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Introduction: The Mayo imaging classification model (MICM) requires a prestep qualitative assessment to

determine whether a patient is in class 1 (typical) or class 2 (atypical), where patients assigned to class 2

are excluded from the MICM application.

Methods: We developed a deep learning–based method to automatically classify class 1 and 2 from

magnetic resonance (MR) images and provide classification confidence utilizing abdominal T2-weighted

MR images from 486 subjects, where transfer learning was applied. In addition, the explainable artificial

intelligence (XAI) method was illustrated to enhance the explainability of the automated classification

results. For performance evaluations, confusion matrices were generated, and receiver operating char-

acteristic curves were drawn to measure the area under the curve.

Results: The proposed method showed excellent performance for the classification of class 1 (97.7%) and

2 (100%), where the combined test accuracy was 98.01%. The precision and recall for predicting class 1

were 1.00 and 0.98, respectively, with F1-score of 0.99; whereas those for predicting class 2 were 0.87 and

1.00, respectively, with F1-score of 0.93. The weighted averages of precision and recall were 0.98 and 0.98,

respectively, showing the classification confidence scores whereas the XAI method well-highlighted

contributing regions for the classification.

Conclusion: The proposed automated method can classify class 1 and 2 cases as accurately as the level of

a human expert. This method may be a useful tool to facilitate clinical trials investigating different types of

kidney morphology and for clinical management of patients with autosomal dominant polycystic kidney

disease (ADPKD).
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A
DPKD is an inherited chronic kidney disease that
may progress to severe kidney function impair-

ment and is the fourth leading cause of end-stage kid-
ney disease.1-3 Appropriate clinical management of
patients with ADPKD requires the accurate diagnosis
and characterization of various factors that affect the
growth of kidney cysts and progression of disease.4

Several factors that are known to be strongly associated
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with the progression of ADPKD include patient’s sex,
age, kidney function, genotype, and total kidney vol-
ume (TKV). In particular, in a number of clinical inves-
tigations and trials, TKV has been the most widely
utilized imaging biomarker to assess the severity of
ADPKD and the risk to chronic kidney disease
progression.5,6

Recently, with drastic advances in deep learning–
based image processing techniques, various image
analysis methods were proposed for automated seg-
mentation of kidneys, kidney cysts, and liver in pa-
tients with ADPKD.7-12 These advanced segmentation
methods readily made the computation of highly reli-
able TKV measurements from computed tomography or
MR images.

Once patient’s height-adjusted TKV is computed, it
can be used as an input variable along with patient’s
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age to the MICM to assess the individual patient’s risk
for ADPKD progression.13 The application of MICM,
however, requires a prestep qualitative evaluation of
the morphologic structure of kidney cysts and paren-
chyma to determine whether a patient is in class 1
(typical) or class 2 (atypical). Typically, 90% to 95% of
the total population of patients with ADPKD are
assigned into class 1 that are further classified into 5
subgroups (1A–1E) according to the MICM, where the
division of the subgroups is strongly correlated with
estimated glomerular filtration rate decrease.13

Conversely, the remaining 5% to 10% of patients
with ADPKD classified to be class 2 cannot be assessed
with the MICM because their height-adjusted TKVs are
weakly associated with estimated glomerular filtration
rate.14

Although various methods were presented for the
automated segmentation and measurement of TKV, no
automated method has been reported for the image
classification of class 1 and 2, which is currently per-
formed manually and qualitatively by experts. We
postulate that a deep learning–based automated method
could be implemented to determine class 1 and 2 from
MR imaging (MRI) images for the imaging classification
of ADPKD.

Thus, the purpose of the study was to develop a
deep learning–based automated procedure to classify
class 1 and 2 from MR images in patients with ADPKD.

METHODS

Subjects, MRI, and Data Set

The subjects were from the HALT Polycystic Kidney
Disease study, and we used HALT-A study only
because HALT-B study did not include MRI.15,16 The
standardized MRI protocol was applied with 1.5 T MRI
scanners for HALT-A study, and we exploited the
coronal T2-weighted single shot fast spin echo images
with fat saturation in our study. The MRIs of the
subjects were reviewed in consensus by ADPKD im-
aging experts following a set of image morphology
criteria and classified into class 1 (typical) and class 2
(atypical). The details of the HALT Polycystic Kidney
Disease study and the imaging classification criteria can
be found in previous publications.13,14

A total of 486 subjects (245 male and 241 female)
were selected from the HALT-A study. The parameters
of the MR images were 59 to 176 mm per pixel
Table 1. Genetic background of subjects classified as class 2 (atypical) p
PKD1 PKD2

