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Introduction
Colorectal cancer starts with the abnormal proliferation of 
mutant cells in colonic crypts. The population of mutant cells 
may continue to increase and form an adenoma, an early stage 
of colon cancer.1 The purpose of this project is to determine 
optimal chemotherapy dose schedules that eliminate these 
mutant cells before they can form an adenoma, and also the 
system retains crypt function.

There were an estimated 135 430 new cases of colon cancer 
in the United States in 2017 and an estimated 50 260 deaths.2 
These deaths indicate that in spite of stool-based screening3 
and colonoscopic screening for adenomas, both of which do 
reduce the risk of fatal colorectal cancer,4 there is still a need for 
other methods of early detection. As new methods for detect-
ing pre-malignant abnormalities come to fruition, possibly by 
blood tests,5 the next need will be to determine the optimal 
therapies for such early lesions.

To determine optimal chemotherapy dose schedules for 
early colon cancer, it is necessary to take into account the many 
possible values of three parameters, the duration of the dose, 
the interval between doses, and the lethal effect of the dose on 
mutant cells and on normal cells in the crypt. Values of these 
three parameters may vary over a wide range. For instance, the 
value of duration may be from hours to days, the interval 

between doses may be from days to weeks, and the lethality 
may kill 5% to 95% of mutant cells at each treatment cycle. 
Because of the large possible range of values of each of the 
three parameters, it has not been possible to instantiate a clini-
cal trial that would compare all of the very many possible dif-
ferent conditions. However, computer simulations can be used 
to explore many dose schedules.

For the results of computer simulations to be reliable for 
finding optimal conditions, two criteria need to be satisfied. 
The model must be realistic, and the computer system must be 
able to explore a large number of different parameter sets.

We previously described a realistic computer model of cell 
dynamics in human colon crypts.6,7 The model uses the con-
cept of agent-based modeling, where each biological cell is rep-
resented as an agent that has specified properties and interacts 
with other agents and with its environment. It has the advan-
tage of producing emergent behaviors derived from each type 
of agent, such as stem cells, proliferating cells, differentiated 
cells, and rapidly dividing mutant cells. Then the emergent 
properties of the system of agents (biological cells in a crypt) in 
different environments (cytotoxic chemotherapy) could be 
generated in computer simulations. The model was calibrated 
with measurements of cell types in human biopsy specimens. 
The emergent behavior of the model reproduced several 
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properties observed in biological crypts, including the ability of 
normal cell dynamics to recover from perturbations such as 
cytotoxic drug treatments that will eliminate mutant cells.

The second criterion for the results of computer simulations 
to be reliable is that the computer system needs to be able to 
explore a large number of different parameter sets. The original 
colon crypt model was written in the NetLogo application. 
The code for this model in this application was sufficient to 
simulate a few parameter sets but not adequate to explore a 
large number of parameter sets necessary to determine which 
are optimum.8 To explore a large number of different chemo-
therapy dose schedules (duration, interval, and lethality), the 
NetLogo code was ported to C++, and simulations were run 
on high-performance computing platforms (Edison at 
NERSC and Beagle at the Computation Institute—University 
of Chicago). Such simulations were previously successful in 
exploring the large behavioral landscape of a different agent-
based model.9,10

The goal of this project was to explore the effect of many dif-
ferent dose schedules for their ability to eliminate mutant cells in 
an adenomatous colon crypt, and to determine a subset of dose 
schedules that are optimum. Each dose schedule had different 
set of parameter values for duration, interval, and lethality. The 
criterion of an optimum dose schedule is either one that elimi-
nates mutant cells in the shortest time or one that has the least 
accumulated dose, and that retains normal crypt function.

We report on the results of 28 800 different simulated dose 
schedules. We found 14 dose schedules with the shortest time 
to eliminate mutants from an adenomatous crypt and nine 
dose schedules with the least accumulated dose.

Methods
Cytotoxic chemotherapy can kill dividing mutant cells but may 
also kill dividing normal cells. Intermittent chemotherapy dose 
schedules were sought that would kill all mutant cells but allow 
normal cell dynamics to recover between doses and retain crypt 
function.

