745

Female 8 7

Tumor grade

STAGE I 3 6 0.4638

STAGE II+STAGE III+STAGE IV 37 34

Histological types

Biphasic mesothelioma 5 17 0.003296

Diffuse malignant mesothelioma (NOS) 2 3

Epithelioid mesothelioma 33 20

Bold: the types of clinical traits.

Italic and bold: significant value.

DEGs also revealed the abnormal roles of the cell division in the
development of theMPM (Figure 3C). Moreover, the overlapped
upregulated DEGs were mainly involved in the regulation of the
metabolic processes (Figure 3D).

Construction of an lncRNA–miRNA–mRNA
ceRNA Network
To construct the credible ceRNA network among the lncRNAs–
miRNAs–mRNAs, we input the 29 DEmiRNAs and the 358
DElncRNAs to get the interaction data between miRNAs and
lncRNAs from the starBase v3.0 database. We next performed
target prediction for miRNAs–mRNAs among the 29 miRNAs
and the 109 overlapped mRNAs in the three databases
(miRTarBase, miRDB, and TargetScan) and cross-compared
the results to retain the miRNA–mRNA interactions that are
consistent in all three databases. As a result, 26 lncRNAs, 13
miRNAs, and 73 mRNAs were predicted to have close interaction
(Figure 4A, Table 2). To further explore the reliability of the
ceRNA network, the Pearson correlations among the miRNAs–
mRNAs, lncRNAs, and mRNAs were calculated based on the
80 expression profiles. The interacted miRNAs–mRNAs almost
have relative high correlations with |r| > 0.4 (Figure 4B). Similar
to the scattered distributions of the lncRNAs in the ceRNA
network, the correlations among the lncRNAs were relatively
weak, which suggested the accuracy of our ceRNA network
(Figure 4C). Moreover, the majority of the mRNAs in the
ceRNA network have positive correlations; the same with that
many of the mRNAs in the ceRNA network are downregulated
genes (Figure 4D). These results suggested the validity of the
prognostic ceRNA network.

Construction and Evaluation of Survival
Prediction Model
To further determine the association between the expression
levels of the 73 mRNAs, 13 miRNAs, and 26 DElncRNAs in

the ceRNA network and the overall survival of MPM patients,
we performed the univariate Cox regression analyses in the 80
patients from TCGA (Table 3). Next, 52 mRNAs, six miRNAs,
and 12 lncRNA were analyzed by the Kaplan–Meier survival
analyses according to the grouping by the median value of
expression quantities. Thirty-three mRNAs, three miRNAs,
and seven lncRNAs were significant in the Kaplan–Meier
survival analyses, and the significant mRNAs and lncRNAs were
further screened to avoid overfitting by lasso Cox regression
analyses (Figure 5A). As a result, CDC25A, CDK6, CHAF1B,
CKS2, CORO1C, WEE1, KIF23, SGMS1-AS1, and LINC00689
were enrolled into the survival model (Figure 5B, Table 3).
Interestingly, WEE1 and KIF23 were also identified as hub genes
in the co-expressed PPI network, highlighting the importance
of them related to the prognosis and the progression of MPM
and the reliability of the model. Besides, the lncRNAs, WEE1,
CKS2, and KIF23 included in the model were interacted with
the miRNAs associated with survival time, suggesting that the
model possessed high efficiency by integrating the information
of mRNAs, lncRNAs, and miRNAs. Next, several clinical factors
related to prognosis were also enrolled into the model, including
age (≤60 or > 60), gender (female, male), T pathological
stage (T1 + T2 or T3 + T4), N pathological stage (N0 +

N1 or N2 + N3), and tumor type (epithelioid mesothelioma
or non-epithelioid mesothelioma). According to the result
of multivariate analysis, a risk model was constructed: Risk
score = −0.472∗age + 0.400∗gender + 0.418∗(T pathological
stage)−0.180∗(N pathological stage) + 0.102∗ (tumor type)
+ 0.036∗ CDC25A(exp) + 0.017∗CDK6(exp) + 0.054∗

