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ABSTRACT
Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, 
immune responses and behavior. Its dysregulation has been associated with metabolic, immune 
and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. 
Although proteomics is well suited for analysis of individual microbes, metaproteomics of fecal 
samples is challenging due to the physical structure of the sample, presence of contaminating host 
proteins and coexistence of hundreds of taxa. Furthermore, there is a lack of consensus regarding 
preparation of fecal samples, as well as downstream bioinformatic analyses following metaproteo-
mics data acquisition. Here we assess sample preparation and data analysis strategies applied to 
mouse feces in a typical mass spectrometry-based metaproteomic experiment. We show that subtle 
changes in sample preparation protocols may influence interpretation of biological findings. Two- 
step database search strategies led to significant underestimation of false positive protein identi-
fications. Unipept software provided the highest sensitivity and specificity in taxonomic annotation 
of the identified peptides of unknown origin. Comparison of matching metaproteome and meta-
genome data revealed a positive correlation between protein and gene abundances. Notably, 
nearly all functional categories of detected protein groups were differentially abundant in the 
metaproteome compared to what would be expected from the metagenome, highlighting the 
need to perform metaproteomics when studying complex microbiome samples.
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Introduction

The prokaryotic component of the gut microbiota 
has multiple roles, contributing to carbohydrate fer-
mentation and maintenance of gut barrier integrity, 
as well as antimicrobial and immunomodulation 
activities.1,2 In metabolically healthy humans and 
mice, the gut microbiota is predominated by two to 
three bacterial enterotypes.3–5 These enterotypes dis-
play significant heterogeneity in terms of species 
number, composition and relative abundances 
depending on the location of the sample (upper vs 
lower gastroinstestinal tract) or the timing (circadian 
variations).6,7 The gut microbiota has recently been 
associated with conditions ranging from inflamma-
tory bowel syndrome to Parkinson’s disease.8–11 An 

increasing number of studies have reported associa-
tions between the gut microbiota and neurodevelop-
mental disorders.12–14 This includes changes in the 
gut microbiota of Down syndrome individuals in 
comparison to non-trisomic individuals.15 Given 
the established interaction between the host and 
the gut microbiota, a functional analysis of the gut 
microbiome may help in understanding its contri-
bution to pathophysiology.

In this context, approaches relying on nucleotide 
sequencing have so far been preferred by the scientific 
community due to lower experimental costs, higher 
data throughput and proven analytical workflows. 
While metagenomics assesses the genetic potential, 
metaproteomics investigates gene products (and 
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therefore functions). However, metagenomics usually 
provides more in-depth information in comparison to 
metaproteomics, for example due to the higher 
dynamic range of detection. In particular, microbiome 
functional analysis can be performed using high- 
resolution mass spectrometry (MS), to measure either 
protein abundance or metabolite production.16–18 

Although bacterial MS-based proteomic approaches 
are well established, metaproteomic sample prepara-
tion is hindered by many challenges, such as physical 
structure of the sample, the presence of contaminating 
proteins and the coexistence of hundreds of 
microorganisms.

Many studies have reported increased protein iden-
tification due to laboratory optimization for the ana-
lysis of metaproteome samples.19–23 In humans, 
different sample preparation methodologies have 
been shown to result in significant changes in the 
taxonomic composition and functional activities 
represented.19,24,25 Beyond sample preparation, the 
bioinformatic processing of metaproteomic data 
remains challenging, due to the choice of representa-
tive protein sequence database, elevated false discov-
ery rate for peptide identification and the redundancy 
in protein functional annotation. Some of these chal-
lenges have already been addressed by published soft-
ware packages, such as MetaProteomeAnalyzer26 and 
MetaLab,27 which are all-in-one metaproteomic ana-
lytical workflows, or UniPept,28 which allows peptide- 
based taxonomic representation. In addition, the 
choice of protein sequence database has been shown 
to play a major role in protein identification from 
metaproteome samples, with notably matching meta-
genome-derived protein sequence databases display-
ing the best identification rate performance.29–32 

Previous studies have also investigated ways to deter-
mine taxonomic representation from metaproteome 
samples, which has been shown to differ between 
metagenome (bacterial presence) and metaproteome 
(bacterial activity).32,33

Here, we present a state-of-the-art MS-based 
workflow for the optimal metaproteome character-
ization of murine fecal samples. We focused on 
a number of aspects that remain under-investigated 
in murine stool samples: (1) the impact of sample 

preparation methods, namely low speed centrifuga-
tion (LSC) and no LSC (nLSC), on protein identifi-
cation and taxonomic representation; (2) the high 
false positive rates in searches involving very large 
databases; (3) the differences in taxonomic annota-
tion of MS-identified peptides based on different 
software; and (4) the lack of assessment of the func-
tional enrichment provided by the metaproteome 
compared to its matching metagenome potential.

Results

Low-speed centrifugation increases peptide 
identification rates

Our initial experiment involved the establishment 
of an optimal sample preparation workflow applied 
to the mouse fecal metaproteome. In this context, 
we assessed two sample preparation steps that are 
commonly employed in metaproteomic studies: 1) 
the usage of LSC19,24,34 versus nLSC;24,35 and 2) in- 
solution digestion19,22 versus filter-aided sample 
preparation (FASP)20,21 (Figure S1A, Table S1). 
The resulting LC-MS/MS data were processed 
using the MaxQuant software.36

The number of peptide spectral match (PSM) 
identified per MS raw file in the LSC group was 
significantly higher with 26% more identifications 
(Figure 1a). This was also observed at the peptide 
and protein group level, but to a lower extent for the 
latter. Approximately 15% of protein groups were 
identified by a single peptide, while the median 
protein sequence coverage was 18.7%. Such metrics 
are usually indicative of highly complex samples 
that are not completely covered by a single MS 
measurement under the stated parameters.

In-solution digestion consistently outperformed 
FASP based on PSMs, peptides and protein groups 
identification (Figure 1b). Compared to other 
methods, in-solution digestion combined with the 
LSC procedure provided nearly twice as many PSM 
or peptide identifications and 30% more protein 
groups. Furthermore, there was much less variabil-
ity in the number of peptides and protein groups 
identified across samples with this method.
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LSC aids in recovery of Bacteroidetes proteins, 
whereas nLSC favors Firmicutes and 
Deferribacteres proteins

Peptides identified after LSC and nLSC were analyzed 
to identify their phylogenetic origin. The lowest com-
mon ancestor was determined using the Unipept 

interface,37 which assigns peptide sequences to taxa. 
The most abundant superkingdom consisted of bac-
teria, among which two taxa were highly represented 
in both LSC and nLSC, namely Bacteroidetes and 
Firmicutes (Figure 1c, Table S1). However, there 
were large differences in the number of peptides 
assigned to these two main bacterial phyla when 

Figure 1. Low speed centrifugation impacts protein identification and taxonomic representation. (a) Number of MS/MS spectra, 
peptides and protein groups per samples for the comparison between LSC (red) and nLSC (blue) methods. (b) Number of identified MS/ 
MS spectra, peptides and protein groups per samples for the comparison between LSC-in solution digestion (red), LSC-FASP (gray), 
nLSC-in solution digestion (blue) and nLSC-FASP (Orange) methods. (a-b) Represented significance results correspond to t-test on 
N = 12 (a) or N = 6 (b): * p- value ≤ .05, ** ≤.01, *** ≤.001. (c) Hierarchical representation of Unipept-derived taxonomy (down to 
phylum level) for the peptide identified in the LSC and nLSC. The barplot represent the taxonomic abundance for LSC (red) and nLSC 
(blue) methods based on peptide counts (only for taxon identified with 3 or more peptides). (d) Overlap in the overall identified 
peptides or protein groups between the LSC and nLSC methods. (e) Volcano plot of the protein abundance comparison between LSC 
and nLSC approaches. Significant protein groups based on paired t-test from N = 12 with FDR ≤ .01 and absolute fold-change ≥2.5. (f) 
KEGG pathways over-representation testing for the protein groups that significantly increase (red) or decrease (blue) in abundance 
between LSC and nLSC sample preparation approaches. Fisher exact-test threshold (gold dotted line) set to adjusted p-value ≤ .05.
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comparing LSC and nLSC methods. Bacteroidetes 
accounted for 66% and 37% of peptides, whereas 
Firmicutes amounted to 18% and 47% of peptides in 
LSC and nLSC procedures, respectively. In addition, 
Actinobacteria and Deferribacteres showed a higher 
taxonomic representation in nLSC compared to LSC, 
whereas Verrucomicrobia showed an opposite trend.