The logic for intermittent dose schedules is the following. 
Normal cell types in the crypt include quiescent stem cells at 
the bottom of the crypt, proliferating cells near the bottom 
third, and differentiated cells in the top two-thirds. Cells move 
from the region of proliferating cells up to the region of dif-
ferentiated cells at the top and are removed from the crypt. A 
dose of a cytotoxic drug will kill proliferating cells but spare 
quiescent stem cells. Quiescent stem cells are resistant to cyto-
toxic drugs because they have a very low probability of dividing. 
As the normal proliferating cells are killed, some quiescent 
stem cells become activated and produce additional proliferat-
ing cells. If the cytotoxic dose is of short duration, the number 
of proliferating cells, and their differentiated progeny, will 
increase to the pretreatment levels. Normal cell homeostasis 
with quasi-stationary cell dynamics will be restored, and the 
crypt will recover.

An agent-based colon crypt model, written in the applica-
tion NetLogo, was previously described in detail.6 The model 
assumes that each cell’s probability to proliferate or to die is 
determined by its position in two gradients along the crypt 
axis: a divide gradient and a die gradient. A cell’s type, stem cell, 
proliferating cell, or differentiated cell is determined by its 
position in the divide gradient. A cell born near the bottom of 
the crypt moves up and is removed at the top, where it under-
goes apoptosis. Mutant cells are those that divide and die with 
a higher (though distinct) probability, than normal cells at the 
same spatial position in the colonic crypt.

The NetLogo model was calibrated using measurements of 
the number and variation of each cell type in histological sec-
tions of normal human colon biopsies. The behavior of the 
model was verified by its ability to reproduce the number and 
variation of each cell type, to undergo crypt fission by neutral 
drift, to have mutants proliferate to fill the crypt and form an 
adenoma, and to be robust and recover from perturbation from 
cytotoxic agents.6,7

To efficiently explore the chemotherapeutic parameter 
space, the NetLogo crypt model6 (https://doi.org/doi:10.7282/
T3KH0QKV) was ported to C++ (https://doi.org/doi: 
10.7282/T33X8B0H) using established methods.9,11 For cyto-
toxic chemotherapy, the duration of therapy was varied from 1 
to 24 time-steps with increments of one step; the interval of 
therapy was varied from 2 to 48 steps with increments of two 
steps; and the lethality factor was varied from 1 to 50 in incre-
ments of one step. To account for the effects of randomness in 
the model, fifty stochastic replicates were performed for each 
of the 28 800 cytotoxic chemotherapeutic dose schedules.

In this context, the terms duration, interval, and lethality are 
defined as follows: duration of the dose is the time during 
which cells in a crypt are exposed to the cytotoxic agent. The 
interval between doses is the time from the beginning of one 
dose to the beginning of the next dose. Lethality is the factor 
that increases the probability that a cell will die above that 
determined by its position in the crypt. The Lethality factor 
affects both normal cells and mutant cells. Mutant cells, in ini-
tial simulations, had a 1.16 X probability of dividing than nor-
mal cells at the same position in the crypt and a 1.1 X probability 
of dying than normal cells at the same position in the crypt. 
Each specific treatment parameterization consisted of a dose 
schedule described by a parameter set of one value of duration, 
one value of interval, and one value of lethality.

Results
Effective dose schedules

The goal of this project is to determine an optimal set of dose 
schedules (parameter sets; consisting of dose duration, interval 
between successive doses, and dose lethality) that will kill 
mutant cells in the crypt before they can proliferate and form 
an adenoma and will allow restoration of the number of normal 
cells and recovery of crypt function.

https://doi.org/doi:10.7282/T3KH0QKV
https://doi.org/doi:10.7282/T3KH0QKV
https://doi.org/doi
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Dose schedules were simulated that included combinations 
of 24 different values of duration, 24 different values of inter-
val, and 50 different values of lethality, for a total of 28 800 
parameter sets. Each set of parameters was simulated in 50 
independent runs. The output of each parameter set included 
whether the crypt recovered and survived a time period of 
1200 steps, and if so, the time to cure the crypt of all mutants. 
Of the 28 800 different parameter sets, 434 (1.5 %) were effec-
tive, that is, all mutant cells were eliminated, and crypts recov-
ered in each of the 50 runs. Each of the 434 effective parameter 
sets and the outputs of average time to cure, coefficient of vari-
ation of average time to cure, and accumulated dose sum are 
given in the table available at https://doi.org/doi:10.7282/
T3D79FX4.