CHAF1B(exp) + 0.003∗ CKS2(exp) + 0.002∗ CORO1C(exp)
+ 0.0237∗ WEE1(exp)−0.004∗ KIF23(exp)−0.0597∗ SGMS1-
AS1(exp)−0.056∗ LINC00689(exp). The cutoff value was
determined by the sensitivity equal to the specificity method
from the OptimalCutpoints package, which showed the best
sensitivity and specificity for prognostic prediction (AUC values
= 86.9%, Figure 5D). The Kaplan–Meier survival curves showed
that the overall survival of patients with high-risk scores (n
= 32) were significantly lower than those with the low-risk
scores in the three models (p < 0.001, Figure 5C). The results
showed that the model is of value for prognostic prediction
(Figures 5C,D). In this risk model, CDK6 and SGMS1-AS1
were significant as potential independent prognostic factors
(Figure 5E). Interestingly, the histological types of MPM were
associated with the risk score after the statistical analyses
between the clinical traits and the risk score, similar to the
previous report about the correlation between the histological
types and the overall survival (Table 4). Furthermore, another
dataset of MPM patients was used to validate our results.
According to the TPM values of 128 patients in the EGA
database, the expression of the nine DEGs in our risk model
were further confirmed to be significant based on Student’s
t-test with or without Welch correction (low risk: 40 patients,
high risk: 88 patients, Figure 6). Moreover, the Kaplan–Meier
survival analyses of the nine DEGs in our risk model based
on the data of the 211 patients from EGA also showed that
all of them are closely related to the survival time of the
MPM patients (Figure 7). Likewise, the Kaplan–Meier survival
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FIGURE 6 | Validation of DEGs in the risk model based on the EGA MPM dataset. The statistical analyses were performed by Students’ t-test with or without Welch

correction according to the TPM of genes.

analyses and the ROC curves showed that the risk model has
great values to estimate the prognosis of MPM (P < 0.001,
AUC values = 77.0%, Figures 5F,G). Also, the multivariate
Cox analysis was performed to verify the identified potential
independent prognostic factors according to the variates from

the survival model in the EGA data, which showed that CDK6
had marginal significance and KIF23 and CORO1C were
significant in the model (Figure 5H). In summary, all of these
results using the EGA data validated the effectiveness of the
risk model.
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FIGURE 7 | Kaplan–Meier survival analyses. (A-I) Validation of of the nine genes in the model based on the EGA MPM dataset. The statistical significances were

determined by the log-rank test.

Identification of Gene Modules and
Functional Analyses According to WGCNA
To investigate the potential biological function of the ceRNA
network, we used the WGCNA method to cluster the
DEmRNAs based on the 80 expression profiles obtained from
the TCGA database. Except the non-co-expression module
(gray), we identified nine co-expression modules (Figure 8A)
and associated the clinical traits with the identified modules,
including the tumor stage, survival time, and risk score
(Figure 8B). We found that the turquoise module and the blue
module were the top two most significant modules associated
with the risk scores and the survival time (Figure 8B). We
then performed the Pearson analyses based on the genes in the

two modules and further revealed that the turquoise module
was positively correlated with the risk scores and the blue
module was negatively correlated with the risk scores (turquoise
module—risk score: cor = 0.9, P = 1e-200; blue module—
risk score: cor = 0.81, P = 6e-59; Figures 8C,D). Notably,
7 of 73 mRNAs in the ceRNA network co-expressed in the
blue module and 42 of 73 mRNAs in the ceRNA network
co-expressed in the turquoise module (turquoise module: 513
genes, blue module: 195 genes), which showed that the genes

in the turquoise co-expression modules associated with survival

were overrepresented in the ceRNA network and indicated the

reliability of the ceRNA network (P= 2.458e-05). We then input
the genes in the turquoise module into the String database to
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FIGURE 8 | WGCNA analyses of the DEmRNAs. (A) Identification of the co-expression modules. (B) Association between the modules and the traits. (C) Pearson

correlations between the genes in the turquoise module and the risk score. (D) Pearson correlations between the genes in the blue module and the risk model. (E)

Protein–protein interaction network analysis of the overlapped mRNAs in the ceRNA network and the turquoise module. The size and color of the round represent the

number of links of the protein (gene).

predict the PPI relationship (Figure 8E). We further analyzed
the topical structure of the PPI network by 12 methods to
obtain the hub genes. According to the degrees among the genes,
WEE1 and KIF23 were finally selected as the hub genes in the
ceRNA PPI network, suggesting that they play important roles in
the MPM.

The top 10 results of GO-BP, GO-MF, and KEGG pathway
enrichment analyses using the genes included into the blue
module and the turquoise module are shown in Figure 9. In the

blue module, GO terms are mainly involved in the constituent
of extracellular matrix (Figures 9A,B). As for pathways, they
may be associated with the terminal symptoms of cancer
patients (Figure 9C).

In the turquoise module, multiple processes related to
the cell division were enriched (Figures 9D,E). Moreover,
the markedly enriched pathways are associated with the
cell cycle, the homologous recombination, the microRNAs
in cancer, the p53 signaling pathway, etc. Figure 9F), which
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FIGURE 9 | Gene-enrichment analyses of genes in the blue module and the turquoise module. (A) Top 10 GO-BP terms in the blue module. (B,C) Significant GO-MF

and KEGG pathway terms in the blue module. (D,E) Top 10 GO-BP and GO-MF terms in the turquoise module. (F) Significant KEGG terms in the turquoise module.