Based on peptides identification, Eukaryota 
was the second most abundant superkingdom 
and consisted mostly of metazoan hits. Under 
the assumption that these eukaryotic peptide 
sequences originated from the host, the propor-
tion of Mus musculus proteins was investigated 
further using intensity-based absolute quantifica-
tion (iBAQ) values. The LSC samples contained 
on average nearly two-fold more murine pro-
teins (20.4%) in comparison to nLSC samples 
(14.6%) (Figure S1B). Such findings were sur-
prising since the use of the LSC method was 
reported in a previous study to help with the 
removal of human cells.24 We also investigated 
the presence of peptides from host diet and 
found very low levels of dietary peptides con-
tamination (approximately 2%), which was 
higher among LSC-prepared samples (Figure 
S1C). As previously reported, we show that the 
majority of dietary proteins are absent or 
depleted during the initial solubilization step of 
the fecal pellet, a step common to both 
procedures.38 Overall, our results show that 
LSC and nLSC methods favor the recovery of 
different taxa, suggesting that both methods have 
merits and may be used in combination.

LSC and nLSC methods are characterized by 
different protein abundance profiles

We further investigated the overlap between the 
peptides or protein groups identified following either 
LSC and nLSC procedures (Figure 1d). In terms of 
peptides, only 27.7% were identified with both pro-
cedures, the rest of the peptides being split equally 
into unique to LSC and nLSC methods. Similar 
results were observed at the protein groups level 
with 38.7% of protein groups being identified in 
both procedures. This was illustrated further 
through a principal component analysis (PCA), 
showing separation of samples based on centrifuga-
tion methods, as well as clustering of technical 

replicates (from cell lysis step) (Figure S1D). Label- 
free quantitative (LFQ) comparison between LSC 
and nLSC procedures revealed an intermediate cor-
relation (ρ = .44) (Figure S1E and F). Besides, LFQ 
correlation among the samples prepared via LSC was 
superior to samples prepared with nLSC (Figure 
S1G). Our findings indicate that while the two pro-
cedures have a poor identification overlap, the main 
differences may still result from biological variations.

Using LFQ intensities, we then performed 
a t-test to identify which protein groups have dif-
ferent abundances between the two procedures. 
Out of 2,589 quantified protein groups, 365 and 
267 showed a significant increase and decrease in 
abundance between LSC and nLSC samples, 
respectively (FDR ≤ .01 and absolute fold-change 
≥2.5) (Figure 1e, Table S1). We gained functional 
insights into these differences by performing an 
over-representation analysis of KEGG pathways 
using the clusterProfiler R package.39 The over- 
represented pathways based on the up- or down- 
regulated protein groups were mostly similar 
(FDR ≤ .05) and were associated with core micro-
bial functions, such as ribosome, carbon metabo-
lism and carbon fixation pathways (Figure 1f, Table 
S1). The protein groups unique to LSC or nLSC 
showed over-representation of protein export in 
the LSC samples, whereas biosynthesis of amino 
acid, fatty acid degradation and bacterial chemo-
taxis were over-represented in the nLSC samples 
(Figure S1H). Protein differential abundance test-
ing confirmed the divergence between LSC and 
nLSC procedures and was suggestive of broad taxo-
nomic changes, rather than variation in functional 
activities.

Two-step database search strategy shows 
a dramatic increase in false positive rate

After measurement via liquid chromatography 
coupled to tandem mass spectrometry (LC-MS 
/MS) and acquisition of LC-MS/MS raw data, the 
MS/MS spectra are searched against a protein 
sequence database. One aspect of database search 
is the controversial use of a two-step search 
strategy,26,40–42 as opposed to the single-step search 
traditionally used in proteomics.30,43 For two-step 
search approach, LC-MS/MS measurements are 
initially processed against a large protein sequence 
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database with no FDR control (FDR ≤ 1%). 
Subsequently, the original database is filtered to 
retain only protein sequences that were identified 
during the first search. During the second database 
search, the measurements are processed against the 
reduced database with FDR control (e.g. 
FDR ≤ .01).40 To assess these search strategies, we 
searched a single HeLa cell LC-MS/MS file using 
MaxQuant software against a Homo sapiens protein 
sequence database supplemented with different 
number of bacterial protein sequences (Figure 
S2A). The HeLa measurement is used here as 
a proxy for a complex microbiome measurement, 
with the exception that the sample composition is 
known and from a single organism.

We initially established a benchmarked standard 
by processing the HeLa measurement only against 
an H. sapiens database, which resulted in approxi-
mately 5,000 human (eukaryota) protein groups 
identified for the single-step search at FDR ≤ .01 
(Figure 2a, Table S2). Notably, the same database 
used in a two-step search identified less than 1% 
additional protein groups in comparison to 
a single-step search, despite nearly twice as much 
processing time. We then processed our HeLa mea-
surement against the H. sapiens database supple-
mented with 1×, 2×, 5×, 10× and 20× bacterial 
protein sequences, resulting in increasingly large 
databases (Figure S2A, Table S2). For the single- 
step database search against the 1:20 database, we 
observed a 10% decline in the number of human 
protein groups identified, while 132 bacterial pro-
tein groups were identified (false positives). On the 
contrary, the 1:20 two-step database search resulted 
only in a 1% decrease compared to the bench-
marked standard. This processing also revealed 
a large number of bacterial protein groups identifi-
cation (980 protein groups). Furthermore, the two- 
step search led to large number of MS/MS spectra 
to be assigned to different sequences (or newly 
assigned) in comparison to the benchmarked stan-
dard (Figure S2B, Table S2); this phenomenon was 
much less pronounced when performing the single- 
step search.

We then calculated the factual FDR for each 
processing approach using either the reverse hits 
or the reverse hits plus the bacterial hits (which in 
our case are false positives). For both the single-step 

and the two-step search, we obtained an FDR of 
2.6% when using only the reverse hits for FDR 
calculation (Figure 2b). However, when using the 
reverse hits plus the bacterial hits, we calculated 
a factual FDR of 8% and 34% for the single- and 
two-step search with 1:20 database, respectively. 
This represents a dramatic increase in the rate of 
false positive identification when using two-step 
search, despite controlling for 1% FDR. Notably, 
these false positive hits would remain unnoticed in 
a microbiome sample of unknown composition, 
thus highlighting the inherent problem associated 
with the two-step database search.

