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Abstract 
The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many 
bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. 
Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may 
be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investiga-
tions both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent 
inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, 
hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron 
cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus 
the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and 
hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respec-
tively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs.

Graphical abstract

Keywords 1,3,4-oxadiazol · Acetylcholinesterase · Carbonic anhydrase · In silico study · N-substituted sulfonyl amide

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2932-2789
http://orcid.org/0000-0003-0796-4374
http://crossmark.crossref.org/dialog/?doi=10.1007/s11030-022-10422-8&domain=pdf


2826 Molecular Diversity (2022) 26:2825–2845

1 3

Introduction

Heterocyclic compounds play an essential role in medici-
nal chemistry. These agents are present in various drugs, 
most vitamins, many natural products, biomolecules, and 
biologically active compounds [1–7]. Oxadiazoles, an 
essential family of this class, have significant biological 
activities, such as analgesic, anti-inflammatory, anticon-
vulsive, antiemetic, fungicidal, diuretic, muscle relaxant, 
and antioxidant activity [8–10]. Oxadiazoles have different 
isomers. Among them, 1,3,4-oxadiazoles have become a 
significant construction motif for developing new drugs 
and have been determined to be more effective than other 
isomers in terms of biological activity. Compounds con-
taining 1,3,4-oxadiazole cores, depending on the group 
of which it is a member, have a widespread biological 
activity spectrum, including antibacterial, antiviral, anti-
cancer, antifungal, antihypertensive, analgesic, anticon-
vulsant, anti-inflammatory, and antidiabetic [11]. Due to 
this broad range of biological activities, the oxadiazole 
ring is used in various chemical reactions as a core part of 
a molecule. Moreover, many 1,3,4-oxadiazole motif-con-
taining compounds are widely used in clinical medicine 
and drugs available in the market. For example, raltegravir, 
zibotentan, furamizole, and tiodazosin may be exhibited as 
antiretroviral [12], anticancer [13], antibacterial [14], and 
antihypertensive agents [15], respectively (Scheme S1).

Sulfonamides, which have strong pharmacological 
effects such as anticancer, antitumor, protease inhibitor, 
antibacterial, antifungal, antiprotozoal, anti-inflamma-
tory, and anticonvulsants, have been used as medicines 
for nearly 100 years [16–21]. Since the molecular struc-
ture of sulfonyl amides is similar to the structure of the 
p-aminobenzoic acid being synthesized in our body, it 
interferes with the reactions controlled by this agent and 
affects the functioning of the metabolism [22, 23]. The 
more acidic character of the hydrogens on the nitrogen of 
the N-substituted sulfonyl amides in this class causes it to 
form stronger hydrogen bonds and thus increase its activ-
ity [24–29] (Scheme S2).

Alzheimer’s disease (AD) is an age-related, complex, 
and multifactorial, chronic neurodegenerative disease 
which accounts for most cases of dementia. AD usually 
leads to cognitive dysfunction accompanied by some 
behaviors such as difficulty performing familiar tasks, 
memory loss, problems with language, anxiety, and 
depression. Many factors have been associated with AD 
development, and different hypotheses have been pro-
posed, such as the cholinergic hypothesis, tau hypothesis, 
amyloid hypothesis, oxidative stress, and neuroinflam-
mation. Although many potential drugs targeting these 
hypotheses have been tested to treat AD, there is no 

definitive cure. Acetylcholinesterase (AChE; EC 3.1.1.7) 
is currently one of the only well-validated molecular tar-
gets for AD [30, 31]. The AChE inhibitors (AChEIs) used 
in this direction decrease the hydrolysis of acetylcholine 
(ACh) into acetate and choline (Ch) and, with this, raise 
the ACh levels at the synaptic cleft that may stimulate cho-
linergic receptors and further promote memory function 
[32–34]. For example, AChE inhibitors such as tacrine, 
galantamine, rivastigmine, and donepezil remain the lead-
ing choice for treating AD today [35].

Carbonic anhydrases (CAs; EC 4.2.1.1) [36] are zinc 
metalloenzymes [37] that activate the reversible reaction 
of bicarbonate ions and carbon dioxide in eukaryotes and 
prokaryotes [38]. CAs are contained in many crucial bio-
synthetic reactions, such as glucogenesis, lipogenesis, and 
ureagenesis. Moreover, they are also involved in numerous 
physiological processes like acid–base balance, electrolyte 
secretion, calcification, and transport of carbon dioxide and 
bicarbonate between tissues [39, 40]. hCA activators and/
or inhibitors (hCAIs) display many bioactivities containing 
anti-Alzheimer, antiobesity, antiepileptic, anticancer, antiin-
fective, antiglaucoma, and diuretic effects [41]. Therefore, 
hCA I (expressed in erythrocytes) and hCA II (expressed in 
testis, bone osteoclasts, brain, gastrointestinal tract, kidney, 
erythrocytes, eye, gastrointestinal tract, lung) among the iso-
enzymes in this class are the most studied ones.

In light of all this literature information, our current 
efforts were to design novel multi-target AChEIs and hCAIs, 
mainly aiming to decrease administration dose within the 
safety limits of commercially available drugs. In this direc-
tion, a novel series N-substituted sulfonyl amide deriva-
tive (6a–j) were designed, synthesized, characterized, and 
investigated the biological activities of these compounds on 
mentioned above target enzymes by this strategy. Because 
AChEIs generally have high cytotoxicity, the possibility 
that they may counteract their application as central nerv-
ous system-targeting therapeutics also has been considered. 
Therefore, this study also was investigated cytotoxicity and 
neurotoxicity profiles of compounds (6a, 6d, and 6h) being 
the most potent representative versus the enzymes men-
tioned above on the cortex neuron cells and neuroblastoma 
SH-SY5Y cell line. Additionally, in silico studies were per-
formed to assess those inhibitors’ inhibition mechanisms 
against AChE and hCAs.

Experimental

General procedure for the preparation 
of the compounds

Melting points were determined by a Yanagimoto micro-
melting point apparatus and are uncorrected. IR spectra were 
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acquired on a SHIMADZU Prestige-21 (200 VCE) spec-
trometer. 1H and 13C NMR spectra were acquired at VAR-
IAN Infinity Plus in 300 and 75 Hz, respectively. 1H and 
13C chemical shifts are referenced to the internal deuterated 
solvent. The elemental analysis was carried out with a Leco 
CHNS-932 instrument. All chemicals were purchased from 
Sigma-Aldrich.