P-value was adjusted by the FDR method and p < 0.05 was significant.

have been reported to participate in multiple levels of the

tumorigenesis and the invasion. Overall, the results of the

enrichment analyses demonstrated that the genes in the turquoise
module are mainly involved in the abnormal process of
cell division.

The Immune Cell Infiltration Analysis in the
ceRNA Network
The tumor microenvironment involves the extracellular
matrix components, the immune cells, and the other cellular
components, which have partly been highlighted in multiple
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FIGURE 10 | Twenty-two types of immune-cell infiltration analyses. (A) The overall changes of 22 types of immune cells in the MPM tissues of the 80 patients.

(B–J) The significant differences of the immune cells between the high- and low-score groups based on the Student’s t-test.
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analyses above. To further investigate the biological function of
the ceRNA network regarding the tumor microenvironment,
we utilized the CIBERSORT algorithm to study the changes
of tumor-infiltrating immune cells between the high- and
low-risk-score groups according to the DEmRNAs in the ceRNA
network (73 mRNA). We calculated the variations of the 22
types of immune cells among the 80 patients (Figure 10A) and
found that the components of the nine immune cell subtypes
exhibited obvious variations between the high- and low-risk
groups. Compared to the low-risk group, the high-risk group
possesses a higher proportion for the neutrophils, the NK
cells activated, and the T cell gamma delta, while the dendritic
cell resting, the dendritic cells activated, the naïve B cells, the
macrophages M0, the monocytes, and the CD4-naive T cells
decreased (Figures 10B–J). These results suggested that the
ceRNA network may be involved in the regulation of the tumor-
related microenvironment partly by changing the immune
infiltration, which is potentially important for the subsequent
targeted intervention.

DISCUSSION

MPM is a highly aggressive cancer. In the past years, great
progress has been made in the knowledge of the occurrence
and the development of MPM, and some target molecules and
pathways were identified, including BAP1 and YAP/TAZ/TEAD
oncogenic axis (21, 22). However, the pathomechanism of MPM
is still largely unknown, and the clinical outcomes are highly
heterogeneous. Thus, the pathogenesis of MPM requires further
study, and more effective biomarkers and predictive models need
to be established to satisfy the clinical setting.

Up to now, the studies aimed at screening the potential
diagnostic and therapeutic targets of MPMmainly focused on the
protein-coding genes (23). However, the biological processes of
MPM are very complicated, which are involved in the complex
interactions of the multiple types of components rather than
regulation of individual molecules. Thus, it is necessary to
understand the mechanism of tumor progression based on the
regulatory networks. In this study, we comprehensively analyzed
the expression and function of aberrant RNAs and established
a ceRNA network of MPM to screen the prognostic biomarkers
and construct a survival prediction model.

We firstly identified the DEGs closely related to overall
survival and then annotated the abnormal function. We
found that extracellular matrix organization, chromosome
structure, and cell cycle were mainly involved in MPM
progression. It has been well-established that the chromosome
structure and the cell-cycle regulation are closely related to
the cancer. Interestingly, recent studies also suggest that the
tumor microenvironment is mainly formed by extracellular
matrix organization, which plays an important role in the
invasion and metastasis of tumor (24–26). As tumor cells
proliferate, the surrounding extracellular matrix dynamically
interacts with resident cells to change the architecture of the
microenvironment (27). Our findings supported the importance
of the extracellular matrix in MPM. In addition, the GSEA

analyses based on the expressional changes of all genes also
suggested anomalous morphogenesis and differentiation of
epithelium and the invasive process of breast cancer partly
shared the processed with the MPM development. The pathways
related to oncogenes TCF21 and SMARCA2 were also enriched
in the GSEA analyses. TCF21 and SMARCA2 have been
reported to participate in the multiple steps of the invasion
of several cancers, such as proliferation, chemoresistance,
and migration (28–30), suggesting the convergence of targets
among the different cancers. Besides, the overlapped DEmRNAs
between the RNA-seq data and the microarray data were also
identified. The function of the overlapped DEmRNAs further
suggested the dysfunction of the cell division in the development
of MPM.