Truncating Nontruncating Truncating Non

13 16 11

NMD, no mutation detected; PKD, polycystic kidney disease.
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resolution, 3 to 10 mm slice thickness, 60� to 180� flip
angle, 3 to 24,806/1.5 to 122 ms repetition time/echo
time, and average pixel resolution was 362.7 �
117.6(H) � 362.7 � 117.6(W) � 41.2 � 16.2(D) with
range of 256 to 640(H) � 256 to 640(W) � 16 to 204(D).
The subjects were classified into typical (n ¼ 426) and
atypical (n ¼ 60) cases with respect to the aforemen-
tioned imaging classification criteria, and the genetic
background of the subjects classified as class 2 (atyp-
ical) is described in Table 1. Two radiologists, one with
25 years of experience in ADPKD imaging and the other
with 20 years of experience in ADPKD imaging, were
involved in the classification of the subjects into class 1
and 2. The representative MR images are depicted in
Figure 1. The mean age of the typical and atypical
subjects were 35.4 � 8.4 years (range: 16–50 years) and
40.4 years � 6.6 (range: 26–49 years), respectively.

The MR images from the 486 HALT-A subjects were
further divided into 335 cases (including 295 typical
and 40 atypical cases) for training and 151 cases
(including 131 typical and 20 atypical) for testing the
trained deep convolutional neural networks (DCNNs).
Here, we observed a data imbalance between typical
and atypical cases, where the number of atypical cases
was fewer than that of typical cases. To mitigate the
data imbalance, the atypical cases were composed of 3
exclusive data sets, where each data set contained 40
training and 20 testing cases, exclusively, resulting in 3
independent DCNN training sessions (TS1, TS2, and
TS3). The description of the data set is shown in
Supplementary Figure S1.
Data Preprocessing

The MR images were normalized such that the image
resolution and field of view used in the MR image ac-
quisitions were adjusted to be consistent across the
data set while preserving physical size of the kidneys.
To this end, we used the ratio of the original voxel
spacing (So) and the target voxel spacing (St), where St
was set to 0.5 mm(H) � 0.5 mm(W) � 3 mm(D). The
target resolutions were computed by multiplying
original resolution and the ratio (So/St), and the original
images were resized with the target resolutions, fol-
lowed by the 3-dimensional zero padding enclosing the
resized MR images to have a resolution of 1280(H) �
1280(W) � 204(D). Finally, a single representative
midslice was selected whose location was at 65% of the
articipated in this study

NMD Unknown Totaltruncating

3 8 9 60
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Figure 1. Exemplary MR images of class 1 and 2. (a) Class 1 example showing cysts of small to medium sizes distributed through parenchyma in
bilateral kidneys, and (b) class 2 example showing a large dominant exophytic cyst in both kidneys and relatively asymmetric distribution of
cysts in bilateral kidneys. MR, magnetic resonance.
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distance spanning from the anterior to posterior edge of
the MR images covering the kidneys (Figure 2). All the
representative midslice images were examined, and the
images were manually selected again if they did not
Figure 2. Pictorial illustration of the preprocessing of MR images. Input M
(depth) parameters. Zero padding is applied to the resized MR images. A si
spanning from the anterior to posterior edge of the MR images covering
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include kidneys (typical) or exophytic cysts (atypical).
The selected representative midslice images were
augmented using color jitter, horizontal and vertical
flip, rotation, and Gaussian blur.
R images are resized using the voxel spacing and slice thickness
ngle representative midslice image is selected at 65% of the distance
the kidneys. MR, magnetic resonance.

Kidney International Reports (2024) 9, 1802–1809
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Deep Learning Architecture

The ResNet-50 (deep residual learning) architecture
was initially adopted in our implementation for the
classification of typical and atypical polycystic kidney
disease, which is an extension of VGG-19 architecture
by adding the residual blocks with skip connec-
tions.17,18 The residual blocks enable ResNet-50 to have
much deeper convolutional layers by passing infor-
mation from the preceding convolutional layer, it can
effectively optimize the DCNN with a superior accu-
racy. In our implementation, the first 2 convolutional
layers were frozen for the transfer learning by using
pretrained weights trained with the ImageNet-1K data
set.19 Stochastic gradient descent algorithm and a cross-
entropy were utilized for an optimization of DCNN and
evaluation metrics, respectively, and the epoch was set
to 1000. The ResNet-50 architecture was built with
Python (v3.8.5; Wilmington, DE), PyTorch framework
(v1.7.1),20 and Ubuntu 16.04 LTS (Canonical Ltd,
London, UK). The data preparation, preprocessing,
training, and testing for the automated classification
algorithm were performed using the hardware equip-
ped with Intel Xeon Gold 6252 central processing unit,
1 Nvidia Titan RTX graphics processing unit, and
128GB random-access memory.
Classification Confidence and XAI