Ethyl 4‑(aminosulfonyl)benzoate (2)

4-Sulfamoylbenzoic acid (10 mmol) was refluxed for 24 h 
in 50 mL of ethanol and 1.0 mL of sulfuric acid was used 
as a catalyst. At the end of the reaction, the solvent was 
evaporated and the obtained product was washed with cold 
water and dried.

4‑sulfonylamidebenzohydrazide (3)

Ethyl-4-(aminosulfonyl)benzoate (10 mmol) and hydra-
zine hydrate (25 mmol) in ethanol were refluxed for 24 h at 
70 °C. The reaction mixture was cooled to room temperature 
and the solid was filtered then washed with water and dried.

4‑(5‑thioxo‑4,5‑dihydro‑1,3,4‑oxadiazol‑2‑yl)
benzenesulfonamide (4)

Carbon sulfur (2.5 mmol) and 4-sulfonylamidebenzohy-
drazide (3) (1 mmol) were dissolved in DMF (6 mL) and 
 K2CO3 (1 mmol) was added to the mixture. Then, it was 
stirred for 12 h at room temperature. After the reaction was 
completed, the mixture was cooled to room temperature and 
poured into ice cold water. It was then filtered, dried, and 
crystallized.

4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)benzenesulfonamide 
(5)

Iodoethane (1.2 mmol) and 4-(5-thioxo-4,5-dihydro-1,3,4-
oxadiazol-2-yl)benzenesulfonamide (1 mmol) were dis-
solved in DMF (6 mL) and  K2CO3 (1 mmol) was added 
to the mixture, then, stirred for 12 h at room temperature. 
After the reaction was completed. The mixture was cooled 
to room temperature and poured into ice cold water. It was 
then filtered, dried, and crystallized.

N‑substituted ((ethylthio‑1,3,4‑oxadiazol‑2‑yl)phenyl)
sulfonyl amide derivatives (6a–j)

Acylhalide derivatives (1.2 mmol) and 4-(5-thioxo-4,5-di-
hydro-1,3,4-oxadiazol-2-yl)benzenesulfonamide (1 mmol) 
were dissolved in pyridine (5 mL). Then, it was heated for 
12 h at 60 °C. After the reaction was completed, the mix-
ture was cooled to room temperature and poured into ice 

cold water. It was then filtered, dried, and crystallized from 
acetone. The prepared compounds shown in Scheme 1 were 
characterized by 1H NMR, 13C NMR, IR, and elemental 
analysis.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
benzamide (6a)

Yield 75%, m.p. 178 °C. IR (νmax,  cm−1): 3666 (N–H), 
1683 (C=O), 1458 and 1386 (C–H), 1255 and 1168 (S=O). 
1H NMR (300 MHz, DMSO-d6, ppm): 8.21 (2H, d,=CH), 
8,16 (2H, d,=CH), 7,87 (2H, d,=CH), 7,64 (1H, m,=CH), 
7,51 (2H, m,=CH), 3.40 (2H, m, –CH2) 1.45 (3H, t, –CH3). 
13C NMR (75 MHz, DMSO-d6, ppm): 170.1, 165.7, 164.2, 
149.7, 147.3, 134.3, 131.8, 129.4, 129.1, 127.7, 27.4, 15.5. 
Anal. calcd. for  C17H15N3O4S2: C, 52.43; H, 3.88; N, 10.79; 
O, 16.43; S, 16.47; found: C, 52.47; H, 3.92; N, 10.83; O, 
16.55; S, 16.54.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]
sulfonyl)‑4‑methylbenzamide (6b)

Yield 80%, m.p. 191 °C. IR (νmax,  cm−1): 3678 (N–H), 1732 
(C=O), 1452 and 1388 (C–H), 1171 and 1068 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.25 (2H, d,=CH), 8,21 
(2H, d,=CH), 7,82 (2H, d,=CH), 7,31 (2H, d,=CH), 3.37 
(2H, m, –CH2), 2.35 (3H, s, –CH3), 1.43 (3H, t, –CH3). 
13C NMR (75 MHz, DMSO-d6, ppm): 171.2, 165.5, 164.6, 
144.6, 142.5, 129.8, 129.4, 129.2, 129.0, 127.7, 27.4, 21.8, 
15.5. Anal. calcd. for  C18H17N3O4S2: C, 53.58; H, 4.25; 
N, 10.41; O, 15.86; S, 15.89; found: C, 53.61; H, 4.33; N, 
10.50; O, 15.99; S, 15.94.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]
sulfonamido)‑2‑oxoethyl acetate (6c)

Yield 84%, m.p. 209 °C. IR (νmax,  cm−1): 3672 (N–H), 
1738 (C=O), 1451 and 1382 (C–H), 1230 and 1190 (S=O). 
1H NMR (300 MHz, DMSO-d6, ppm): 8.23 (2H, d,=CH), 
8,09 (2H, d,=CH), 4.55 (2H, s, –CH3), 3.38 (2H, m, –CH2), 
2.00 (3H, s, –CH3), 1.46 (3H, t, –CH3). 13C NMR (75 MHz, 
DMSO-d6, ppm): 171.4, 166.9, 164.5, 155.3, 129.6, 
128.4, 127.7, 126.0, 64.7, 27.4, 21.0, 15.3. Anal. calcd. 
for  C14H15N3O6S2: C, 43.63; H, 3.92; N, 10.90; O, 24.91; 
S, 16.64; found: C, 43.74; H, 3.95; N, 10.96; O, 24.99; S, 
16.70.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
butyramide (6d)