Next, multiple databases were simultaneously used to predict
the interaction among the lncRNA–miRNA-overlapped mRNAs.
Finally, 26 lncRNAs, 13 miRNAs, and 73 target mRNAs were
included to construct the ceRNA network. Thirty-three mRNAs,
three miRNAs, and seven lncRNAs are finally identified as
the genes associated with overall survival by univariate Cox
regression analyses and Kaplan–Meier survival analyses. Seven
mRNAs and two lncRNAs were finally selected and further
used to establish survival predictive models (mRNAs: CDC25A,
CDK6, CHAF1B, CKS2, CORO1C, WEE1, and KIF23; lncRNAs:
SGMS1-AS1 and LINC00689). Besides, after reviews of these
genes in the model, we found that all of the seven genes
have been associated with multiple processes of tumor, where
CDC25A, CDK6, and KIF23 have been reported to directly
participate in the pathophysiological process of MPM (31–33).
The expression of CDC25A has been reported to correlate
with lymph-node spread of MPM (33). CDK6, WEE1, and
KIF23 are thought as potential therapeutic targets, which are
closely related to the prognosis of the MPM patients (31, 34).
Similarly, it is noteworthy that CDK6 is also significant or
marginal significant in the multivariate Cox analysis of the
model according to both TCGA and EGA data, which indicated
that CDK6 may be an important target and an independent
prognostic factor. Although the other four genes have not
been directly linked to MPM, they are widely involved in the
development of cancers. CHAF1B plays a considerable role in
leukemia pathogenesis and proliferation of the lung cancer and
the prognosis of some cancers (32, 33). CKS2 and CORO1C
participate in the growth, invasion, and prognosis of several
types of cancers (35–38). Therefore, it is possible that they
are also involved in the progression of MPM. LINC00689 and
SGMS1-AS1 have not been extensively studied. However, there
are some hints that they may be genuine tumor factors. It
has been reported that LINC00689 can promote the growth,
metastasis, and glycolysis of the glioma cells by completing
with miR-338-3p (39). The abnormal expression of SGMS1
has been reported to regulate the epithelial-to-mesenchymal
transition in several tumors (40–42). Moreover, SGMS1-AS1may
be an independent prognostic factor, which needs more data
to verify. Thus, the two lncRNAs are likely to participate in
the invasive process of MPM. The functions of all these genes
are worth further studying, especially the concrete validation
of the lncRNA–miRNA–mRNA axis. The genes included in the
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model exhibited high efficiency by integrating the information
of mRNAs, lncRNAs, and miRNAs. The other genes may also
have high clinical significance. Interestingly, some of these
genes out of the models were also directly associated with the
MPM, which were mainly regarded as potential therapeutic
targets, including CHEK1, DNMT3B, AXL, PAPPA, and miR-
302b. Previous studies suggested that these genes are involved
in the multiple antineoplastic processes of MPM, such as relief
of chemo- and radioresistance, anti-proliferation, inhibition of
growth and migration, and induction of apoptosis (31, 43–48).
Only two small-molecule drugs aiming to target the identified
genes have been preliminarily evaluated, including palbociclib
targeting CDK6 and AZD1775 targeting WEE1. Therefore, more
preclinical experiments should be conducted to screen the drugs
targeting the corresponding genes and assess the antitumor effect
of these identified targets before the clinical studies, especially for
these identified lncRNAs, in consideration of their central roles
in the ceRNA network.

We next clustered the nine co-expression modules from
the 1500 DEmRNAs based on the method of WGCNA and
found that the blue module and the turquoise module were
significantly associated with the overall survival and the risk
model. Importantly, the two hub genes WEE1 and KIF23 in
the turquoise co-expression PPI network have been previously
reported to play important roles in the aggressive property
of MPM, whose inhibition was previously regarded as the
promising therapeutic targets (49, 50). Interestingly, WEE1 and
KIF23 are also included into the survival model, which indicated
the validity of the model and the ceRNA network. Besides, KIF23
was identified as an independent survival predictor in EGA data,
but not in the TCGA data, possibly due to insufficient data.
As for the biological functions of KIF23 and WEE1 in MPM,
they remain largely unknown. The ceRNA mechanisms of the
two genes in MPM also have not been assessed, which may
be important for the growth and metastasis of the MPM cells.
Similarly, the gene enrichment analyses further suggested that
the blue module mainly regulates the function of the extracellular
matrix, indicating that the ceRNA network could affect the
tumor microenvironment and consequently contribute to MPM
progression. Moreover, the functions of the turquoise module
were mainly involved in the process of cell division and in
the structure of cells, whose dysfunction is widely regarded
as the initiation and the invasive factor of cancer. In other
words, we deduce that the ceRNA network mainly regulates the
invasion of MPM by regulating the extracellular matrix and the
cell division.

The tumor-related microenvironment also includes the
immune cells, the fibroblasts, and the endothelial cells,
which could inhibit the development of tumor. However,
with the progression of tumor, the inhibitory signals and
the immune cells could be circumvented by changing the
tumor microenvironment (51). Therefore, there is a complex
relationship between the tumor cells and the immune cells, which
plays important roles in either elimination of tumor cells or
invasion of rumors. Thus, we calculated the proportions of the

22 types of immune cells by the deconvolution of the DEmRNAs
from the ceRNA network, whose result suggested that the ceRNA
network may also be involved in the infiltration of multiple
immune cells and the regulation of the microenvironment
of MPM.