Optimizations of the two-step database search 
cancels out its higher sensitivity

To further assess database search strategies used by 
the metaproteomic community,26,30,40–44 we retrieved 
a metaproteome dataset of known taxonomic compo-
sition that was published by Kleiner and colleagues.32 

This dataset consisted of 32 organisms of uneven 
abundances, including bacteria (25), archaea (1), 
eukaryotes (1) and viruses (5). We processed eight 
LC-MS/MS measurements against a database con-
taining the proteomes of these 32 organisms, which 
we supplemented with .5×, 1×, 2×, 5×, 10× and 20× 
bacterial protein sequences, resulting in increasingly 
large databases. We then compared the results 
obtained from single-step search strategy against: (1) 
“two-step protein” search to keep identified 
proteins;40 (2) “two-step taxa” search to keep identi-
fied taxa;30 and (3) “two-step two sections” search to 
keep identified proteins after sectioned search.44 

While all search strategies resulted in similar accura-
cies, the “two-step protein” search maintained a high 
sensitivity even when using large databases (i.e. 20×) 
(Figure 2c and S2C). However, upon investigation of 
the factual FDR (reverse hits plus the false bacterial 
hits), the “two-step protein” search resulted in twice as 
many false positive identifications compared to the 
single-step search (Figure 2d, Table S2). Similar 
results were also observed when focusing on the pre-
cision (Figure S2D). Our investigations revealed that 
the “two-step taxa” search behaved nearly identically 
to the single-step search, whereas the “two-step two 
sections” search displayed performance in-between 
the first-step and “two-step protein” searches.
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Because, all assessed search strategies underesti-
mated the real FDR, we attempted to identify any 
particularity of the false positive protein groups 
identification and thus focused on processings 
against the largest database (20×). We show that 
the median number of unique peptides (i.e. peptides 
that are uniquely assigned to a protein group) are 1 
and 2 for the false and true positive hits, respectively 
(Figure S2E). We then compared results obtained 
using a post-processing filtering step requiring 

a minimum of 1 or 2 unique peptides per protein 
groups. Our results show that requiring a minimum 
of 2 unique peptides would efficiently control the 
FDR (≤1%) at the expense of a significant drop in 
protein identification (Figures 2e and S2F, Table S2). 
This investigation of different database search stra-
tegies applied to metaproteome samples further 
highlighted the limitations (i.e. factual FDR) of two- 
step searches, even following optimization (i.e. sec-
tioned search) or filtering.

Figure 2. Two-step database search in combination with target-decoy strategy leads to a dramatic increase in false positive rate. (a) The 
protein groups count is shown for single- or two-step search strategies across increasingly large protein sequence databases. Counts are 
color-coded per category, with eukaryote (gray), bacteria (red), contaminant (blue) and reverse (Orange) hits. (b) The FDR is calculated for 
single- or two-step search strategies across increasingly large protein sequence databases. The FDR is calculated based on reverse hits only 
(circle shape) or reverse plus bacterial hits (triangle shape). (c & d) The sensitivity (c) and factual FDR (d) based on protein groups 
identification across increasingly large protein sequence databases. The compared database search strategies are single-step (blue), two- 
step taxon filtering (gray) and two-step protein filtering without (red) or with (Orange) database sectioning. Lines represent the median (and 
the shading corresponds to the standard error) from N = 8 LC-MS/MS runs. (e) The true positive count based on protein groups identified 
with a minimum of one (shaded coloring) or two (unshaded coloring) unique peptides for the largest database (i.e. 20). The compared 
database search strategies are single-step (blue), two-step taxon filtering (gray) and two-step protein filtering without (red) or with (Orange) 
database sectioning. Bars and numbers indicate the median count, while error bars correspond to the standard deviation, from N = 8 LC-MS 
/MS runs. The overall maxima of true positive count based on single-step search is indicated as a horizontal dotted line (gold).
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Unipept software provides the most accurate and 
precise taxonomic annotation

Another important aspect of metaproteomic studies 
is the determination of taxonomic activity (protein 
biomass), which has been reported to differ from 
taxonomic representation derived from metage-
nomic studies.32,45 While it is straightforward to 
compute taxonomic activity from the abundance of 
peptides (or proteins) of known taxonomic origin, 
there has not been an exhaustive assessment of soft-
ware that can taxonomically annotate MS-identified 
peptides. Here, we assessed three software packages – 
i.e. Kraken2,46,47 Diamond21,48,49 and Unipept28,30,50 

– that are commonly used by the metaproteomic and 
metagenomic communities. The taxonomic annota-
tion performance of these software was evaluated on 
the dataset from Kleiner and colleagues.32

The Kraken2 software provided consistently 
higher percentage of peptides that could be taxo-
nomically annotated (c.a. 18% peptides annotated 
to species level), followed by Unipept (5%) and 
Diamond (1%) (Figure 3a). However, Kraken2 
also identified a very large number of taxa that 
were not present in the artificial samples from 
Kleiner and colleagues (Table S3) and thus would 
be false positive hits. Unsurprisingly, these false 
positive hits were characterized by low PSM counts 
in comparison to true positives (Figure S3A). This 
led us to assess these software packages in terms of 
accuracy, precision, sensitivity, specificity and 
F-measure for taxonomic identification using 
a range of PSM count thresholds (Figure 3b and 
S3B-E). In this context, the Unipept software sig-
nificantly outperformed Kraken2 and Diamond, 
especially with regard to the F-measure and preci-
sion. Notably, the implementation of a minimum 
PSM count threshold (i.e. between 1 and 5) resulted 
in accuracy, precision and specificity improvements 
for all software, but at the cost of a reduced 
sensitivity.

Thus, without a PSM count threshold, we corre-
lated the taxonomic abundance derived from each 
software annotation against the known input protein 
from Kleiner and colleagues’ artificial samples 
(Figure 3c). Overall, the Unipept software provided 
the highest correlation (Spearman ρ = .83), as well as 
at most taxonomic levels (including species). 
Interestingly, the dynamic range of taxon detection 

by MS spanned two orders of magnitude, with 
Salmonella enterica being approximately 230 times 
more abundant than Nitrosomonas europaeae 
(Figure 3d, Table S3). Unipept was also the only 
software allowing identification of Nitrosomonas 
ureae, Paraburkholderia xenovorans and 
Nitrosospira multiformis. Importantly, none of the 
software could identify the five viral organisms pre-
sent in the samples, the reason being technical since 
no peptide coming from those viral proteins was 
detected by MS. Finally, we assessed the impact of 
different database search strategies on taxonomic 
abundance derived by the Unipept software (Figure 
S3F). Similarly to our findings from the previous 
section, the F-measure metric highlighted the super-
iority of single-step strategy when it comes to taxo-
nomic identification. Taken together, we show that, 
based on different metrics and samples of known 
composition, the Unipept software provides better 
taxonomic annotation in comparison to Kraken2 
and Diamond.

The complex microbial composition of fecal samples 
is best recapitulated by the Unipept software

To check whether our results are also applicable to 
the microbial composition of fecal samples, we 
prepared samples using the LSC method from 
feces collected in a cohort of 38 mice. The resulting 
LC-MS/MS data were processed using a single-step 
search strategy against a matching metagenome 
protein database (with no knowledge of taxonomic 
composition). We initially annotated the MS- 
identified peptides using Kraken2, Diamond and 
Unipept, which revealed an overlap of 232 taxon 
(1.9%) between all three software. Such low overlap 
was largely driven by the suspected large number of 
false positive hits identified by Kraken2 (10,203 
uniquely identified taxon), as seen in the previous 
section. We then performed pairwise correlation 
between every samples combination within each 
software using taxonomic abundance (Figure 
S3G). While Diamond displayed a higher correla-
tion (median spearman ρ = .71), this is likely driven 
by the small number of identified taxa, most of 
which at the taxonomic levels closer to the root 
(e.g. superkingdom, phylum) and is thus a poor 
performance estimate.
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To determine which taxa are likely true or 
false positive hits, we made use of the taxonomic 
composition foreknowledge (at the species level 
only) from the mouse microbiome catalog.51 

With this approach, the Kraken2 software 
showed the best sensitivity (median = .17) com-
pared to Unipept (.13) and Diamond (.03) 
(Figure S3H, Table S3). Based on precision and 
F-measure, Kraken2 performance collapsed, 
whereas Unipept software had median precision 
and F-measure superior to .1 (Figure 3f and 
S3I). Using taxonomic foreknowledge, our 

findings suggest that the Unipept software pro-
vides superior predictive power for taxonomic 
annotation of fecal samples.