Yield 72%, m.p. 142 °C. IR (νmax,  cm−1): 3675 (N–H), 1708 
(C=O), 1455 and 1385 (C–H), 1113 and 1106 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.20 (2H, d,=CH), 8,08 
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(2H, d,=CH), 3.33 (2H, m, –CH2), 2.51 (2H, m, –CH2), 
2.20 (2H, m, –CH2), 1.44 (3H, t, –CH3), 0.75 (3H, t, –CH3). 
13C NMR (75 MHz, DMSO-d6, ppm): 177.1, 165.5, 160.5, 
142.7, 129.2, 127.5, 119.2, 38.1, 27.6, 18.4, 15.5, 13.8. 
Anal. calcd. for  C14H17N3O4S2: C, 47.31; H, 4.82; N, 11.82; 
O, 18.01; S, 18.04; found: C, 47.35; H, 4.87; N, 11.86; O, 
18.06; S, 18.10.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
pentanamide (6e)

Yield 76%, m.p. 140 °C. IR (νmax,  cm−1): 3662 (N–H), 
1712 (C=O), 1452 and 1389 (C–H), 1168 and 1071 
(S=O). 1H NMR (300 MHz, DMSO-d6, ppm): 8.23 (2H, 
d,=CH), 8,09 (2H, d,=CH), 3.36 (2H, m, –CH2), 2.23 (2H, 
t, –CH2), 1.44 (3H, t, –CH3), 1.38 (2H, m, –CH2), 1.16 
(2H, m, –CH2), 0.79 (3H, t, –CH3). 13C NMR (75 MHz, 
DMSO-d6, ppm): 173.0, 166.1, 164.8, 142.4, 129.6, 128.7, 
128.0, 36.0, 27.1, 25.8, 22.2, 16.3, 14.6. Anal. calcd. for 

 C15H19N3O4S2: C, 48.76; H, 5.18; N, 11.37; O, 17.32; S, 
17.36; found: C, 48.82; H, 5.20; N, 11.42; O, 17.38; S, 
17.42.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
hexanamide (6f)

Yield 85%, m.p. 122 °C. IR (νmax,  cm−1): 3681 (N–H), 
1695 (C=O), 1454 and 1385 (C–H), 1115 and 1071 
(S=O). 1H NMR (300 MHz, DMSO-d6, ppm): 8.23 (2H, 
d,=CH), 8,11 (2H, d,=CH), 3.40 (2H, m, –CH2), 2.20 (2H, 
t, –CH2), 1.44 (3H, t, –CH3), 1.38 (2H, m, –CH2), 1.25 
(2H, m, –CH2), 1.11 (2H, m, –CH2), 0.78 (3H, t, –CH3). 
13CNMR (75 MHz, DMSO-d6, ppm): 171.8, 166.1, 163.6, 
142.1, 129.6, 128.6, 127.4, 34.7, 31.4, 27.5, 24.9, 22.2, 
15.6, 14.6. Anal. calcd. for  C16H21N3O4S2: C, 50.11; H, 
5.52; N, 10.96; O, 16.69; S, 16.72; found: C, 50.18; H, 
5.57; N, 10.99; O, 16.74; S, 16.75.
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Scheme 1  Synthesis of the novel N-substituted sulfonyl amide derivatives (6a–j)
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N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
heptanamide (6g)

Yield 74%, m.p. 109 °C. IR (νmax,  cm−1): 3669 (N–H), 1714 
(C=O), 1453 and 1387 (C–H), 1160 and 1068 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.21 (2H, d,=CH), 8,13 
(2H, d,=CH), 3.42 (2H, m, –CH2), 2.21 (2H, t, –CH2), 1.43 
(3H, t, –CH3), 1.37 (2H, m, –CH2), 1.23 (2H, m, –CH2), 1.19 
(2H, m, –CH2), 1.10 (2H, m, –CH2), 0.79 (3H, t, –CH3). 
13C NMR (75 MHz, DMSO-d6, ppm): 171.8, 166.1, 163.9, 
142.4, 129.2, 128.0, 127.7, 35.9, 31.4, 28.5, 27.4, 24.5, 
22.5, 15.5, 14.5. Anal. calcd. for  C17H23N3O4S2: C, 51.36; 
H, 5.83; N, 10.57; O, 16.10; S, 16.13; found: C, 51.42; H, 
5.86; N, 10.62; O, 16.14; S, 16.15.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
octanamide (6h)

Yield 80%, m.p. 99 °C. IR (νmax,  cm−1): 3678 (N–H), 1733 
(C=O), 1455 and 1389 (C–H), 1168 and 1071 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.22 (2H, d,=CH), 8,08 
(2H, d,=CH), 3.36 (2H, m, –CH2), 2.52 (2H, m, –CH2), 2.19 
(2H, t, –CH2), 1.42 (3H, t, –CH3), 1.42 (2H, m, –CH2), 1.23 
(2H, m, –CH2), 1.13 (2H, m, –CH2), 0.79 (2H, m, –CH2), 
0.77 (3H, t, –CH3). 13C NMR (75 MHz, DMSO-d6, ppm): 
172.5, 165.6, 164.8, 142.4, 129.2, 128.0, 127.7, 36.0, 
34.33, 31.8, 29.7, 28.9, 24.6, 22.7, 15.5, 14.5. Anal. calcd. 
for  C18H25N3O4S2: C, 52.53; H, 6.12; N, 10.21; O, 15.55; 
S, 15.58; found: C, 52.46; H, 6.18; N, 10.24; O, 15.67; S, 
15.61.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
nonanamide (6i)

Yield 60%, m.p. 110 °C. IR (νmax,  cm−1): 3662 (N–H), 1739 
(C=O), 1458 and 1385 (C–H), 1117 and 1071 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.23 (2H, d,=CH), 8,12 
(2H, d,=CH), 3.37 (2H, m, –CH2), 2.21 (2H, m, –CH2), 
1.43 (3H, t, –CH3), 1.37 (2H, m, –CH2), 1.34–1.00 (10H, 
m, –CH2), 0.85 (3H, t, –CH3). 13C NMR (75 MHz, DMSO-
d6, ppm): 173.8, 165.9, 164.8, 142.4, 129.2, 128.0, 127.6, 
35.7, 33.5, 31.9, 29.2, 28.8, 27.3, 25.1, 22.7, 15.5, 14.5. 
Anal. calcd. for  C19H27N3O4S2: C, 53.62; H, 6.39; N, 9.87; 
O, 15.04; S, 15.07; found: C, 53.69; H, 6.42; N, 9.99; O, 
15.12; S, 15.20.