To conclude, we have identified a number of potential
prognostic genes and analyzed their functions related to the
progression of the MPM. A ceRNA regulatory network was
accordingly constructed, where 33 mRNAs, three miRNAs, and
seven lncRNAs are finally identified as the genes associated
with the overall survival. Then an efficient risk score assessment
system based on two lncRNAs, seven mRNAs, and five clinical
factors were accordingly established and validated to predict the
overall survival ofMPMpatients by two independentMPM case–
control studies. Besides, the influence of the ceRNA network
on the tumor microenvironment has also been assessed from
several perspectives, providing a further understanding of the
mechanisms of MPM progression. The follow-up clinical and
experimental researches are needed to further optimize the
models and concretely clarify the role that these genes play in
the MPM.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary materials, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

Ethical approval was not provided for this study on human
participants because the human datasets were obtained from the
public database including TCGA, EGA and GEO, which have
been approved by the ethical reviews. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

WD, BX, and PH: conceptualization.WD and KW:methodology,
software, and writing—original draft preparation. WD, YD,
and XYC: validation. WD and XFC: formal analysis. BX
and PH: writing—review and editing, supervision, and project
administration. WD: visualization. BX: funding acquisition. All
authors have read and agreed to the published version of
the manuscript.

ACKNOWLEDGMENTS

We sincerely thank Dr. Steffen Durinck for their permission
of the EAG dataset. We profusely thank Dona Shaju for
the instruction of downloading, who is a helper in the
EGA database.

Frontiers in Oncology | www.frontiersin.org 17 April 2021 | Volume 11 | Article 615234

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Duan et al. Combined Analysis Prognostic Markers

REFERENCES

1. Odgerel CO, Takahashi K, Sorahan T, Driscoll T, Fitzmaurice C, Yoko-O

M, et al. Estimation of the global burden of mesothelioma deaths from

incomplete national mortality data. Occup Environ Med. (2017) 74:851–8.

doi: 10.1136/oemed-2017-104298

2. Stayner L, Welch LS, Lemen R. The worldwide pandemic of

asbestos-related diseases. Annu Rev Public Health. (2013) 34:205–16.

doi: 10.1146/annurev-publhealth-031811-124704

3. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:

the Rosetta Stone of a hidden RNA language? CELL. (2011) 146:353–8.

doi: 10.1016/j.cell.2011.07.014

4. Credendino SC, Bellone ML, Lewin N, Amendola E, Sanges R, Basu S,

et al. A ceRNA circuitry involving the long noncoding RNA Klhl14-AS,

Pax8, and Bcl2 drives thyroid carcinogenesis. Cancer Res. (2019) 79:5746–57.

doi: 10.1158/0008-5472.CAN-19-0039

5. Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, et al. A novel lncRNA

MCM3AP-AS1 promotes the growth of hepatocellular carcinoma

by targeting miR-194-5p/FOXA1 axis. Mol Cancer. (2019) 18:28.

doi: 10.1186/s12943-019-0957-7

6. Song YX, Sun JX, Zhao JH, Yang YC, Shi JX, Wu ZH, et al. Non-coding RNAs

participate in the regulatory network of CLDN4 via ceRNA mediated miRNA

evasion. Nat Commun. (2017) 8:289. doi: 10.1038/s41467-017-00304-1

7. Li R, Yang YE, Jin J, Zhang MY, Liu X, Liu XX, et al. Identification of lncRNA

biomarkers in lung squamous cell carcinoma using comprehensive analysis

of lncRNA mediated ceRNA network. Artif Cells Nanomed Biotechnol. (2019)

47:3246–58. doi: 10.1080/21691401.2019.1647225

8. Li X, Dai D, Wang H, Wu B, Wang R. Identification of prognostic signatures

associated with long-term overall survival of thyroid cancer patients based

on a competing endogenous RNA network. Genomics. (2020) 112:1197–1207.

doi: 10.1016/j.ygeno.2019.07.005

9. Chen X, Chen Z, Yu S, Nie F, Yan S, Ma P, et al. Long Noncoding RNA

LINC01234 functions as a competing endogenous RNA to regulate CBFB

expression by sponging miR-204-5p in gastric cancer. Clin Cancer Res. (2018)

24:2002–14. doi: 10.1158/1078-0432.CCR-17-2376

10. Zheng L, Xiang C, Li X, Guo Q, Gao L, Ni H, et al. STARD13-correlated

ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness

of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. J

Hematol Oncol. (2018) 11:72. doi: 10.1186/s13045-018-0613-5

11. Felley-Bosco E, Rehrauer H. Non-coding transcript heterogeneity in

mesothelioma: insights from asbestos-exposed mice. INT J MOL SCI. (2018)

19:1163. doi: 10.3390/ijms19041163

12. Renganathan A, Kresoja-Rakic J, Echeverry N, Ziltener G, Vrugt B, Opitz I,

et al. GAS5 long non-coding RNA in malignant pleural mesothelioma. Mol

Cancer. (2014) 13:119. doi: 10.1186/1476-4598-13-119

13. Huang R, Wu J, Zheng Z, Wang G, Song D, Yan P, et al. The construction

and analysis of ceRNA network and patterns of immune infiltration in

mesothelioma with bone metastasis. Front Bioeng Biotechnol. (2019) 7:257.