Considering that the DCNN model predicts the imaging
class, it can also provide quantitative classification
confidence in each prediction. In the DCNN architec-
ture, we applied the softmax function to the output,
and chose the class with a higher value that was
informed as the diagnostic confidence.21

In order to aid the explainability of the automated
classification, the DCNN models were analyzed using
the XAI technique that extracts regions highly
Figure 3. Visual illustration of the explainable artificial intelligence proc
iterative clustering algorithm segmenting the input MR image into superpi
application of local interpretable model-agnostic explanations algorithm th
the automated classification. MR, magnetic resonance.
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contributory to the decision of the automated classifi-
cation. In our implementation, the local interpretable
model-agnostic explanations algorithm was adopted,
which is most widely utilized for XAI in the litera-
ture.22 The algorithm first segmented an input image
into superpixels in that the segments of high prediction
accuracy were highlighted for their significance in the
contribution to the classification. The simple linear
iterative clustering method was employed to segment
the input image into superpixels, where the number of
superpixels and the compactness parameters were set
to 200 and 10, respectively.23 The visual illustration of
applying the simple linear iterative clustering and the
local interpretable model-agnostic explanations algo-
rithm is presented in Figure 3.

Statistical Analysis

To evaluate the performance of the automated classifica-
tion of typical and atypical polycystic kidney disease, we
compared the automated classification output with the
reference standard from the HALT-A study. First, the
confusion matrices were generated based on the auto-
mated classification output, and the metrics to examine
the accuracy, including precision, recall, and F1-score,
were derived. Second, receiver operating characteristic
curves were drawn to measure the area under the curve.
The statistical analyses were conducted using the scikit-
learn (v1.0.2) and Pandas (v1.2.4) packages.24,25
RESULTS

Each of the 3 DCNN models (TS1, TS2, and TS3)
correctly predicted 20 out of the 20 test MR images for
the atypical cases (100%) and 128 out of the 131 test
MR images for the typical cases (97.7%), thus the
combined test accuracy of 98.01%. The precision and
recall for predicting the atypical cases were 0.87 and
edure: (a) original input MR image, (b) application of simple linear
xels where yellow lines represent boundaries of superpixels, and (c)
at highlights (in green color) the superpixels contributing greatly to
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Figure 4. Three typical cases correctly classified by the DCNN model but with relatively lower probabilities for the typical classification. The
probability for the typical classification was (a) 93.0%, (b) 69.8%, and (c) 55.7%, respectively, which was lower than 99% for those of the most of
the correctly classified typical cases. DCNN, deep convolutional neural network.
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1.00, respectively, with the F1-score of 0.93. The pre-
cision and recall for predicting the typical cases were
1.00 and 0.98, respectively, with the F1-score of 0.99.
The macro averages of precision and recall were 0.93
and 0.99, respectively, and the weighted averages of
precision and recall were 0.98 and 0.98, respectively.
The macro average and the weighted average of the F1-
score were 0.96 and 0.98, respectively. The confusion
matrix is shown in Supplementary Figure S2A. The
area under the curve of the receiver operating charac-
teristic curve in Supplementary Figure S2B was 0.988.
The 3 DCNN models were identical in their confusion
matrices and receiver operating characteristic curves.

The 128 typical cases that were correctly classified out
of 131 typical cases showed the probabilities ranging
from 55.7% to 100%. Of the 128 correctly classified
typical cases, 4 had relatively low probabilities for the
typical classification (93.0%, 82.9%, 69.8%, and 55.7%),
whereas the remaining 124 cases had their probabilities
greater than 99%. In Figure 4, we illustrate example MR
images with relatively low probabilities for the typical
classification. The 2 cases in Figure 4a and b show mild
burden of scattered intraparenchymal cysts that may
limit a precise characterization of cyst morphology in the
kidneys. The case in Figure 4c presents with several large
dominant cysts in the kidneys that are borderline fea-
tures in determining cyst morphology.

The 3 typical cases that were misclassified by the
DCNN models to be atypical are shown in Figure 5.
Their probabilities to be typical were 11.8%, 1.9%,
and 1.6%, respectively. The case in Figure 5a may be
misclassified because of a dominant and several small
exophytic cysts in the left kidney. The misclassification
of the 2 cases in Figure 5b and c may be attributed to
their large dominant cysts occupying the kidney pa-
renchyma that were also covered by other numerous
small cysts.
1806
In Figure 6, we show several exemplary atypical
cases that graphically illustrate the relative contribu-
tions of various image features to the classification
outcomes of the models. Each column represents an
image pair with the original MR image and the corre-
sponding local interpretable model-agnostic explana-
tions results. The boundaries of the superpixels using
the simple linear iterative clustering method are drawn
in yellow color, whereas the superpixels contributing
greatly to the classification are superimposed in green
color. The XAI technique depicts the regions of
contribution that may explain the classification
outcome. In these examples of atypical cases, the
highlighted superpixels included larger areas for the
dominant exophytic cysts that signify the key
morphology features of the atypical classification.
DISCUSSION