Metaproteome to metagenome correlation 
highlights an over-representation in the core 
microbiome functions

Multi-omic studies are now increasingly common in 
context of microbiome investigation to provide inter-
connected information, such as microbial presence 
and activity, genetic potential, gene expression and 

Figure 3. Unipept software provides the most precise taxonomic annotation of MS-based peptide identification. (a) Percentage of 
taxon-annotated peptides at each taxonomic level for the comparison between Kraken2 (red), Diamond (gray) and Unipept (blue) 
software. (b) Assessment of the impact of the minimum number of PSM count per taxon onto the F-measure for taxonomic annotation. 
The F-measure was compared between Kraken2 (red), Diamond (gray) and Unipept (blue) software. (c) Heatmap representing the 
correlation (Spearman ρ) in taxonomic abundance between sample input protein (expectation) and different taxonomic annotation 
software (i.e. Kraken2, Diamond and Unipept). The correlation was performed overall, as well as for each taxonomic level. (d) 
Organisms pooled in artificial samples are ranked based on the protein material input, as displayed in the left-most barplots (x-axis in 
log10 scale). The proteome size (ORFs) for these organisms on UniProt web resource is displayed in the right-most barplot (x-axis in 
log10 scale). The heatmap compares the taxon identification across samples between Kraken2, Diamond and Unipept. (a-d) Samples 
from the study by Kleiner and colleagues, with N = 8. (e) Overlap in the overall identified taxa between the Kraken2 (red), Diamond 
(gray) and Unipept (blue) software. (f) A comparison of the F-measure distribution for taxonomic annotation between the Kraken2 
(red), Diamond (gray) and Unipept (blue) software. Each point represents an individual mouse. (e-f) Samples from this study using 
mouse fecal material, with N = 38.
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functional activity.52–55 Due to the availability of 
matching metagenomic and metaproteomic data for 
our cohort of 38 mice, we assessed the correlation 
between gene and protein abundances. To deal with 
the intrinsic differences between the two datasets, the 
gene entries were grouped in a similar fashion as the 
protein groups (i.e. based on peptide identification) 
and the maximum expression was calculated per gene 
group. Here, we show that a majority of gene-protein 
pairs (91%) have a positive correlation, with a median 
of .39, the rest having a median negative correlation of 
˗.09 (Figure 4a, Table S4). Notably, 3,519 gene-protein 
pairs displayed a significant positive correlation. In 
addition, we compared the distribution in gene abun-
dances depending on whether the corresponding pro-
tein was identified by MS (Figure S4A). As expected, it 
shows that MS-based proteomics only identifies 
a subset of proteins toward the higher abundance.

To identify the core pathways within our mice 
cohort, we performed an over-representation ana-
lysis of the significantly correlated gene-protein 
pairs (Figure 4b, Table S4). Among these pairs, 
there was an over-representation in carbon fixation, 
glycolysis-gluconeogenesis, citrate cycle and carbon 
metabolism pathways (KEGG).56 We further char-
acterized the correlating genes and proteins and 
identified 20 over-represented gene ontology mole-
cular functions (GOMF) that were involved in 
ADP, ribosome, carbohydrate and electron transfer 
(Figure S4B, Table S4). Our results confirm the 
central role of carbon fixation and general metabo-
lism, which are associated with bacterial energy 
production, in the murine fecal microbiome 
under the analyzed conditions.

The metaproteome is enriched in functionally active 
pathways compared to the matching potential 
encoded in the metagenome

The metagenome corresponds to the microbiome’s 
genetic potential, whereas the metaproteome repre-
sents its truly expressed functional activities. 
Thereby, we compared the functional abundance 
derived from the metagenomic versus metaproteo-
mic datasets within our cohort of 38 mice. To allow 
comparison, the KEGG level 2 categories were 
quantified and normalized separately for each 

omic datasets (Figure S4C, Table S4). Out of 55 
KEGG categories, we found 15 and 37 to be sig-
nificantly increased and decreased in abundance at 
the metaproteome level in comparison to the meta-
genome (FDR ≤ .05). In general, the metagenome- 
based quantification of KEGG categories was stable 
across categories, whereas large differences were 
observed for the metaproteome.

To prioritize the KEGG categories, we selected 
eight categories differing significantly in terms of 
gene-protein correlation in comparison to the overall 
correlation (Figures 4c and S4D). Among the KEGG 
categories displaying higher abundance in the meta-
proteome compared to the metagenome were the 
membrane transport, translation, signaling and cellu-
lar processes, and genetic information processing. 
Conversely, transcription, carbohydrate metabolism 
and antimicrobial drug resistance exhibited lower 
abundance. The KEGG Orthology (KO) entries differ-
ing significantly in abundance between the metagen-
omes and metaproteomes were identified via t-test 
and used for gene set enrichment analysis (GSEA). 
GSEA revealed an enrichment of a number of over-
lapping KEGG pathways, with 19 and 6 pathways 
positively and negatively enriched, respectively 
(Figure 4d, Table S4). Interestingly, we found the 
ribosome pathway enriched in protein with increased 
abundance (between metaproteome and metagenome 
datasets), therefore highlighting the functional activa-
tion of this pathway (Figure 4e and S4E). Conversely, 
homologous recombination, DNA replication and 
mismatch repair were enriched in protein with 
decreased abundance, suggesting no or low activation 
of these pathways. Overall, our findings highlight the 
critical importance of metaproteomics to characterize 
microbiome samples particularly when it comes to 
their functional activity.

Discussion

Here, we investigate some key aspects of metaproteo-
mic workflow applied to murine fecal samples in order 
to enhance protein identification, taxonomic and 
functional coverage. We focused on the assessment 
of (1) different sample preparation methods, (2) stra-
tegies to control for false positive rates during database 
search, (3) taxonomic annotation software for 
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Figure 4. Functionally active pathways derived from the metaproteome differs from the metagenome potential. (a) Correlation is 
shown between each protein groups (metaproteome) and corresponding gene “groups” (metagenome) abundances. Correlation was 
tested using Spearman’s rank correlation and p-value was adjusted for multiple testing using Benjamini-hochberg correction. 
Significantly positively correlating protein/gene groups are in red colors, while significantly negatively correlating protein/gene groups 
are in green colors (adjusted p-value ≤ .05). (b) GSEA of KEGG pathways based on ranking of the protein/gene groups correlation. 
Pathway node color corresponds to GSEA results adjusted p-value and node size matches the number of protein/gene group assigned 
to the pathway. (c) Comparison in the proportion of selected KEGG functional categories (level 2) between metaproteome (red) and 
metagenome (gray). Paired t-test p-values are indicated (N = 38). (d) GSEA of KEGG pathways based on ranking of t-test results from 
KEGG orthology proportion between metaproteome and metagenome. KEGG pathways are color-coded based on KEGG functional 
categories (level 2). Only significantly over-represented KEGG pathways are shown with adjusted p-value ≤ .05. (e) Interaction network 
between KEGG orthologies and KEGG pathways for the KEGG functional category “Protein families: genetic information processing”. 
Pathway node size corresponds to number of KEGG orthologies associated to it. KEGG orthologies are color-coded based on directional 
adjusted p-value from the t-test comparison between metaproteome and metagenome.
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accurate MS-derived taxonomic representation and 
(4) the importance of metaproteomics to determine 
functionally enriched pathways. Our results led to an 
overview of the strengths and weaknesses of each 
assessed methods (Table 1) in the context of murine 
fecal metaproteomics.

To the best of our knowledge this is one of the 
largest and most extensive comparisons undertaken 
to date, comprising over 40 different biological sam-
ples and over 50 LC-MS/MS runs. Overall, we reached 
identification rates that are similar to bacterial shotgun 
proteomics (ca. 20–40%). In comparison to previous 
murine fecal metaproteomic studies, we identified 
more non-redundant peptides per samples (approxi-
mately 20,000 non-redundant peptides on a 60 min 
gradient).57,58 Several parameters may have influenced 
such performance, among which are the use of a faster 
and more sensitive Orbitrap instrument (i.e. 
Q Exactive HF)59,60 and a more representative protein 
sequence database (i.e. mouse metagenome catalog or 
mouse matching metagenome).51 Importantly, the 
impact of mass spectrometer speed and sensitivity 
should not be overlooked in a typical metaproteomic 
measurements. Indeed, the type and model of MS 
instrument was among the parameters with the great-
est impact on identification rates. Some of our initial 
investigation showed significant increase in peptide 
and protein identification rate when using the 
Q Exactive HF (faster scanning, improved sensitivity) 
versus the Orbitrap Elite (data not shown, but down-
loadable from ProteomeXchange).