doi: 10.3389/fbioe.2019.00257

14. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, LeeWH, et al. miRTarBase

2016: updates to the experimentally validated miRNA-target interactions

database. Nucleic Acids Res. (2016) 44:D239–47. doi: 10.1093/nar/gkv1258

15. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective

microRNA target sites in mammalian mRNAs. Elife. (2015) 4:5005.

doi: 10.7554/eLife.05005

16. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding

miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks

from large-scale CLIP-Seq data. Nucleic Acids Res. (2014) 42:D92–7.

doi: 10.1093/nar/gkt1248

17. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence

microRNAs using deep sequencing data.Nucleic Acids Res. (2014) 42:D68–73.

doi: 10.1093/nar/gkt1181

18. Langfelder P, Horvath S. WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics. (2008) 9:559.

doi: 10.1186/1471-2105-9-559

19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust

enumeration of cell subsets from tissue expression profiles. Nat Methods.

(2015) 12:453–7. doi: 10.1038/nmeth.3337

20. Yang L, Lin PC. Mechanisms that drive inflammatory tumor

microenvironment, tumor heterogeneity, and metastatic progression.

Semin Cancer Biol. (2017) 47:185–95. doi: 10.1016/j.semcancer.2017.08.001

21. Zhang WQ, Dai YY, Hsu PC, Wang H, Cheng L, Yang YL, et al. Targeting

YAP in malignant pleural mesothelioma. J Cell Mol Med. (2017) 21:2663–76.

doi: 10.1111/jcmm.13182

22. Cigognetti M, Lonardi S, Fisogni S, Balzarini P, Pellegrini V, Tironi A,

et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for

differentiating mesothelioma from reactive mesothelial proliferations. Mod

Pathol. (2015) 28:1043–57. doi: 10.1038/modpathol.2015.65

23. Zhou JG, Zhong H, Zhang J, Jin SH, Roudi R, Ma H. Development and

validation of a prognostic signature for malignant pleural mesothelioma.

Front Oncol. (2019) 9:78. doi: 10.3389/fonc.2019.00078

24. Walker C, Mojares E, Del RHA. Role of extracellular matrix in

development and cancer progression. Int J Mol Sci. (2018) 19:3028.

doi: 10.3390/ijms19103028

25. Zhou Z, Lu ZR.Molecular imaging of the tumormicroenvironment.AdvDrug

Deliv Rev. (2017) 113:24–48. doi: 10.1016/j.addr.2016.07.012

26. Insua-Rodriguez J, Oskarsson T. The extracellular matrix in breast cancer.Adv

Drug Deliv Rev. (2016) 97:41–55. doi: 10.1016/j.addr.2015.12.017

27. Grossman M, Ben-Chetrit N, Zhuravlev A, Afik R, Bassat E, Solomonov I,

et al. Tumor cell invasion can be blocked by modulators of collagen fibril

alignment that control assembly of the extracellular matrix.Cancer Res. (2016)

76:4249–58. doi: 10.1158/0008-5472.CAN-15-2813

28. Gooskens SL, Klasson TD, Gremmels H, Logister I, Pieters R, Perlman EJ, et al.

TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation

and migration.Mol Oncol. (2018) 12:166–79. doi: 10.1002/1878-0261.12149

29. Sun W, Li S, Yu Y, Jin H, Xie Q, Hua X, et al. MicroRNA-3648 is

upregulated to suppress TCF21, resulting in promotion of invasion and

metastasis of human bladder cancer. Mol Ther Nucleic Acids. (2019) 16:519–

30. doi: 10.1016/j.omtn.2019.04.006

30. Xue Y, Meehan B, Fu Z, Wang X, Fiset PO, Rieker R, et al. SMARCA4 loss

is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nat

Commun. (2019) 10:557. doi: 10.1038/s41467-019-08380-1

31. Walter RF, Vollbrecht C, Werner R, Mairinger T, Schmeller J, Flom E,

et al. Screening of pleural mesotheliomas for dna-damage repair players

by digital gene expression analysis can enhance clinical management of

patients receiving platin-based chemotherapy. J Cancer. (2016) 7:1915–25.

doi: 10.7150/jca.16390

32. Duan Y, Liu T, Li S, Huang M, Li X, Zhao H, et al. CHAF1B promotes

proliferation and reduces apoptosis in 95D lung cancer cells and predicts a

poor prognosis in nonsmall cell lung cancer.ONCOL REP. (2019) 41:2518–28.

doi: 10.3892/or.2019.6994

33. Volk A, Liang K, Suraneni P, Li X, Zhao J, Bulic M, et al. A CHAF1B-

dependent molecular switch in hematopoiesis and leukemia pathogenesis.