Dose schedules with shortest time to cure

The average time to cure crypts of mutant cells was calculated 
over 50 stochastic replicates of each of the 434 effective dose 
schedules. There is a broad range of average cure times, from 2 
time-steps to 263 time-steps (Figure 1A). One step equals 
approximately 4.5 human hours.6

A total of 14 dose schedules had the shortest time to cure 
(two steps). One of these is shown in Figure 2A. These dose 
schedules each had a duration of two steps, had intervals of 42 
to 48 steps, and lethality of 13 to 19. For comparison, the dose 
schedule that had the longest average cure time (263 steps) had 
a duration of 4, interval of 14, and lethality of 1 (Figure 2B). 
This indicates a range of interval/lethality combinations that 
have lethality sufficient to quickly kill all mutant cells but an 
interval that is sufficiently long for the crypt to recover before 
the subsequent dose, thus establishing a dynamic equilibrium 
between the proliferative effects of the cells comprising the 
crypt with the cytotoxic effects of chemotherapy.

The kinetics of the proportion of mutant cells per crypt as 
a function of time is shown for two example simulation runs, 
the shortest time to cure and the longest time to cure (Figure 2C 

and D, respectively). Therapy was started after the proportion of 
mutant cells per total cells in the crypt was greater than 0.2, and 
the time to cure the crypt of all mutant cells was determined. 
The dose schedule with the shortest time to cure could elimi-
nate all mutant cells within two steps with only one dose, 
whereas the dose schedule with the longest time to cure required 
20 successive intermittent doses to eliminate all mutants.

The decrease of the number of mutant cells as a function of 
time, and the recovery of the quasi-stationary number of each 
normal cell type in the crypt, can be seen in movies for the 
shortest time to cure (https://doi.org/doi:10.7282/T3RN3C79), 
and for the longest time to cure (https://doi.org/doi:10.7282/
T3MW2MHK).

The 434 effective dose schedules can be visualized as a point 
in a three-dimensional (3D) space with axes of duration, inter-
val, and lethality (Figure 3A). The time to cure for each dose 
schedule is represented by a point of a different color. The 
group of dose schedules with shortest average cure time appears 
at a cusp on the surface of the 3D distribution. The arrange-
ment of the different dose schedules in the 3D space can also 
be visualized as the figure is rotated in a movie (https://doi.org/
doi:10.7282/T3CC141S).

Mutants can be cured in simulations with different 
initial conditions

The effective cure times afore mentioned were determined for 
therapy that was started when the number of mutant cells was 
20% of the total number of cells in the crypt. The mutants were 
a homogeneous population of cells that had a 1.16 X probabil-
ity of dividing and a 1.1 X probability of dying compared with 
non-mutant cells at the same position in the crypt. These val-
ues are not unique; cures can be achieved with other values. As 
examples, we give results with three different sets of values.

First, the treatments were started when the proportion of 
mutant cells per crypt was twice, that is, 40% rather than the 
20% afore mentioned. Cures were also obtained when treatments 

Figure 1. Distributions of average time to cure and sum dose of chemotherapy. (A): time, in simulation steps, to cure mutants versus the rank of each of 

434 dose schedule parameter sets. (B): sum of lethal doses to cure mutants versus the rank of the each of the 434 dose schedule parameter sets. Points 

are color-coded according to the average time of 50 simulations that it takes to cure mutants, see Figure 3. (C): comparison of the ranks of parameter sets 

for the sum of doses and the ranks of the parameter sets for the time to cure. The ranks are not highly correlated (R2 = 0.45).

https://doi.org/doi:10.7282/T3D79FX4
https://doi.org/doi:10.7282/T3D79FX4
https://doi.org/doi:10.7282/T3RN3C79
https://doi.org/doi:10.7282/T3MW2MHK
https://doi.org/doi:10.7282/T3MW2MHK
https://doi.org/doi:10.7282/T3CC141S
https://doi.org/doi:10.7282/T3CC141S
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were started at 40%. The distribution of cure times for doses 
started at 20% and 40% are shown in Figure 3A and B, respec-
tively. The similarities and differences in the cure times are 
shown in Figure 3C.

Second, mutant cells were considered that grew half as fast, 
having half the probability of dividing, that is, 1.08 X rather 

than 1.16 X of that of normal cells. Cures were also obtained 
with the slower-growing mutant cells. Slower-growing mutants 
would be expected to be more resistant to cytotoxic chemo-
therapy than the faster-growing mutants. The average cure 
time of the slower-growing mutants was 17 steps rather than 2 
steps of the faster-growing mutants.