Both LSC and nLSC methods have merits for the 
metaproteomic analysis of murine fecal samples

Our study confirms previous observation with 
regard to increased peptides or proteins identifica-
tion, which is dependent on laboratory preparation 
method and specifically the usage of differential 
centrifugation.24 The LSC approach also leads to 
more consistent identifications and as a result fewer 
missing values, which is a general and extensive 
problem in metaproteomic datasets. Regarding the 
topic of reproducible protein identification and 
quantification, a recent metaproteomic study 
demonstrated the use of Tandem Mass Tag (TMT) 
approach in human stool samples.22

Further investigation into taxonomic composi-
tion between LSC and nLSC revealed broad 
changes already at the phylum level. Notably, 
Bacteroidetes and Verrucomicrobia were enriched 
within LSC-prepared samples, whereas Firmicutes, 
Actinobacteria and Deferribacteres phyla were over- 
represented in nLSC samples. Such depletion or 
enrichment of several major bacterial phyla have 
previously been reported by Tanca and 
colleagues.24 While Verrucomicrobia was found 
enriched by LSC in ours as well as Tanca’s study, 
Bacteroidetes, Firmicutes and Actinobacteria were 
enriched by opposite methods. Several reasons 
may explain these discrepancies, such as the host 
organism under study (i.e. Mus musculus versus 
Homo sapiens), different protein sequence database 
construction (i.e. mouse microbiome catalog versus 

Table 1. Performance comparison of different sample preparation and data analysis steps. In bold are the best methods according to 
assessed criteria: peptide/protein count, host/dietary contamination, Firmicutes or Bacteroidetes representation, time efficiency, FDR, 
identification rate, taxon-assigned peptides and number of taxonomic identification precision. The performance status is displayed 
using minus sign for poor, equal sign for similar/no difference or plus sign for good performance.

Peptide/ 
protein  
count

Host/dietary 
contamination Firmicutes Bacteroidetes

Time 
efficiency FDR

Identification 
rate

Taxon  
assigned 
peptides Precision

Centrifugation LSC + - - + -
nLSC - + + - +

Digestion In-solution + -
FASP - +

Search strategy Single-step - + + -
Two-step protein + - – +
Two-step sections + – - +
Two-step taxa - - + -

Taxon quantification Kraken2 + + –
Diamond – - -
Unipept + + +
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UniProtKB custom microbiome) and minimal bio-
logical variability (i.e. three biological sample here 
versus one in Tanca’s study).

Additional comparison to the phyla detected by 
metagenomics in the mouse microbiome catalog 
study tends to agree more with the nLSC 
approach.51 However, the samples from that study 
were also prepared using a nLSC approach, which 
may explain the similarity. Importantly, it has been 
reported that the removal of fecal particles may also 
lead to exclusion of proteins or organisms attached 
to these fecal debris,24 thus leading to a bias in the 
LSC approach. A limitation of our study lies in the 
use of murine fecal samples of unknown microbiota 
composition to assess different laboratory methods 
and their impact on taxonomic and protein repre-
sentation. To bypass this issue, one solution would 
consist in assessing different laboratory methods 
against a mock microbial community (i.e. known 
composition), such as in the study by Kleiner and 
colleagues.32 While such community sample can be 
purchased, these are mostly representative of the top 
20 most abundant species within the human gut 
microbiome and are far from recapitulating the 
complexity of a fecal sample (>100 microbial 
species).61,62

Our results at the protein level showed significant 
changes in abundance, which were indicative of 
broad taxonomic changes, more so than variation 
in functional activities. Importantly, recent studies 
have reported considerable changes in rodent micro-
biota depending on suppliers or on shipping batch, 
even for mice housed in identical environments.63,64 

Murine gut microbiota is also significantly different 
from other mammals, such as human.51 In this con-
text, our results on metaproteomic sample prepara-
tion may not translate to other of murine fecal pellets 
(e.g. young vs. old individuals) or other mammalian 
feces (e.g. H. sapiens) and suggests that optimization 
of sample preparation is needed for each cohort (or 
at least for each host organism). Similarly, the murine 
fecal pellets used in this study originated exclusively 
from male and thus display a bias against female 
murine microbiome. Previous studies have reported 
differences in microbial composition between male 
and female, which in turn impacts hormone levels, 
disease progression and gene expression of the 
host.65–67 In the future, our results should be con-
firmed using amale and female murine cohort.

Notably, both sample preparation approaches 
have advantages, and the choice may ultimately 
come down to which bacterial phylum is under 
investigation.25 Another option, which would need 
to be tested and depends on fecal pellet size, consists 
in splitting each fecal sample and performing LSC 
and nLSC in parallel. Following implementation of 
both fecal pre-processing approaches, the resulting 
samples could be pooled, processed using the in- 
solution digestion workflow and measured by LC- 
MS/MS. This alternative avoids an increase in sam-
ple size and measurement time, but maximizes the 
recovery of different taxon (and proteins). The split-
ting of fecal material is also relevant for multi-omics 
investigation, as reported in a recent swine multi- 
omic study,68 and a murine dual metagenomics- 
metabolomics project.69 In this context, to imple-
ment metaproteomics and metabolomics of the 
same samples, the fecal material must be collected 
fresh and quickly stored at −80°C. At the time of 
preparation, samples can be split and their respective 
laboratory workflows can be pursued separately.

Single-step database search allows optimal control 
of false discovery rate

Currently, many metaproteomic studies use two- 
step database searches as a way to boost identifica-
tion rates.40–42 However, we demonstrate that this 
type of search dramatically underrepresents the 
number of false positives, due to the use of 
a decoy search strategy that is unsuitable in this 
context. Our results elaborate on a previous study 
by Muth and coworkers, who also emphasized the 
drawbacks of using a two-step search together with 
decoy strategy.70 Using a single human LC-MS/MS 
measurement, our findings were so extreme that 
the number of false positives was equal or greater 
to the number of false negatives, with FDR outside 
of any accepted range (i.e. factual FDR >.1).

Using metaproteome samples of known compo-
sition, we expanded our investigation of search 
strategies by including “two-step taxa” and “two- 
step two sections”. The “two-step two sections” 
approach, implemented according to Kumar and 
colleagues,44 provided a middle ground in perfor-
mance between the “two-step protein” and single- 
step search strategies, but at the expanse of much 
longer processing time. Nonetheless, our results 
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confirmed the inability of two-step searches to con-
trol the FDR, including in context of metaproteo-
mic samples. We argue that the use of a two-step 
search should be avoided whenever possible and 
replaced by alternative strategies, such as taxo-
nomic foreknowledge or using matching 
metagenomes.45

Accurate taxonomic annotation of murine fecal 
samples can be generated by the Unipept software

Previous studies have shown that it is possible to 
derive taxonomic representation from MS- 
identified peptides of known taxonomic 
origin.32,33,71 However, to the best of our knowl-
edge, there has not been a comparison of software 
for the taxonomic annotation of peptides with 
unknown origin. Here, we compared three soft-
ware packages, namely Kraken2,46 Diamond48 

and Unipept,28 which use different algorithms to 
perform such taxonomic annotation. Using meta-
proteome samples of known composition, as well 
as metaproteome samples from 38 murine feces, 
we determined that the Unipept software pro-
vided superior performance (i.e. precision, sensi-
tivity). Notably, Unipept is very user-friendly, fast 
and was designed to work on MS-identified 
peptides.28 Whereas, Diamond and Kraken2 
have both been designed to work on full pro-
tein/gene sequences or nucleotide sequencing 
reads (as opposed to peptides), which may have 
contributed to their lower performance.46,48 Our 
assessments (i.e. sensitivity, specificity) were 
based on exact taxonomic identity and ignored 
hits from closely related taxon, which may have 
negatively affected the performance estimates of 
Kraken2.46 While, Unipept was clearly the opti-
mal taxonomic annotation software for MS- 
identified peptides, it is currently limited to 
UniProt proteins, NCBI taxonomic hierarchy 
and trypsin cleavage.