N‑([4‑(5‑(ethylthio)‑1,3,4‑oxadiazol‑2‑yl)phenyl]sulfonyl)
dodecanamide (6j)

Yield 76%, m.p. 88 °C. IR (νmax,  cm−1): 3680 (N–H), 1695 
(C=O), 1454 and 1384 (C=N), 1167 and 1068 (S=O). 1H 
NMR (300 MHz, DMSO-d6, ppm): 8.22 (2H, d,=CH), 8,09 
(2H, d,=CH), 3.38 (2H, m, –CH2), 2.20 (2H, m, –CH2), 

1.42 (3H, t, –CH3), 1.37 (2H, m, –CH2), 1.33–0.98 (16H, 
m, –CH2), 0.85 (3H, t, –CH3). 13C NMR (75 MHz, DMSO-
d6, ppm): 174.2, 166.6, 164.2, 142.7, 129.3, 127.6, 127.3, 
36.1, 34.3, 33.5, 32.7, 30.5, 29.4, 28.5, 27.8, 26.4, 25.2, 
23.8, 15.9, 14.3. Anal. calcd. for  C22H33N3O4S2: C, 56.50; 
H, 7.11; N, 8.99; O, 13.69; S, 13.71; found: C, 56.58; H, 
7.16; N, 9.06; O, 13.72; S, 13.83.

Biological studies

AChE and hCAs activity assay

In the present work, AChE from Electrophorus electricus 
(Sigma C2888) was purchased from Sigma‐Aldrich Chemie 
GmbH. In vitro effects on AChE activity of the newly syn-
thesized N-substituted sulfonyl amides (6a–j) incorporating 
1,3,4-oxadiazol structural motif and reference compound, 
THA, were evaluated by the method of Ellman et al. [42, 
43]. Analysis results were obtained spectrophotometri-
cally at 412 nm using acetylthiocholine iodide (PubChem 
CID: 74629, Sigma 01480) as a substrate as in our previous 
assays [44, 45]. Also, hCAs (hCA I and II) were purified 
from human erythrocytes by Sepharose‐4B‐l‐tyrosine‐sul-
fanilamide affinity chromatography. The inhibition effects 
of these N-substituted sulfonyl amide derivatives (6a–j) and 
reference compound, AAZ versus the esterase activity of the 
hCAs were determined by following the change in absorb-
ance at 348 nm according to the assay defined by Verporte 
et al. [46–48]. hCAs activities were measured using 4-nitro-
phenyl acetate (PubChem CID: 13,243, Sigma N8130). All 
the measurements were repeated thrice.

AChE and hCAs kinetic assay

To investigate the in vitro inhibitory mechanisms of the 
novel synthesized N-substituted sulfonyl amides (6a–j) 
incorporating 1,3,4-oxadiazol structural motif, kinetic stud-
ies were made with the variable compound and substrate 
concentrations, and  IC50 curves, Michaelis–Menten graphs 
[49–51], and Lineweaver–Burk curves [52–54] were gener-
ated as previously reported by Türkeş et al. [55–57]. Solu-
tions of the novel synthesized all agents (6a–j), THA, and 
AAZ were prepared in dimethyl sulfoxide (PubChem CID: 
679, Sigma D8418, DMSO) at an initial concentration of 
1 mg/mL. The concentration of DMSO in the final reaction 
mixture was approx. 1%.  IC50 and KI values for these deriva-
tives were computed from the observed data, and the types 
of inhibition of AChE and hCAs were determined as in our 
previous studies [58–60]. Analysis of the data and draw-
ing of graphs were realized using GraphPad Prism version 
8 for Mac (GraphPad Software, La Jolla California USA). 
The inhibition constants were calculated by SigmaPlot ver-
sion 12 for Windows (Systat Software, San Jose California 
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USA). The fit of enzyme inhibition models was compared 
using the extra sum-of-squares F test and Akaike’s corrected 
information criterion approach. The results were exhibited 
as mean ± standard error of the mean (95% confidence inter-
vals). Differences between data sets were considered statisti-
cally significant when the p value was less than 0.05.

Cell‑based assay

The cortex neuron cells and neuroblastoma SH-SY5Y 
cell line was obtained from the Department of Medical 
Pharmacology, Faculty of Medicine, Atatürk University 
(Erzurum, Turkey). The cells were cultured in Dulbecco’s 
modified Eagle’s medium (Gibco, Grand Island, NY, USA) 
supplemented with 15% fetal bovine serum, and 1% anti-
biotic (penicillin, streptomycin, and amphotericin B), in a 
humidified atmosphere of 95% air and 5%  CO2 at 37 °C, 
and grown to 80% confluence [61, 62]. Before cell treat-
ment, the complete medium was replaced with a reduced 
serum medium (i.e., with 2% fetal bovine serum). The novel 
synthesized N-substituted sulfonyl amide derivatives 6a, 6d, 
and 6h, which are the most potent representative versus the 
target enzymes, were prepared as stock solutions in DMSO 
at an initial concentration of 1 mg/mL. The cytotoxicity of 
these derivatives 6a, 6d, and 6h was compared with standard 
compound cisplatin. They were administered in four differ-
ent doses (10, 100, 500, and 1000 µM) in a quadruplicate. 
After 24 h, on cortex neuron cells and SH-SY5Y cell line 
treated by seeding in 96-well plates with compounds 6a, 6d, 
and 6h, the administration was terminated, and the MTT 
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro-
mide) cytotoxicity test was performed. After the medium 
aspirating process of 10 μL, an MTT solution was added 
to each well. The plates containing the applications were 
kept for 4 h in an environment containing 5%  CO2 at 37 °C 
with MTT solution [63]. To dissolve the formazan crystals 
formed as a result of MTT, 100 μL DMSO was added to 
each well [64]. To determine the density of formazan crys-
tals, data were obtained by reading plates with a Multiskan 
Go Microplate Spectrophotometer reader at a wavelength of 
570 nm. Additionally, morphological changes occurring in 
the cortex neuron cells and SH-SY5Y cell line were visu-
alized with an inverted microscope (Leica Microsystems, 
Wetzlar, Germany). The images obtained were recorded 
with × 200 magnification of the microscope [65]. GraphPad 
Prism version 8 for Mac (GraphPad Software, La Jolla Cali-
fornia USA) was used for the statistical analyses to assess 
the results obtained in the study. The One-way ANOVA 
method was used to analyze the data, and the significance 
values were compared with the control group. Differences 
between data sets were considered statistically significant 
when the p value was less than 0.05.