Figure 2. Time to cure and accumulated dose for different dose schedules. (A) and (B): dose schedules for the shortest time to cure (two time-steps), and 

the slowest time to cure (263 time-steps), with the indicated parameter set of duration, interval, and lethality. The red arrows indicate the average times to 

cure for 50 simulations. (C) and (D): example of one of 50 simulations of the kinetics of the proportion of mutants per crypt for the dose schedules shown 

in (A) and (B), respectively. (E) and (F): total dose accumulation as a function of time-steps for the dose schedules shown in (A) and (B), respectively. The 

average total dose at the time of cure is indicated by the red line.
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Third, a heterogeneous population of mutant cells, rather 
than a homogeneous population, was considered. Biological 
crypts may be heterogeneous, containing different cells with 
different mutations and different drug responses.12 Cures were 
also obtained with a heterogeneous population of mutant cells. 
A heterogeneous combination of fast- and slow-growing 
mutants had an average cure time of 12 steps, rather than a cure 
time of 2 steps for the homogeneous population of faster-
growing mutants.

Therefore, mutant cells can be cured under different initial 
conditions, for example, when treatment is started when there 
are different proportions of mutant cells, when the mutant cells 
are relatively fast or slow growing and when the population of 
mutant cells is homogeneous or heterogeneous.

Dose schedules with least treatment to cure

Repeated cycles of treatments (Figure 2A and B) result in 
the accumulation of doses over time (Figure 2E and F). 
Where each dose = lethality × duration, and the accumu-
lated dose is the sum of doses up to the time that all mutants 
are cured. The least amount of accumulated dose needed to 
eliminate mutant cells may be considered as an alternative cri-
terion for optimal therapy to the shortest time to eliminate 
mutant cells.

The distribution of accumulated doses to cure for each of 
the 434 effective treatment schedules is shown in Figure 1B. 
This distribution appears to be similar to the distribution of 
least time to cure (Figure 1A). However, the ranks of the 
parameter sets for accumulate doses to cure and ranks of the 
parameter sets for the least times to cure are not highly corre-
lated (R2 = 0.45; Figure 1C).

It should be noted that the parameter set of the dose  
schedule with the least accumulated dose that cures mutants is 
not the same as the parameter set of the dose schedule with the 
sum of doses with the shortest time to cure (Figure 1C and 
Table 1). Therefore, the least accumulated dose to cure and the 
shortest time to cure are two independent criteria for optimal 
chemotherapy.

Discussion
In this project, many different intermittent dose schedules of a 
cytotoxic chemotherapeutic drug have been evaluated for their 
ability to eliminate mutant cells from a colon crypt before the 
mutants can fill the crypt and form adenoma. Eliminating 
mutant cells, while retaining crypt function, could intercept the 
progression of adenomas to adenocarcinomas.13,14

Each different dose schedule consisted of a different set of 
values of duration of the dose, interval between doses, and 
lethality of the dose. A high-performance computer was used 

Figure 3. Dose schedule parameter sets that cure mutants when chemotherapy is started at different times. Each point represents a dose schedule 

parameter set that yield a 100% mutant cure rate and 0% crypt mortality rate when tested over 50 stochastic replicates. The duration of chemotherapy (in 

simulation time-steps) is represented on the x-axis; the interval between doses (in simulation time-steps) is represented on the y-axis; cytotoxic lethality 

factor is represented on the z-axis. Points are color-coded based on the average time to cure a crypt of mutant cells, with red representing a treatment 

schedule that quickly eliminates the mutant cells and dark blue representing a treatment which takes longer to eliminate mutant cells. (A): successful 

parameter sets for chemotherapy that is initiated when mutant cells make up 20% of the total crypt population; (B): successful parameter sets for 

chemotherapy that is initiated when mutant cells make up 40% of the total crypt population. (C): comparison of parameter sets in A and B. Points shaded 

in red are those which are unique to the set of simulations that initiate chemotherapy when mutant cells compose 20% of the crypt; points shaded in blue 

are those which are unique to the set of simulations that initiate chemotherapy when mutant cells compose 40% of the crypt; points shaded in green are 

those which are shared between the set of simulations that initiate chemotherapy when mutant cells compose 20% of the crypt and the set of simulations 

that initiate chemotherapy when mutant cells compose 40% of the crypt.

Table 1. Comparison of schedules with shortest cure time and least treatment.