The metaproteome shows an enrichment in 
functionally-active pathways compared to the 
matching metagenomic potential

Here, we observed an overall positive correlation 
between gene and protein abundances derived 
from metaproteome and matching-metagenome 

analysis. This was previously reported in 
a longitudinal study of metaproteome/metagen-
ome fluctuations from one individual with 
Crohn’s Disease.52 In our case the significantly 
correlated entries were associated with core bac-
terial metabolic functions, such as carbon and 
energy metabolism or electron transfer activity.72 

Despite such correlations, we also reported exten-
sive differences in quantified functions between 
metagenomics and metaproteomics. Notably, 
with regard to genetic information processing 
(KEGG level 2), the ribosome pathway was over- 
represented in entries with higher abundance in 
metaproteomes, whereas pathways associated 
with DNA repair, replication or recombination 
were over-represented in entries with increased 
abundance in metagenomes. However, several 
studies have shown positive correlation between 
metatranscriptomics and metaproteomics at the 
gene or function levels. For example, a microbial 
community study from wastewater treatment 
plant73 revealed overall positive correlation in 
functional categories abundance between tran-
scripts and proteins. In another multi-omics 
study of the gut microbiome of human diabetic 
patients,55 while a positive correlation was 
observed between transcripts and proteins, this 
correlation did not translate to the derived func-
tional profiles.

Here we highlight the main advantage of meta-
proteomics, which captures functionally active 
pathways, as opposed to the genetic potential repre-
sented by metagenomics.74 Thus, these approaches 
are complementary to each other and can provide 
a more comprehensive understanding of 
a biological system.54

Conclusion

To conclude, in this study we present an integrated 
analytical and bioinformatic workflow to improve 
protein identification, taxonomic and functional 
coverage of the murine fecal metaproteome. LSC 
combined with in-solution digestion provided the 
highest identification rates, although leading to 
a potential enrichment in specific taxa. We also 
show that fast and accurate MS data processing 
can be achieved using a single-step database search. 
Taxonomic annotation can be generated directly 

GUT MICROBES e1994836-13



from MS-based peptide identification using the 
Unipept software. While protein and gene abun-
dances displayed an overall positive correlation, the 
metaproteome showed a significant functional 
enrichment compared to its metagenomic poten-
tial; thus, emphasizing the need for more metapro-
teomic studies for adequate functional 
characterization of the microbiome.

Methods

Animals and fecal samples collection

Mouse fecal pellets, obtained from a small cohort of 
six male wild-type B6EiC3SnF1/J mice, were used 
to compare sample purification and protein extrac-
tion methodologies from feces (Figure S1A). 
A larger cohort of 38 mice (male euploid and tri-
somic Ts65Dn) was used to obtain mouse feces, for 
further assessment of the data analysis workflow. 
Mice were housed and feces were collected follow-
ing the experimental procedures evaluated by the 
local Ethical Committee (Barcelona Biomedical 
Research Park, Spain). Fecal pellets were collected 
fresh, placed at −20°C and stored at −80°C until 
analysis.

DNA extraction and whole-genome sequencing

Whole genome analysis was performed on the 
mouse cohort used for data analysis assessment. 
In brief, DNA was extracted from fecal samples 
using the FastDNA SPIN Kit (MP Biochemicals) 
and following manufacturer’s instructions. DNA 
concentration was measured using a Qubit fluo-
rometer (Invitrogen) and samples were shipped 
frozen to the Quantitative Biology Center (QBiC) 
at the University of Tuebingen for whole genome 
sequencing.

Sequence data were generated on an Illumina 
HiSeq 2500 instrument (chemistry SBS v3 plus 
ClusterKit cBot HS) and processed as described 
previously75 but with minor modifications that 
follow. Supplied sequence data were checked 
using fastQC v0.11.5.76 Data were trimmed with 
Trim Galore! (–clip_R1 10 – clip_R2 10 – 
three_prime_clip_R1 10 – three_prime_clip_R2 
10 – length 50; Babraham Bioinformatics). 
Mouse DNA within samples was detected by 

mapping reads against the mouse genome 
(GRCm38). Mouse-filtered read files (with an 
average of 3.58 ± .08 Gb sequence data per sample) 
were used for all subsequent analyses. Kraken2 
2.0.8-beta46 with the pre-compiled Genome 
Taxonomy Database77 Functional annotation was 
achieved by mapping centroid protein sequences 
generated as described before46,75 using the 
eggNOG-mapper software (v.1.0.3)78 and asso-
ciated database (v.4.5).

Sample treatment, cell lysis and protein extraction

Mouse fecal pellets obtained from wild-type 
B6EiC3SnF1/J mice were used to compare sample 
initial preparation methodologies (Figure S1A).

For the LSC procedure, feces (~50 mg) were 
resuspended in phosphate buffer (50 mM Na2 

HPO4/NaH2PO4, pH 8.0, 0.1% Tween 20, 35x 
volume per mg) by vortexing vigorously for 5 
min using 4 mm glass beads (ColiRollersTM 

Plating beads, Novagen), followed by incubation 
in a sonication bath for 10 min and shaking at 
1,200 rpm for 10 min in a Thermomixer with 
a thermo block for reaction tubes. Insoluble mate-
rial was removed by centrifugation at 200 × g at 
4°C for 15 min. The supernatant was removed and 
the remaining pellet was subjected to two addi-
tional rounds of microbial cell extraction. After 
merging supernatants, microbial cells were col-
lected by centrifugation at 13,000 × g at 4°C for 
30 min. The pellet was resuspended in 80 µL 
sodium dodecyl sulfate (SDS) buffer (2% SDS, 
20 mM Tris, pH 7.5; namely pellet extraction buf-
fer) and heated at 95°C for 30 min in 
a Thermomixer. The resulting suspension was 
divided into two parts to obtain technical repli-
cates for the rest of the sample preparation work-
flow. Protein extraction was performed by cell 
homogenization using .1 mm glass beads 
(100 mg, SartoriusTM Glass Beads) for each repli-
cate and the FastPrep-24 5 G instrument (MP) at 
4 m/s or BeadBug microtube homogenizer 
(BeadBug) at 4,000 rpm. Three cycles of homoge-
nization including 1 min bead beating, 30 sec incu-
bation at 95°C, and 30 sec centrifugation at 
13,000 × g were performed. The homogenate was 
diluted with 800 µL MgCl2 buffer (.1 mg/mL 
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MgCl2, 50 mM Tris, pH 7.5) and centrifuged at 
13,000 rpm for 15 min. Proteins from the super-
natant were precipitated overnight in acetone and 
methanol at ˗20°C (acetone:methanol:sample with 
8:1:1 ratio). Protein pellets were resuspended in 
120 µL denaturation buffer (6 M urea, 2 M 
thiourea, 10 mM Tris, pH 8.0) for downstream use.

For the nLSC procedure, mouse feces (~25 mg) 
were homogenized directly in 150 µL pellet extraction 
buffer as described above with the following changes. 
A bead mixture of .1 mm glass beads (100 mg), 
5 × 1.4 mm ceramic beads (Biolab products), and 
1 × 4 mm glass bead was used for five cycles of 
homogenization to breakup the fecal material.

Protein digestion

Following extraction, protein amount was quantified 
using Bradford assay (Bio-Rad, Munich, Germany)79 

and two methods were compared to digest proteins 
extracted from LSC or nLSC procedures.