Computational studies

ADME‑Tox assay

In silico ADME-Tox assays were computed using 
Schrödinger Small-Molecule Drug Discovery Suite 
(Schrödinger Release 2021–1 panels for Mac: Maestro 
[66], LigPrep [67], QikProp [68, 69]; Schrödinger, LLC, 
NY, USA) and SwissADME platform for the novel synthe-
sized N-substituted sulfonyl amides (6a–j) incorporating 
1,3,4-oxadiazol structural motif. The ligands (compounds 
6a–j and the reference compounds, THA and AAZ) were 
firstly sketched using ChemDraw [70] version 19.1 for Mac 
(PerkinElmer, Inc., Waltham, MA, USA), were prepared 
by LigPrep, and were lastly evaluated utilizing QikProp in 
normal processing mode. QikProp properties and prediction 
ranges for ADME-Tox include: MW (130.0–725.0), Dipole 
(1.0–12.5), Volume (500.0–2000.0), QPlogPoct (8.0–35.0), 
QPlogPw (4.0–45.0), QPlogPo/w (–2.0 to 6.5), QPlogS 
(–6.5 to 0.5), QPPCaco (< 25 poor, great > 500), QPlogBB 
(–3.0 to 1.2), QPPMDCK (< 25 poor, great > 500), QPlogKp 
(–8.0 to –1.0), QPlogKhsa (–1.5 to 1.5), HOA (< 25% poor, 
high > 80%), PSA (7.0–200.0), number of violations of 
Lipinski’s rule of five (max. 4) [71], number of violations 
of Jorgensen’s rule of three (max. 3) [72], and PAINS alert 
[73].

Molecular docking assay

The potential modes of the binding of for the novel syn-
thesized N-substituted sulfonyl amides (6a–j) incor-
porating 1,3,4-oxadiazol structural motif to target pro-
teins (AChE, hCA I, and hCA II) were investigated with 
Schrödinger Small-Molecule Drug Discovery Suite 
2021–1 for Mac (Schrödinger, LLC, NY, USA), under the 
Maestro graphical user interface. Other associated panels 
included Protein Preparation Wizard [74], SiteMap [75], 
LigPrep [76], Receptor Grid Generation [77], Ligand 
Docking [78], and Prime MM-GBSA [79]. The crystal 
structures of AChE [80] (Species: Homo sapiens; PDB 
code 4EY7; Resolution: 2.35 Å; R-Values free, work, 
and observed: 0.211, 0.175, and 0.177, respectively), 
hCA I [81] (Species: Homo sapiens; PDB code 6I0L; 
Resolution: 1.40 Å; R-Values free, work, and observed: 
0.237, 0.204, and 0.206, respectively), and hCA II [82] 
(Species: Homo sapiens; PDB code 5NY3; Resolution: 
1.40 Å; R-values free, work, and observed: 0.172, 0.156, 
and 0.157, respectively) were obtained from Protein Data 
Bank (http:// www. rcsb. org/) [83] were applied for in sil-
ico molecular docking. The 4EY7, 6I0L, and 5NY3 in 
the crystal structures were minimized using the Protein 
Preparation Wizard tool [84] has been used for preparing 
the protein structure where bond orders were assigned 

http://www.rcsb.org/
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and hydrogen atoms were added as well as restrained 
minimization step has also been done using optimized 
potential liquid simulations 4 (OPLS4) force field [85] at 
pH 7.4 ± 0.5 [86]. The active sites of theirs were predicted 
utilizing the SiteMap panel [87]. The ligand-binding 
sites were calculated using the Receptor Grid Genera-
tion tool [88]. LigPrep module was used for preparing 
all the synthesized N-substituted sulfonyl amides (6a–j) 
where bond order and the bond angle were assigned as 
well as minimization was done using OPLS4 force field 
[89]. The prepared small molecules were docked into the 
binding sites of the target enzymes by the Ligand Docking 
module with Glide extra precision (XP) mode [90–92]. 
MM-GBSA relative binding free energy computations 
[93–95] of target proteins (4EY7, 6I0L, and 5NY3) with 
the agents were carried out using the Prime tool in the 
VSGB energy model and OPLS4 force field [96, 97].

Results and discussion

Drug design strategy and chemistry

Ethyl 4-(aminosulfonyl)benzoate was prepared from sul-
famoylbenzoic acid in ethanol with catalytic amount of 
sulfuric acid by refluxing for 24 h. The ester group of the 
ethyl 4-(aminosulfonyl)benzoate was converted to 4-sulfo-
nylamidebenzohydrazide with hydrazine hydrate in etha-
nol at 70 °C for 24 h. 4-(5-thioxo-4,5-dihydro-1,3,4-oxa-
diazol-2-yl)benzene sulfonamide was prepared by reacting 
Carbon disulfur and 4-sulfonylamide benzohydrazide in 
DMF in the presence of  K2CO3. 4-(5-(ethylthio)-1,3,4-
oxadiazol-2-yl) benzene sulfonamide was synthesized 
using Iodoethane and the compound 4 in DMF in basic 
condition. The final targeted compounds (6a–j) were pre-
pared by acylhalide derivatives and the compound 5 in 
pyridine at 60 °C. The prepared compounds (6a–j) shown 
in Scheme 1 were characterized by 1H NMR, 13C NMR, 
IR, and elemental analysis. From the 1H NMR spectra of 
the compounds, sulfanilamide NH resonances at very low 
field due to electron delocalization and the =CH proton 
peaks on aromatic ring come between 8.05 and 8.25 ppm. 
The signals of carbonyl and oxadiazole ring are seen at 
around 170 ppm and 165 ppm, respectively, in the 13C 
NMR spectra. In the infrared spectra of compounds 
6a–j, it was possible to observe the absorptions around 
3660   cm−1 and 1700   cm−1 relating to N–H and C=O 
stretchings, respectively. As seen in the literature [98], 
there are two peaks assigned to S=O as asymmetric and 
symmetric stretching which are appeared around 1300 and 
1100  cm−1, respectively. All spectra and elemental analy-
ses support the structure of the synthesized compounds.