Cancer Cell. (2018) 34:707–23.e7. doi: 10.1016/j.ccell.2018.10.004

34. Bonelli MA, Digiacomo G, Fumarola C, Alfieri R, Quaini F, Falco A, et al.

Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces

a synergistic anti-tumor effect in malignant pleural mesothelioma cells.

NEOPLASIA. (2017) 19:637–648. doi: 10.1016/j.neo.2017.05.003

35. Chen D, Xu L, Li X, Chu Y, Jiang M, Xu B, et al. Enah overexpression is

correlated with poor survival and aggressive phenotype in gastric cancer. Cell

Death Dis. (2018) 9:998. doi: 10.1038/s41419-018-1031-x

36. Qi J, Yu Y, Akilli OO, Holland JD, Besser D, Fritzmann J, et al. NewWnt/beta-

catenin target genes promote experimental metastasis and migration of

colorectal cancer cells through different signals. GUT. (2016) 65:1690–701.

doi: 10.1136/gutjnl-2014-307900

37. Mataki H, Enokida H, Chiyomaru T, Mizuno K, Matsushita R, Goto

Y, et al. Downregulation of the microRNA-1/133a cluster enhances

cancer cell migration and invasion in lung-squamous cell carcinoma via

regulation of Coronin1C. J Hum Genet. (2015) 60:53–61. doi: 10.1038/

jhg.2014.111

38. Wang J, Tsouko E, Jonsson P, Bergh J, Hartman J, Aydogdu E, et al. miR-206

inhibits cell migration through direct targeting of the actin-binding protein

coronin 1C in triple-negative breast cancer. Mol Oncol. (2014) 8:1690–702.

doi: 10.1016/j.molonc.2014.07.006

39. Liu X, Zhu Q, Guo Y, Xiao Z, Hu L, Xu Q. LncRNA LINC00689

promotes the growth, metastasis and glycolysis of glioma cells by

Frontiers in Oncology | www.frontiersin.org 18 April 2021 | Volume 11 | Article 615234

https://doi.org/10.1136/oemed-2017-104298
https://doi.org/10.1146/annurev-publhealth-031811-124704
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1158/0008-5472.CAN-19-0039
https://doi.org/10.1186/s12943-019-0957-7
https://doi.org/10.1038/s41467-017-00304-1
https://doi.org/10.1080/21691401.2019.1647225
https://doi.org/10.1016/j.ygeno.2019.07.005
https://doi.org/10.1158/1078-0432.CCR-17-2376
https://doi.org/10.1186/s13045-018-0613-5
https://doi.org/10.3390/ijms19041163
https://doi.org/10.1186/1476-4598-13-119
https://doi.org/10.3389/fbioe.2019.00257
https://doi.org/10.1093/nar/gkv1258
https://doi.org/10.7554/eLife.05005
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkt1181
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.semcancer.2017.08.001
https://doi.org/10.1111/jcmm.13182
https://doi.org/10.1038/modpathol.2015.65
https://doi.org/10.3389/fonc.2019.00078
https://doi.org/10.3390/ijms19103028
https://doi.org/10.1016/j.addr.2016.07.012
https://doi.org/10.1016/j.addr.2015.12.017
https://doi.org/10.1158/0008-5472.CAN-15-2813
https://doi.org/10.1002/1878-0261.12149
https://doi.org/10.1016/j.omtn.2019.04.006
https://doi.org/10.1038/s41467-019-08380-1
https://doi.org/10.7150/jca.16390
https://doi.org/10.3892/or.2019.6994
https://doi.org/10.1016/j.ccell.2018.10.004
https://doi.org/10.1016/j.neo.2017.05.003
https://doi.org/10.1038/s41419-018-1031-x
https://doi.org/10.1136/gutjnl-2014-307900
https://doi.org/10.1038/jhg.2014.111
https://doi.org/10.1016/j.molonc.2014.07.006
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Duan et al. Combined Analysis Prognostic Markers

targeting miR-338-3p/PKM2 axis. Biomed Pharmacother. (2019) 117:109069.