The in-solution digestion method was per-
formed as follows. Proteins (20 µg starting mate-
rial) were reduced in 1 mM dithiothreitol (DTT) 
and alkylated in 5.5 mM iodoacetamide at room 
temperature (RT) for 1 h each. Proteins were pre- 
digested with LysC at RT for 3 h using a protein to 
protease ratio of 75:1. Samples were diluted nine- 
fold with 50 mM ammonium bicarbonate and 
digested overnight with trypsin (Sequencing 
Grade Modified Trypsin, Promega) at pH 8.0 
using a protein to protease ratio of 75:1.

Filter-aided sample preparation (FASP) was per-
formed as previously published.80 Briefly, proteins 
(10 µg starting material) were reduced in .1 M DTT 
for 40 min at RT. The reduced samples were added to 
the filter units (30 kDa membrane cut off) and cen-
trifuged at 14,000 × g for 15 min. All further centrifu-
gation steps were performed similarly unless 
otherwise noted. Samples were then washed with 
2 × 200 µL urea buffer (100 mM Tris/HCl, pH 8.5, 
8 M urea) and centrifuged. Proteins were incubated in 
50 mM IAA for 20 min at RT in the dark. After 
alkylation, samples were centrifuged and washed 
three times with 100 µL urea buffer. This was followed 

by three wash steps with 50 mM ammonium bicarbo-
nate (ABC) for 10 min. Proteins were digested over-
night at 37°C using trypsin digestion (Sequencing 
Grade Modified Trypsin, Promega) at pH 8.0 using 
a protein to protease ratio of 100:1. On the 
following day, the peptides were centrifuged into 
fresh tubes at 14,000 × g for 10 min. An additional 
40 μL ABC buffer was added to the filter units and this 
solution was also centrifuged to increase the peptide 
yield.

To stop the digestion from either in-solution or 
FASP workflows, the samples were acidified to pH 
2.5 with formic acid and cleaned for LC-MS/MS 
measurement using Empore C18 disks in 
StageTips.81

LC-MS/MS measurements

Samples were measured on an EASY-nLC 1200 
(Thermo Fisher Scientific) coupled to a Q 
Exactive HF mass spectrometer (Thermo Fisher 
Scientific). The samples prepared for the sample 
purification and protein extraction methodologies 
assessment were all measured in duplicates to assess 
instrument reproducibility. Peptides were chroma-
tographically separated using 75 μm (ID), 20 cm 
packed in-house with reversed-phase ReproSil-Pur 
120 C18-AQ 1.9 μm resin (Dr. Maisch GmbH).

Peptide samples generated as part of the labora-
tory method optimization (LSC vs. nLSC, FASP vs. 
in-solution) were eluted over 43 min using a 10 to 
33% gradient of solvent B (80% ACN in .1% formic 
acid) followed by a washout procedure. Peptide 
samples generated as part of the data analysis 
assessment (metaproteome vs. metagenome) were 
eluted over 113 min using a 10 to 33% gradient of 
solvent B (80% ACN in .1% formic acid) followed 
by a washout procedure.

MS1 spectra were acquired between 300–1,650 
Thompson at a resolution of 60,000 with an AGC 
target of 3 × 106 within 25 ms. Using a dynamic 
exclusion window of 30 sec, the top 12 most intense 
ions were selected for HCD fragmentation with an 
NCE of 27. MS2 spectra were acquired at 
a resolution of 30,000 and a minimum AGC of 
4.5 × 103 within 45 ms.

GUT MICROBES e1994836-15



LC-MS/MS data processing

Raw data obtained from the instrument were pro-
cessed using MaxQuant (version 1.5.2.8).36 The 
protein sequence databases used for database 
search consisted of the complete Mus musculus 
Uniprot database (54,506 sequences) and fre-
quently observed contaminants (248 entries), as 
well as the mouse microbiome catalog 
(~2.6 million proteins)51 for the raw data from 
laboratory method optimization samples or the 
matching metagenome gene translation 
(~1.5 million proteins) for the raw data from data 
analysis assessment samples. A FDR of 1% was 
required at the peptide and protein levels. 
A maximum of two missed cleavages was allowed 
and full tryptic enzyme specificity was required. 
Carbamidomethylation of cysteines was defined as 
fixed modification, while methionine oxidation and 
N-terminal acetylation were set as variable modifi-
cations. Match between runs was enabled where 
applicable. Quantification was performed using 
label-free quantification (LFQ)82 and a minimum 
peptide count of 1. All other parameters were left to 
MaxQuant default settings.

Comparison of sample preparation methods

Unless stated otherwise, the analyses described 
below were performed in the R environment.83 To 
compare the different centrifugation, digestion and 
lysis methods, we counted for each sample the 
number of peptide and protein groups with inten-
sities and LFQ intensities superior to zero, respec-
tively. We tested for significant differences between 
methods using unpaired t-tests via the ggplot2 
package.84 Quantified peptides and protein groups 
were checked for overlap between the centrifuga-
tion methods using the VennDiagram package. The 
proportion of host (Mus musculus) proteins was 
computed by summing up all host proteins iBAQ 
values and then dividing by the total iBAQ per 
sample. The centrifugation methods were evaluated 
using an unpaired t-test.

The taxonomy representation, for the centrifu-
gation methods, was done via the Unipept online 
software (v. 4.5.1).37 The quantified peptides 
(intensity superior to zero) were imported into 

Unipept with I-L not equal. The Unipept result 
were used to count the number of non-redundant 
peptides assigned to each taxonomic node.

For the differential protein abundance analysis 
(between LSC and nLSC), the MSnBase package 
was used as organizational framework for the pro-
tein groups LFQ data.85 Host proteins, reverse hit 
and potential contaminant proteins were filtered 
out. Protein groups were retained for further ana-
lysis only if more than 90% of samples within 
either LSC or nLSC group had an LFQ superior 
to the first quartile overall LFQ. Significantly 
changing proteins were identified using paired 
t-test. Significance was set at an adjusted p-value 
of .01 following Benjamini-Hochberg multiple 
correction testing, as well as a minimum LSC/ 
nLSC fold-change of ±1.5. The over- 
representation and GSEA testing of KEGG path-
ways were done for the significantly up- and 
down-regulated proteins as well as for the proteins 
uniquely identified per group via the 
clusterProfiler package based on hypergeometric 
distribution (p-adj. ≤ .05).39

Single- versus two-step search assessment using 
HeLa cell line sample

HeLa cells were prepared for LC-MS/MS measure-
ments using published method.86 Briefly, cells were 
grown in DMEM medium and harvested at 80% 
confluence. Proteins were precipitated using acet-
one and methanol. Proteins were reduced with 
DTT and digested with Lys-C and trypsin. 
Peptides were purified on Sep-Pak C18 Cartridge.

Sample was measured as described in the LC-MS 
/MS measurements section but for a few changes. 
Peptide sample was eluted over 213 min using a 7% 
(0 min), 15% (140 min) and 33% (213 min) gradi-
ent of solvent B (80% ACN in .1% formic acid) 
followed by a washout procedure. The top 10 
most intense ions were selected for HCD 
fragmentation.

Raw data were processed as described in the LC- 
MS/MS data processing section with a few altera-
tions. Match between runs was disabled. The pro-
tein sequence databases used for database search 
consisted of the complete Homo sapiens Uniprot 
database (93,799 sequences), frequently observed 
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contaminants (248 entries), as well as the mouse 
microbiome catalog (~2.6 million proteins).51 

Several processings were performed differing in 
the number of microbiome catalog entries 
included, which led to an increase in database size 
of 0×, 1×, 2×, 5×, 10× and 20× compared to the 
H. sapiens database alone. These processings also 
differed in the database search strategies used, 
namely single- or two-step search.40

Identified MS/MS, peptides and protein groups 
were assigned to kingdom of origin (conflicts were 
resolved to Eukaryota by default). To compare the 
different database search strategies, we counted the 
number of identified MS/MS, non-redundant pep-
tides and protein groups associated to each king-
dom (as well as reverse hits and potential 
contaminants). We also calculated the FDR based 
solely on reverse hits or together with bacterial hits 
(factual FDR) in order to investigate the true num-
ber of false positives.