The MICM has been widely used as a risk prediction
model in clinical management and trials for patients
with ADPKD since its inception. Although the use of
the MICM is relatively straightforward requiring
only 2 input parameters (patient’s age and height-
adjusted TKV), the user should predetermine
whether the patient is of the typical or atypical
morphology in kidneys. Specifically, subgroups of
typical cases (i.e., class 1A–1E) are well-associated
with estimated glomerular filtration rate decrease,
whereas atypical cases (class 2) are ruled out from
the model because height-adjusted TKV of these cases
do not predict well the risk of ADPKD progression.
Therefore, the qualitative assessment to classify
whether a test case is typical or atypical is manda-
tory before the use of the MICM.

The classification of class 1 and 2 requires a careful
evaluation of morphology of kidneys from computed
Kidney International Reports (2024) 9, 1802–1809



Figure 5. Three typical cases misclassified to be atypical class by the DCNN model. The probability for the typical classification was (a) 11.8%,
(b) 1.9%, and (c) 1.6%, respectively, which was much lower than 99% for those of the most of the correctly classified typical cases. DCNN, deep
convolutional neural network.
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tomography or MR images following the published cyst
morphology classification criteria.13,14 An alternative
approach is to use a fully automated software to segment
kidneys and exophytic cysts as proposed by Kim et al.10

This software, however, may not be readily available
given the requirements of hardware equipment,
including high performance graphics processing unit
cards, central processing units, and random access
memories. Furthermore, the processing time of this soft-
ware exponentially increases with moderate or even low
hardware equipment using only central processing units.
Figure 6. XAI technique illustrating how image features contribute to the
DCNN models were analyzed using the LIME technique, which is one of X
most highly contributed to the process of the decision making. Each colu
superpixels (bottom row) that are superimposed in green color whereas
deep convolutional neural network; LIME, local interpretable model-agnos
intelligence.

Kidney International Reports (2024) 9, 1802–1809
In the current study, we proposed a fully automated
triage with a light-weight and fast processing by
selecting a representative 2D slice, which can be an
effective and efficient methodology when clinicians
apply the automated segmentation method to only
automatically classified atypical cases with the pro-
posed triage and exclude prominent exophytic cysts so
that the atypical case can be analyzed using the MICM.
The source code and trained model weights are avail-
able online at https://github.com/ywkim0909/XAI-
ADPKD-Net.
classification outcomes in these examples of atypical cases. The
AI techniques, and the regions are superimposed in green color that
mn represents the original MR image (top row) and the contributory
the boundaries of the superpixels are drawn in yellow lines. DCNN,
tic explanations; MR, magnetic resonance; XAI, explainable artificial
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To the best of our knowledge, our proposed
approach is the first automated method to classify the
MR images from a patient with ADPKD into typical or
atypical. The experimental results showed 98.01%
classification accuracy, where the accuracy for atypical
and typical case classifications were 100% and 97.7%,
respectively. Out of 151 test cases (131 typical and 20
atypical cases), only 3 typical cases from typical cases
were classified as atypical to which the automated
kidneys and exophytic cysts segmentation method to
small portion merely small portion (5%–10%). The
misclassified cases show either relative paucity of
kidney cysts or some prominent cysts adjacent to
boundaries of renal parenchyma that may lead to a
borderline classification. This implies that it is feasible
to apply the automated kidneys and exophytic cysts
segmentation method to merely atypical and the mis-
classified cases, which may alleviate the computational
burden for disease management and clinical trials.
Although our study has a limitation in that the number
of training and test sets of atypical cases were relatively
small, we utilized the separate and independent 3
training and test sets and evaluated that the proposed
method performed well on the test sets.

Our proposed method also provides a classification
confidence using a quantitative value to indicate
whether a test case is confidently classified or on the
borderline between typical and atypical. The classifi-
cation confidence level can be useful in the circum-
stances when clinicians need to explain a basis in terms
of a classification with a highlighted area in an MR
image deduced by XAI. The highlighted region may
slightly overestimate potential areas of contribution,
but it could be negligible because the purpose of
applying XAI was to notify the contribution regions
rather than accurately segment boundaries.

In conclusion, we developed a fully automated
method to classify MR images from a patient with
ADPKD into typical or atypical for the MICM. Our
method can also provide a quantitative classification
confidence level and graphical illustration of high-
lighted areas contributing to the classification decision
based on the XAI technology. This novel tool may
facilitate clinical trials investigating different types of
kidney morphology and clinical management of pa-
tients with ADPKD.
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