doi: 10.1016/j.biopha.2019.109069

40. Bilal F, Montfort A, Gilhodes J, Garcia V, Riond J, Carpentier S, et al.

Sphingomyelin Synthase 1 (SMS1) downregulation is associated with

sphingolipid reprogramming and a worse prognosis in melanoma. Front

Pharmacol. (2019) 10:443. doi: 10.3389/fphar.2019.00443

41. Liu S, Hou H, Zhang P, Wu Y, He X, Li H, et al. Sphingomyelin

synthase 1 regulates the epithelialtomesenchymal transition mediated by the

TGFbeta/Smad pathway in MDAMB231 cells.Mol Med Rep. (2019) 19:1159–

67. doi: 10.3892/mmr.2018.9722

42. Moorthi S, Burns TA, YuGQ, Luberto C. Bcr-Abl regulation of sphingomyelin

synthase 1 reveals a novel oncogenic-driven mechanism of protein up-

regulation. Faseb J. (2018) 32:4270–83. doi: 10.1096/fj.201701016R

43. SongW,Wang H, LuM, Ni X, Bahri N, Zhu S, et al. AXL inactivation inhibits

mesothelioma growth andmigration via regulation of p53 expression. Cancers

(Basel). (2020) 12:2757. doi: 10.3390/cancers12102757

44. Baird AM, Easty D, Jarzabek M, Shiels L, Soltermann A, Klebe S,

et al. When RON MET TAM in Mesothelioma: All Druggable for

One, and One Drug for All? Front Endocrinol (Lausanne). (2019) 10:89.

doi: 10.3389/fendo.2019.00089

45. Khodayari N, Mohammed KA, Lee H, Kaye F, Nasreen N. MicroRNA-

302b targets Mcl-1 and inhibits cell proliferation and induces apoptosis in

malignant pleural mesothelioma cells. Am J Cancer Res. (2016) 6:1996–2009.

46. Cartron PF, Blanquart C, Hervouet E, Gregoire M, Vallette FM. HDAC1-

mSin3a-NCOR1, Dnmt3b-HDAC1-Egr1 and Dnmt1-PCNA-UHRF1-G9a

regulate the NY-ESO1 gene expression. Mol Oncol. (2013) 7:452–63.

doi: 10.1016/j.molonc.2012.11.004

47. Huang J, Tabata S, Kakiuchi S, The VT, Goto H, Hanibuchi M,

et al. Identification of pregnancy-associated plasma protein A as

a migration-promoting gene in malignant pleural mesothelioma

cells: a potential therapeutic target. Oncotarget. (2013) 4:1172–84.

doi: 10.18632/oncotarget.1126

48. Roe OD, Anderssen E, Sandeck H, Christensen T, Larsson E, Lundgren S.

Malignant pleural mesothelioma: genome-wide expression patterns reflecting

general resistance mechanisms and a proposal of novel targets. Lung Cancer.

(2010) 67:57–68. doi: 10.1016/j.lungcan.2009.03.016

49. Indovina P, Marcelli E, Di Marzo D, Casini N, Forte IM, Giorgi F, et al.

Abrogating G(2)/M checkpoint through WEE1 inhibition in combination

with chemotherapy as a promising therapeutic approach for mesothelioma.

Cancer Biol Ther. (2014) 15:380–8. doi: 10.4161/cbt.27623

50. Kato T, Lee D,Wu L, Patel P, Young AJ,WadaH, et al. Kinesin familymembers

KIF11 and KIF23 as potential therapeutic targets in malignant pleural

mesothelioma. Int J Oncol. (2016) 49:448–56. doi: 10.3892/ijo.2016.3566

51. Quail DF, Joyce JA. Microenvironmental regulation of tumor

progression and metastasis. Nat Med. (2013) 19:1423–37. doi: 10.1038/

nm.3394

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Duan, Wang, Duan, Chen, Chu, Hu and Xiong. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Oncology | www.frontiersin.org 19 April 2021 | Volume 11 | Article 615234

https://doi.org/10.1016/j.biopha.2019.109069
https://doi.org/10.3389/fphar.2019.00443
https://doi.org/10.3892/mmr.2018.9722
https://doi.org/10.1096/fj.201701016R
https://doi.org/10.3390/cancers12102757
https://doi.org/10.3389/fendo.2019.00089
https://doi.org/10.1016/j.molonc.2012.11.004
https://doi.org/10.18632/oncotarget.1126
https://doi.org/10.1016/j.lungcan.2009.03.016
https://doi.org/10.4161/cbt.27623
https://doi.org/10.3892/ijo.2016.3566
https://doi.org/10.1038/nm.3394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Combined Analysis of RNA Sequence and Microarray Data Reveals a Competing Endogenous RNA Network as Novel Prognostic Markers in Malignant Pleural Mesothelioma
	Introduction
	Materials and Methods
	TCGA MPM Dataset
	Data Processing
	Functional Enrichment Analysis
	Construction of an lncRNA-Related ceRNA Network
	Survival Prediction Model Construction and Evaluation
	Identification and Annotation of Gene Modules Related to the Risk Model According to WGCNA
	Evaluation of the Tumor Infiltrating Immune Cells With the Risk Model
	Statistical Analysis

	Results
	Screening of Patients and Identification of DEGs
	Construction of an lncRNA–miRNA–mRNA ceRNA Network
	Construction and Evaluation of Survival Prediction Model
	Identification of Gene Modules and Functional Analyses According to WGCNA
	The Immune Cell Infiltration Analysis in the ceRNA Network

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