Biological studies

Inhibition study and structure–activity relationship assay

The hCAs and AChE inhibitory impact for all herein pre-
pared target N-substituted sulfonyl amides (6a–j) incorpo-
rating 1,3,4-oxadiazol structural motif, as well as the stand-
ards, hCAI acetazolamide (AAZ; KIs for hCA I and hCA II 
439.17 ± 9.30 and 98.28 ± 1.69 nM, respectively) and AChEI 
tacrine (THA; KIs for AChE 155.29 ± 0.82 nM), were esti-
mated versus the ubiquitous cytosolic hCA I, II isoforms, 
and AChE by the use of the Verpoorte’s and Ellman’s meth-
ods, respectively. Certain structure–activity relationships 
(SAR) could be drawn from the shown inhibition data in 
Table 1.

Regarding the hCAs inhibitory activities of N-substi-
tuted sulfonyl amides, all derivatives (6a–j) displayed 
potent inhibitory action against the ubiquitous cytosolic 
hCA I isoform with KI constants ranging from 18.66 ± 0.21 
to 59.62 ± 0.53 nM (Table 1). In particular, N-substituted 
sulfonyl amide 6d (propyl substituted), 6a (phenyl substi-
tuted), and 6g (hexyl substituted) exhibited the best hCA I 
inhibitory activity with two-digit nanomolar activities with 
KIs equal 18.66 ± 0.21, 21.64 ± 0.25, and 23.01 ± 0.29 nm, 
respectively. Interestingly, the kinetic value of the com-
pound 6d, which is the lowest in the series, displayed a 
23.5-fold lower KI when compared to the reference AAZ 
(KI = 439.17 ± 9.30 nM). It is worth stressing that replace-
ment of a propyl group (derivative 6d; KI = 18.66 ± 0.21 nM) 
with a tolyl group (derivative 6b; KI = 59.62 ± 0.53 nM) 
resulted in a more than threefold inhibition increase for the 
cytosolic hCA I isoform. On the other hand, it is determined 
that elongation of the sulfonyl acetamide linker in the butyl 
tail-bearing compound 6e (KI = 47.15 ± 0.36 nM) resulted in 
an increase in isoform hCA I inhibitory activity (derivatives 
6f, 6g, 6h, 6i, and 6j; with KIs of 33.10 ± 0.47, 23.01 ± 0.29, 
34.61 ± 0.51, 38.40 ± 0.46, and 31.01 ± 0.41  nM, 
respectively).

Moreover, exploring the inhibitory activity of 
herein reported N-substituted sulfonyl amide deriva-
tives (6a–j) versus the physiologically dominant hCA 
II isoform revealed that it was effectively inhibited by 
sulfonyl amides (6a–j) with KIs spanning in the range 
9.33 ± 0.13–120.80 ± 0.34  nM (Table  1). Superiorly, 
compound 6a (phenyl substituted) exerted single-
digit nanomolar inhibitory activity versus hCA II iso-
form (KIs = 9.33 ± 0.13 nM), thus resulting in 10.5-fold 
higher potency when compared to the reference AAZ 
(KI = 98.28 ± 1.69 nM), besides, compounds 6b, 6c, and 
6d displayed KI constants close to each other 17.84 ± 0.23, 
22.20 ± 0.22, and 23.18 ± 0.26 nM, respectively. Contrari-
wise, hCA II isoform was weakly inhibited by compounds 
6h and 6i with KIs of 120.80 ± 0.34 and 112.70 ± 0.36 nM, 
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respectively. It is worth mentioning that replacing the 
tolyl tail of derivative 6b (KI = 17.84 ± 0.23 nM) with a 
phenyl one, as in compound 6a, resulted in about two-
fold enhanced inhibitory potency against hCA II isoform 
(KI = 9.33 ± 0.13  nM). Furthermore, branching of the 
sulfonyl acetamide linker and its elongation decreased 
the hCA II inhibitory action for the heptyl tail-bearing 
derivative 6h. Moreover, it is worth highlighting that 
hCAIs profiles presented in Table 1 hinted out that com-
pound 6b demonstrated interesting selectivity versus the 
ubiquitous cytosolic hCA I isoform (selectivity index; 
SI = 3.34), whereas compound 6h has shown selectivity 
against the dominant hCA II isoform (SI = 3.49). Hence, 
further structural modifications are required to optimize 
the hCA II/I selectivity. This selectivity for compounds 6b 
and 6h makes understand them as exciting and promising 
candidates for further improvement as potential hCAIs.

Recently, an increasing number of different hCAIs than 
the sulfonamides and their bioisosteres have been identified. 
In this context, the study by Sharma et al. [99] reported that 
two novel series of 1,3,4-oxadiazole benzenesulfonamide 
hybrids 3 and 4, having twenty novel compounds, have been 
designed and synthesized to assess their inhibition potential 
as hCAIs against hCA I, II, IX, and XII. They found that 
potent inhibitory activity versus hCA I has been exhibited by 
derivatives 3g and 4j, 3.5-fold of order better than standard 
drug AAZ and derivative 4j effectively inhibited glaucoma-
associated hCA II isoform as well as tumor-associated hCA 
IX isoform. Rutkauskas et al. [100] reported that a series of 
N-aryl-β-alanine derivatives and diazobenzenesulfonamides 
containing aliphatic rings were designed, characterization, 
synthesized, and their binding to hCA I, II, VI, VII, XII, and 
XIII isoenzymes was studied using the fluorescent thermal 
shift assay and isothermal titration calorimetry. They deter-
mined that 4-substituted diazobenzenesulfonamides were 
more potent hCA binders than N-aryl-β-alanine derivatives.