CRITERION AvERAGE CURE TImE DOSE SUm DURATION INTERvAL LETHALITy

Shortest time  2 26 2 42 13

Least treatment 32  7 1 32  7

Note: where 1 time-step = 4.5 hours and dose = lethality × duration.
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to simulate the effect of 28 800 different sets of dose sched-
ules. Of these, a subset of 434 dose schedules was effective, 
they eliminated all mutant cells and allowed crypt normal 
cell dynamics to recover from the lethal effects of the chem-
otherapy. The other dose schedules were not effective; 
although they eliminated mutant cells, they also killed most 
normal cells, resulting in total collapse of the crypt. Effective 
dose schedules were identified that produced the shortest 
time to cure all mutants from the crypt, and different effec-
tive dose schedules were identified that produced the least 
accumulated dose.

The ability of a subset of intermittent dose schedules to 
both eliminate mutant cells and retain normal cell crypt func-
tion was shown to be effective for a range of initial conditions, 
including the following: (1) drug treatment could be initiated 
when the mutants are 20% or 40% of the total number of cells 
in the crypt, (2) mutants could be eliminated that proliferated 
much faster than normal cells and are relatively sensitive to 
cytotoxic chemotherapy, and mutants could be eliminated that 
proliferate only slightly faster than normal cells and are rela-
tively resistant to chemotherapy, and (3) the mutant popula-
tions may be homogeneous, or may be heterogeneous consisting 
of both fast and slow proliferating mutant cells.

Cell dynamics in the human normal and neoplastic crypts 
has been the subject of other modeling studies.15,16 This is par-
tially due to the fact that cell dynamics have been well charac-
terized experimentally.17 In a normal unperturbed crypt, 
homeostasis is maintained with a quasi-stationary number of 
total cells, and of each cell type. The average total number of 
cells has been measured in human colon crypts is 2427. The 
average number of quiescent stem cells, proliferating cells, and 
differentiated cells is 36,624, and 1768, respectively.6

Stem cells in the normal crypt may be quiescent or may 
become active18 and divide stochastically.19,20 Actively dividing 
stem cells yield proliferating cells, which in turn move up the 
crypt, differentiate, and are removed at the top.21 The rate of 
cell loss at the top of the crypt is balanced by the rate of stem 
cell division at the bottom of the crypt. This balance maintains 
homeostasis.22 The rate of stem cell divisions is controlled by 
the number of stem cells, by the number of proliferating cells, 
and indirectly by the number of differentiated cells.23

If a crypt is exposed to a brief low dose of a cytotoxic chem-
otherapeutic drug, some proliferating cells are killed, and the 
stem cells will respond by producing more proliferating cells. 
This results in restoration of homeostatic cell dynamics and 
recovery of crypt function. If mutant cells are also in the crypt, 
a longer or a more lethal dose may be required to kill the 
mutant cells before they can proliferate and fill the crypt to 
form an adenoma. However, such a longer or more lethal cyto-
toxic dose may overwhelm the ability of the stem cells to 
repopulate the crypt, and the crypt will collapse.

Cell dynamics in the colon crypt without therapy have  
been modeled mathematically24 and computationally6,25 and 

reviewed.26–28 Crypt dynamics with therapy has been modeled 
to determine a therapy that could eliminate mutant cancer cells 
but still allow recovery of normal crypt cell homeostasis. 
Optimal control theory for cancer therapy has been reviewed,29,30 
and computer models for cancer therapy have been reviewed.31

Many of the published modeling reports provide a different 
perspective than the modeling results that we report. We 
focused our attention on an early stage of colon cancer initi-
ated by abnormally proliferating mutant cells in a colon crypt 
that also had normal cells. Our agent-based computer model 
was calibrated with measurements of human biopsy speci-
mens. We simulated the response to cytotoxic chemotherapy 
of both mutant cells and normal cells. By comparison, Panetta32 
described a competition model with periodically pulsed chem-
otherapy and parameter values needed to prevent relapse. 
Gaffney33 mathematically modeled schedules with rest phases 
between chemotherapy and emphasized the importance of 
choosing the correct intervals between doses. Marcu and 
Bezak34 used Monte Carlo computer modeling to determine 
the conditions under which intermittent therapy may fail 
because some tumor cells repopulate the tumor between doses. 
Murano et  al35 mathematically modeled normal crypt cell 
dynamics and concluded that stem cells and proliferating cells 
should react differently to therapy-induced apoptotic killing. 
Leder et  al36 mathematically modeled radiation dose sched-
ules and predicted that hyper-fractionated dosing schedules 
would be superior to hypo-fractionated dosing schedules. 
These results were confirmed for survival of irradiated mice 
with glioblastoma.