Database search strategies assessment using known 
microbiome samples

We used the samples generated by Kleiner and col-
leagues, specifically the uneven organisms prepara-
tion described in the earlier publication.32 This 
dataset contained LC-MS/MS measurements 
(N = 8) that we processed as described in the LC- 
MS/MS data processing section with a few altera-
tions. Match between runs was disabled. The protein 
sequence databases used for database search con-
sisted of the proteome of all 32 organisms present 
in the synthetic samples (“uneven data-
base” = 122,972 sequences), frequently observed 
contaminants (248 entries), as well as the mouse 
microbiome catalog (~2.6 million proteins).51 

Several processings were performed differing in the 
number of microbiome catalog entries included, 
which led to an increase in database size of 0×, .5×, 
1×, 2×, 5×, 10× and 20× compared to the “uneven 
database” alone. These processings also differed in 
the database search strategies used, namely single- 
step search, “two-step protein” search to keep iden-
tified proteins,40 “two-step taxa” search to keep iden-
tified taxa,30 and “two-step two sections” search to 
keep identified proteins after sectioned search.44

Identified protein groups were assigned to data-
base of origin, namely “uneven database” or mouse 
microbiome catalog database. For each sample, this 
allowed computation of the number of (1) true posi-
tive hits, must be hits from the “uneven database”; 
(2) false positive hits, must be hits from the mouse 
microbiome catalog; (3) false negative hits, the total 
identified protein count in the “uneven database” 
(total from 8 samples) minus the true positives; and 
(4) true negative hits, the total protein count in the 
mouse microbiome catalog minus the false positives. 
This allowed calculation of the accuracy, precision 
and sensitivity for each increase in the database size. 
We also calculated the factual FDR based on reverse 
hits together with mouse microbiome catalog hits in 
order to investigate the true number of false 
positives.

Using only the processings against the largest 
database (20×), we filtered our data for protein 
groups with a minimum of one or two unique 
peptides. The true positive count and factual FDR 
were calculated (and compared) for each combina-
tion of search strategy and filtering, as described in 
the previous paragraph.

Taxonomic representation of known microbiome 
samples

We also used the uneven samples generated by 
Kleiner and colleagues32 to investigate the taxonomic 
representation derived from MS-identified peptides. 
The gold-standard processing was used, with single- 
step database search against the proteome of all 32 
organisms present in the synthetic samples (“uneven 
database” = 122,972 sequences). MS-identified pep-
tides were submitted to (1) Kraken2 (v. 2.1.1),46 (2) 
Diamond (v. 2.0.9),48 or (3) Unipept online (v. 
4.5.1)28 software for taxonomic assignments. The 
protein sequences from Uniprot (swissprot and 
trembl) were used as database for each software. 
The Diamond alignment was performed using sen-
sitive and taxonomic classification mode. The 
Unipept online analysis was done via the metapro-
teome analysis function with I-L not equal. The 
Kraken2 k-mer analysis was carried out in translated 
mode using back-translated peptide sequences 
(back-translation done with EMBOSS backtranseq). 
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For each software approach, the complete taxonomic 
lineage (NCBI) was retrieved per peptide and the 
lowest common ancestor was determined.

For each sample, we determined and computed 
the number of taxa that are (1) true positive hits, 
must be an identified taxon used for the preparation 
of the synthetic samples; (2) false positive hits, must 
be an identified taxon not used for the preparation of 
the synthetic samples; (3) false negative hits, the total 
number of taxa used for the preparation of the syn-
thetic samples minus the true positives; and (4) true 
negative hits, the total number of taxa (with at least 
one Uniprot protein) minus the true and false posi-
tives. This allowed calculation of the accuracy, pre-
cision, specificity, sensitivity and F-measure for 
different PSM count thresholds. Taxa were then 
quantified per sample based on the different software 
approaches by summing the peptide intensities and 
then normalized to percentage of total peptide inten-
sities. At each taxonomic level, the Spearman’s rank 
correlation was calculated between the expected 
taxon representation in the uneven samples and the 
taxa representation determined from each software.

To investigate the taxonomic identification in con-
text of different database search strategies, we per-
formed the taxonomic annotation via Unipept for all 
uneven data processings described in the above sec-
tion. We then carried out all steps described in the 
previous paragraph in order to compute the 
F-measure per search strategy and database size.

Taxonomic representation of fecal microbiome 
samples

All subsequent sections use the fecal samples from 
a 38 mice cohort. These were prepared via LSC and 
in-solution protein digestion, as described above. 
The resulting peptide mixtures were measured on 
a Q Exactive HF mass spectrometer and processed 
against the matching metagenome gene translation, 
as described above.

The MS-identified peptides in this dataset were 
taxonomically annotated with Kraken2, Diamond 
and Unipept, as described above. Taxa were quanti-
fied as described above (sum of peptide intensities). 
The Spearman’s rank correlation in taxon represen-
tation was calculated for each pairwise combination 
of samples within software.

For each sample, we determined and computed 
the number of species that are (1) true positive hits, 
must be an identified species reported in the mouse 
microbiome catalog; (2) false positive hits, must be an 
identified species not reported in the mouse micro-
biome catalog; and (3) false negative hits, the total 
number of species reported in the mouse micro-
biome catalog minus the true positives. This allowed 
calculation of the precision, sensitivity and 
F-measure for each samples and annotation software.

Metagenome to metaproteome correlation

All subsequent sections use the fecal samples from 
a 38 mice cohort. These were prepared via LSC and 
in-solution protein digestion, as described above. 
The resulting peptide mixtures were measured on 
a Q Exactive HF mass spectrometer and processed 
against the matching metagenome gene translation, 
as described above. For direct comparison between 
metagenome and metaproteome, the identified 
genes were collapsed into groups identical to pro-
tein groups composition from mass spectrometry. 
Each gene groups abundance was calculated as the 
highest gene abundance within that group. Each 
gene groups and corresponding protein groups 
abundances were correlated across samples using 
Spearman’s rank correlation from the stats package. 
Significance was set at an adjusted p-value of .05 
following Benjamini-Hochberg multiple correction 
testing. The GSEA testing of KEGG pathways and 
Gene ontologies were performed via the 
clusterProfiler package based on hypergeometric 
distribution (p-adj. ≤ .05)39 following z-scoring of 
Spearman rho estimate per KEGG orthologies.

Functional KEGG categories representation

For each sample, the protein groups iBAQ values 
were summed per KEGG category (level 2) on the 
basis of KEGG orthology annotation. The same 
approach was also undertaken for gene count. The 
KEGG category abundance were normalized for 
differing number of KO entries per category and 
for variation between samples; this was done sepa-
rately for metagenome and metaproteome. 
Differences in KEGG category abundance between 
metagenome and metaproteome were tested using 
paired t-tests from the stats package. Significance 
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was set at an adjusted p-value of .01 following 
Benjamini-Hochberg multiple correction testing. 
Significantly changing KEGG categories were 
prioritized based on gene groups to protein groups 
correlation (see section Metagenome to metapro-
teome correlation), whereby the Wilcoxon rank- 
sum test was used to identify KEGG category con-
taining KO entries whose correlation differ from 
overall distribution (adjusted p-value ≤ .05).

To investigate further these selected KEGG cate-
gories, the protein groups iBAQ and gene count were 
used as described in the previous paragraph to derive 
KO normalized abundance and t-test results. Using 
the KO entries from each selected KEGG categories, 
separate GSEA testing of KEGG pathways were per-
formed via the clusterProfiler package based on hyper-
geometric distribution (p-adj. ≤ .05).
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