The obtained inhibition constants for the AD-related 
AChE (Table 1) showed that all sulfonyl amides (6a–j) 
were capable of inhibiting this enzyme in the low 
nanomolar range (KIs of 23.11 ± 0.77–52.49 ± 1.27 nM). 
Derivatives 6f (pentyl substituted) and 6h (heptyl sub-
stituted) emerged as the most potent herein reported 
AChEI endowed with two-digit nanomolar KI values 
equal 39.34 ± 1.13 and 23.11 ± 0.77  nM, respectively 
(Table 1). In addition, the derivative 6h showed a KI 
value 6.7-fold higher when compared to the reference 
THA (KI = 155.29 ± 0.82 nM). Similar to the SAR for 
inhibition of hCA I; replacement of a tolyl group (com-
pound 6b; KI = 47.03 ± 1.71 nM) with a heptyl group 
(compound 6h; KI = 23.11 ± 0.77 nM) was advantageous 

for inhibitory activity versus AChE. Also, elongation of 
the sulfonyl acetamide linker incorporated in the pro-
pyl tail-bearing derivative 6d was more beneficial for 
AChE inhibition (compound 6d; KI = 48.38 ± 1.75 nM), 
while the elongation of such linker resulted in about 
twofold increased activity versus AChE (compound 6h; 
KI = 23.11 ± 0.77 nM).

Cell‑based assay

Because the cortex neuron cells and neuroblastoma SH-
SY5Y cell line express one or more neurofilament proteins, 
specific norepinephrine uptake, and neuronal marker enzyme 
activity, since the early 1980s, it is commonly employed 
in experimental neurological studies, including metabo-
lism, function, and neuronal differentiation analysis, con-
nected to neuroprotection, neurotoxicity, neuroadaptive, 
and neurodegenerative processes [101]. Thus, to gain fur-
ther insight into the therapeutic potential for the treatment 
for AD of these selected novel synthesized N-substituted 
sulfonyl amide derivatives 6a, 6d, and 6h incorporating 
1,3,4-oxadiazol structural motif, which are the most potent 
representative versus the target enzymes, their cell viabil-
ity, and proliferation activities were determined using the 
cortex neuron cells and neuroblastoma SH-SY5Y cell line. 
The colorimetric MTT assay (3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide) was carried to examine 
the potential cytotoxic effects of these agents. Images of 
cortex neuron cells and SH-SY5Y cell line obtained by 
inverted microscope are given in Fig. 1, respectively. The 
derivatives 6a, 6d, and 6h evaluated in our study caused a 
decrease in cell viability after 24 h of incubation, depend-
ing on the dose  (IC50s = 0.95, 0.88, 0.82, and 0.64 µM for 
6a, 0.99, 0.93, 0.87, and 0.74 µM for 6d, and 0.98, 0.92, 
0.65, and 0.58 µM for 6h, in four different doses, 10, 100, 
500, and 1000 µM, respectively). Moreover, they have been 
determined to display a propensity for high cell viability and 
neuroprotection at low concentrations (at 10 and 100 μM). 
However, these compounds showed cytotoxicities on the 
cortex neuron cells and neuroblastoma SH-SY5Y cells in 
a concentration-dependent manner, while N-substituted 
sulfonyl amide derivatives 6a, 6d, and 6h were found as 
non-toxic agents at their effective concentrations on target 
enzymes (AChE and hCAs) (Figs. 2 and 3). Finally, when 
examining the information obtained in this study, 6a, 6d, 
and 6h compounds can be considered promising precursors 
for new design and development of therapeutics against AD. 
As a result, these agents exhibit that they have AChE inhibi-
tory activity, which supports their use to treat neurological 
disorders.
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Computational studies

ADME‑Tox assay

All novel N-substituted sulfonyl amides (6a–j) incorpo-
rating 1,3,4-oxadiazol structural motif were evaluated in 

silico using the ADME-Tox prediction program QikProp, 
and SwissADME platform, and the findings are reported 
in Table 2. All properties computed were satisfactory 
pharmacodynamic and pharmacokinetic properties for the 
novel synthesized N-substituted sulfonyl amide derivatives 
(6a–j). Additionally, diagrams showing “drug-likeness” 

Fig. 1  Inverted microscope images of compounds 6a, 6d, and 6h on cell viability in cortex neuron cells
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descriptors for 6a, 6d, and 6h agents, which are the most 
active derivatives in this series, are given in Fig. S1. Only 
one (compound 6j) of all N-substituted sulfonyl amide 
derivatives (6a–j) were displayed one Lipinski’s rule vio-
lation, and five agents (compounds 6b and 6g–j) showed 

only one Jorgensen’s rule violation. Namely, computed in 
silico ADME-Tox properties confirmed newly synthesized 
these sulfonyl amides (6a–j) as hit agents displaying suit-
able drug-like properties.

Fig. 2  Morphological changes of SH-SY5Y after 24 h of incubation with concentrations (10–1000 μM) of compounds 6a, 6d, and 6h the results 
presented are from that were carried out and photographed microscopically
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Molecular docking assay

To gain major insights into the causes of SARs researched 
for novel synthesized N-substituted sulfonyl amides (6a–j) 
incorporating 1,3,4-oxadiazol structural motif, molecular 
docking studies were performed. Firstly, for the redocking 
computes, the native ligands, E20 (1-Benzyl-4-[(5,6-dimeth-
oxy-1-indanon-2-yl)methyl]piperidine), GZH (1-[4-chlora-
nyl-3-(trifluoromethyl)phenyl]-3-[2-(4-sulfamoylphenyl)
ethyl]urea), and 9E8 (1-(4-Chlorophenyl)-3-[2-(4-sulfamoyl-
phenyl)ethyl]urea), in the receptors’ binding sites (AChE, 
PDB code 4EY7; hCA I, PDB code 6I0L; and hCA II, PDB 
code 5NY3, respectively) were used. The docked poses 

of E20, GZH, and 9E8 overlapped with the poses in the 
X-ray crystal structures of the AChE, hCA I, and hCA II at 
a root mean square deviation (RMSD) values of 0.62, 1.51, 
and 1.20 Å, respectively (Fig. 4). These redocking assays 
were instrumental for selecting the best model structures 
that could host all the newly synthesized AChE, hCA I, 
and hCA II inhibitors, namely, novel N-substituted sulfonyl 
amide derivatives (6a–j). After that, the constructed binding 
model was used to perform docking calculations of the most 
potent AChE, hCA I, and hCA II inhibitors, compounds 6h, 
6d, and 6a, respectively, in this series (6a–j) employing the 
Ligand Docking panel.