We have considered two kinds of optimal dose schedules, in 
each case allowing recovery of normal cell dynamics and crypt 
function. One kind of optimal schedule eliminates all mutant 
cells in the shortest time, and a second kind of optimal sched-
ule eliminates all mutants with the least accumulated dose. A 
choice may be made between these two optimal schedules to 
reduce the collateral damage due to chemotherapy, such as 
neuropathy, cardio-toxicity, and neutropenia. Alternatively, 
rather than choosing one or the other, there are several param-
eter sets that have both intermediate times to cure and inter-
mediate accumulated doses (Figure 2C). These parameter sets 
provide an opportunity to select a dose schedule treatment that 
is good, but not perfect, by each criterion.

Human clinical trials for chemotherapy of colon cancer 
have also used intermittent chemotherapy dose schedules. 
Many of these were designed to compare the efficacy and tox-
icity of intermittent dose schedules with constant treatment.37 
These trials contrast with our simulations studies that were 
designed to compare the efficacy and toxicity of different inter-
mittent dose schedules with each other, rather than with con-
stant treatment. The human clinical trials varied in the 
intermittent strategy, including the duration of the treatment, 
and the interval when the treatment was restarted. Another 
difference between the clinical trials and our simulations was 
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the evaluation of the outcome. The human clinical trials used 
tumor response and patient survival (overall or progression 
free), as well as toxicity, for metrics of outcome, whereas our 
simulations used removal of mutants from crypts (instead of 
tumor response) and recovery of crypts (as an indication of 
non-toxicity). Most intermittent trials used disease progression 
of individual patients to determine the interval between treat-
ments, unlike our simulations that used fixed values for each set 
of dose schedules.

Two trials did use fixed values of treatment duration and 
interval time between treatments. Their treatment durations 
and intervals can be compared with those in our simulations. 
Van Cutsem et al38 used a treatment duration of 2 weeks and an 
interval between treatments of 1 week. Labianca et al39 used a 
treatment duration of 8 weeks and an interval between treat-
ments of 8 weeks. In each trial, the outcome of the intermittent 
treatment was comparable to the outcome of constant treat-
ment based on tumor response, survival, and toxicity. Our pre-
dicted optimum duration and interval to achieve the shortest 
time to eliminate all mutants was 9 hours (duration 2) and 
8 days (interval 42), respectively; and the predicted optimum 
duration and interval to achieve the least accumulated dose to 
eliminate all mutants was 4.5 hours (duration 1) and 6 days 
(interval 32), respectively, as shown in Table 1. It is possible 
that improvements in intermittent therapy over constant ther-
apy could be achieved using the treatment duration, interval 
between treatments, and lethality that we have predicted.

We acknowledge several limitations of this project. For 
instance, we have not taken into account that cytotoxic drugs 
may induce new mutant cells, including drug resistant 
mutants, as well as kill existing mutant cells. However, we 
have already modeled the induction of new mutant cells and 
shown that intermittent dose schedules can be effective in 
eliminating mutants that arise spontaneously or are induced 
by a cytotoxic drug.7 In addition, this project has not modeled 
chemotherapy dose schedules by a combination of two, or 
more, drugs. Such an extension will require considering dura-
tion, interval, and lethality of at least two drugs, and different 
orders of the different drugs. Simulating and evaluating the 
output of such a large number of sets of parameters, and large 
range of values of each parameter, will require machine-learn-
ing strategies for multi-object parameterization9,40 rather 
than the parameter sweeping strategy that was sufficient for 
simulating a single drug.

In conclusion, 28 800 sets of intermittent chemotherapeutic 
dose schedules for early colon cancer were evaluated for their 
ability to remove all mutant cells while retaining normal crypt 
function. Each dose schedule had a different duration of chem-
otherapy dose, different intervals between doses, and different 
lethality. A subset of similar dose schedules was determined 
that had the shortest time to cure and another subset of similar 
dose schedules was determined that had with the least accumu-
lated dose. These subsets of effective dose schedules suggest 
candidate dose schedules for clinical trials.
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