The predicted binding mode (docking score 
of − 7.34 kcal/mol and MM-GBSA value of − 49.23 kcal/
mol) between compound 6h and AChE showed that an 
H-bond interaction was generated between the oxygen 
atom of the sulfonamide moiety and Phe295 residue (dis-
tance of 2.25 Å). Also, Tyr124 (distance of 2.34 Å) made 
an H-bond with the carboxy group. However, both benzyl 
ring and oxadiazole-moiety stacked against Trp286 in the 
peripheral anionic site. Furthermore, hydrophobic inter-
actions were monitored between derivative 6h and Tyr72, 
Ala204, Leu289, Val294, Phe297, Tyr337, Phe338, and 
Tyr341 residues (Fig. 5). A docking score of − 4.10 kcal/
mol and MM-GBSA value of − 11.96 kcal/mol indicated that 
compound 6d is a tight binder for hCA I. A further look 
into the structural properties revealed agent 6d coordinated 
to the Zn(II) ion employing the deprotonated sulfonamide 
moiety, which in turn is involved in an H-bond interaction 
with the amide nitrogen of Thr200 (distance of 2.28 Å); fur-
ther, the oxadiazole-moiety of derivative 6d displayed the 
strong H-bond involvement with Gln92 residue (distance 
of 2.60 Å). Moreover, it was exhibited that residues Phe91, 
Ala121, Leu131, Ala132, Ala135, Leu141, Val143, Leu198, 
Pro202, Val207, and Trp209 play significant roles in the 
binding of agent 6d with hCA I (Fig. 6). One oxygen atom 
of the sulfonamide moiety of compound 6a (docking score 
of − 4.58 kcal/mol and MM-GBSA value of − 26.13 kcal/
mol) formed an H-bond with the Asn62 (distance of 2.76 Å), 
while the other oxygen atom made two H-bonds with the 
Asn67 and Gln92 (distances of 2.48 and 1.91 Å, respec-
tively) from the binding site residues of hCA II. Also, the 
oxadiazole-moiety displayed π − π stacking interaction with 
Trp5 and His64. Additionally, compound 6a interacted with 
the hydrophobic pocket formed by Ala65, Val121, Leu141, 
Val143, Leu198, Pro201, Pro202, Val207, and Trp209, in 
the active site (Fig. 7).

(A)

(B)

Fig. 3  Cytotoxicity study of compounds 6a, 6d, and 6h on SH-SY5Y 
cells. The treatment of SH-SY5Y cells was performed with these 
groups at concentrations varying between 10 and 1000  μM. Every 
bar represents the mean ± standard error of the mean (95% confidence 
intervals) of three separate tests. A Viability rates for cortex neuron 
cells and B viability rates for neuroblastoma SH-SY5Y cell line
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Conclusion

The small safety window of current AChEIs and hCAIs 
has limited their maximum therapeutic application in the 
therapy of some metabolic disorders, such as AD, epi-
lepsy, cancer, and glaucoma. Here, we have attempted to 
design desirable novel multi-target AChEIs and hCAIs to 
overcome this deficiency. By this strategy, novel N-substi-
tuted sulfonyl amide derivatives (6a–j) were synthesized, 
and all of them displayed excellent inhibitory effects 
against AChE and hCAs. As expected, their effective 
doses were much lower than that of THA and AAZ, and 

in silico molecular docking studies on the X-ray co-crystal 
complexes for three highly potent derivatives (6a, 6d, and 
6h) were provided precise binding modes between the 
individual agents and hCA II, hCA I, and AChE, respec-
tively. Overall, according to both in silico ADME-Tox and 
cytotoxic effect studies on cortex neuron cells and neuro-
blastoma SH-SY5Y cell line were especially determined 
compounds 6a, 6d, and 6h be orally bioavailable, highly 
potent, and brain penetrant AChEIs and hCAIs. These 
favorable outcomes motivate us to detect further therapeu-
tic values; more efforts for discovering novel multi-target 
AChEIs and hCAIs are currently underway.

Fig. 4  3D interactions and 2D docking poses of the native ligands 
A E20  (C24H29NO3: 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)
methyl]piperidine) with the key amino acids within the active site of 
AChE (PDB iD: 4EY7), B GZH  (C16H15ClF3N3O3S: 1-[4-chloro-3-
(trifluoromethyl)phenyl]-3-[2-(4-sulfamoylphenyl)ethyl]urea) with 

the key amino acids within the active site of hCA I (PDB iD: 6I0L), 
and (C) 9E8  (C15H16ClN3O3S: 1-(4-chlorophenyl)-3-[2-(4-sulfamoyl-
phenyl)ethyl]urea) with the key amino acids within the active site of 
hCA II (PDB iD: 5NY3)
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Fig. 5  A 3D interaction of the derivative 6h  (C18H25N3O4S2: N-([4-
(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)octanamide) with 
the key amino acids within the active site of AChE (PDB iD: 4EY7). 

B 2D docking pose of the derivative 6h  (C18H25N3O4S2: N-([4-
(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)octanamide) with 
the key amino acids within the binding site of AChE (PDB iD: 4EY7)
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Fig. 6  A 3D interaction of the derivative 6d  (C14H17N3O4S2: N-([4-
(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)butyramide) 
with the key amino acids within the active site of hCA I (PDB iD: 

6I0L). B 2D docking pose of the derivative 6d  (C14H17N3O4S2: N-([4-
(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)butyramide) with 
the key amino acids within the binding site of hCA I (PDB iD: 6I0L)
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Fig. 7  A 3D interaction of the derivative 6a  (C17H15N3O4S2: N-([4-
(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)benzamide) 
with the key amino acids within the active site of hCA II (PDB iD: 
5NY3). B 2D docking pose of the derivative 6a  (C17H15N3O4S2: 

N-([4-(5-(ethylthio)-1,3,4-oxadiazol-2-yl)phenyl]sulfonyl)benzamide) 
with the key amino acids within the binding site of hCA II (PDB iD: 
5NY3)
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