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The activation of pyrin domain-containing-
3 inflammasome depends on
lipopolysaccharide from Porphyromonas
gingivalis and extracellular adenosine
triphosphate in cultured oral epithelial cells
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Abstract

Background: Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense
against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family
pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular
patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome
depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation
with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP).

Methods: An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and
protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots.
Production of IL-1β and IL-18 was measured by ELISA.

Results: There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated
by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even
pre-stimulated by ATP at 2 h.

Conclusions: The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection,
unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the
host immune response.

Keywords: Extracellular adenosine triphosphate (ATP), NLRP3 inflammasome, Porphyromonas gingivalis (P. gingivalis), P.
gingivalis LPS

Background
Chronic periodontitis, one of the most common and
prevalent diseases in humans worldwide [1], is defined
as an infection-driven chronic inflammatory disease of
the periodontium resulting in the destruction of gingival
tissue, absorption of alveolar bone and eventually tooth
loss [2]. When infection occurs, the innate immune sys-
tem will be the first line defense against pathogens and

activates the adaptive immune system for sustained pro-
tection from such invasions [3].
The intracellular multi-protein complexes, known as

“NLR inflammasomes” play a central role in innate im-
munity. Among inflammasomes, the pyrin domain-
containing-3 (NLRP3) inflammasome is the most studied
[4]. Gingival epithelial cells express a functional NLRP3
inflammasome that can be activated by pathogen- or
danger-associated molecular patterns (PAMPs or DAMPs)
[4]. NLRP3 is assembled with the adaptor protein ASC
(apoptosis-associated speck-like protein) into a multi-
protein complex that governs caspase-1 activation and
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subsequent maturation the of pro-inflammatory cytokines
interleukin (IL)-1β and/or IL-18 in the host response to
periodontal infection [4]. Gingival epithelial cells can sense
and recognize PAMPs or DAMPs [5] through stimulation
of pathogen recognition receptors (PRRs) [1, 3], with sub-
sequent release of the pro-inflammatory cytokines IL-1β
and IL-18 [6]. The fundamental work by Bostanci et al. [7]
first indicated that NLR inflammasomes are involved in
periodontal disease,which responses to P. gingivalis infec-
tion both clinical and in vitro studies.
Interleukin-1β (IL-1β), a proinflammatory cytokine be-

longing to the IL-1 family, is critical in the host defense
against microbial infections [5] and regulates innate im-
mune and inflammatory responses. IL-18 is another pro-
inflammatory cytokine belonging to the IL-1 family [6]
and has recently been described as an important element
in the inflammasome system that activates caspase-1
and leads to the activation of the inflammation process.
Recent evidence has demonstrated that the maturation
and secretion of IL-1β and IL-18 are regulated by the
NLRP3 inflammasome complex which contains the
NLRP3 scaffold, caspase-1 and apoptotic speck protein
containing a C-terminal caspase recruitment domain
(ASC) [8]. Excess IL-1β and IL-18 contribute to an in-
creasing number of human inflammatory responses [9].
Although IL-1β and IL-18 belong to the same cytokine
family, their gene expression and secretion are differen-
tially regulated in human monocytic cells in response to
P. gingivalis [10]. Therefore, cytokines of the IL-1 family
may participate via different pathways in the complex
pathogenesis of periodontitis [10].
P. gingivalis, a gram-negative anaerobic bacterium

[11], has been confirmed to be a predominant periodon-
tal pathogen [12] and produces a number of potential
virulence factors to perturb the host defense system [13]
and induce an inflammatory response in periodontal dis-
eases [14]. However, the effect of P. gingivalis on activa-
tion of the NLRP3 inflammasome remains controversial.
Lipopolysaccharide (LPS), as the major cell wall compo-
nent of P. gingivalis [15], is considered an important
virulence factor eliciting the inflammatory response in
the periodontal disease [16]. It seems to be unanimously
agreed that LPS treatment of mononuclear phagocytes,
[17] macrophages [18] and oral epithelial cells [19] signifi-
cantly induces the expression of NLRP3 and procaspase-1
at both the mRNA and protein levels. Studies have shown
that any functional polymorphism in LPS-receptors affects
the inflammatory process and the clinical outcomes of
periodontal disease [20]. The findings outlined above sug-
gest that whole P. gingivalis and P. gingivalis LPS may
have different effects on the activation of NLRP3 inflam-
masome system.
Extracellular ATP (adenosine triphosphate), one of the

first activators described to induce NLRP3 inflammasome

formation, is ascribed to the group of endogenous DAMPs
released by dying or injured cells [21, 22]. Its presence is
negligible in healthy tissues, but may rise to high micro-
molar levels following tissue damage at sites of inflamma-
tion [23]. Studies have shown ATP induced caspase-1
activation and subsequent IL-1β release [24, 25]. Further-
more, Özlem et al. demonstrated that IL-1β was not se-
creted unless LPS-treated or infected gingival epithelial
cells (GECs) were subsequently stimulated with ATP, and
that ATP had no additional effect on NLRP3 or ASC ex-
pression in P. gingivalis infected GECs [26]. These results
point out the need to further evaluate the role of ATP in
NLRP3 inflammasome activation.
Therefore, the activation of the NLRP3 inflammasome

complex in a cultured oral epithelial cell model by P.
gingivalis infection, or P. gingivalis LPS, or ATP stimula-
tion was tested. This provided further understanding of
the mechanism behind periodontal inflammation.

Methods
Oral epithelial cell culture
The epithelial cell line (H413) derived from a human
oral squamous cell carcinoma [27], displays stratified
epithelial cell morphology in culture. H413 cloned cell
lines were established using a limit dilution method as
described previously [28]. The cloned cells were cultured
in Eagle’s Minimum Essential Medium (JMEM, Joklik
modification, Sigma-Aldrich, St Louis, MO, USA), peni-
cillin/streptomycin (100 IU/ml, Sigma) and 10 % fetal
calf serum (FCS, CSL Limited, Victoria, Australia) at 37 °C
in 5 % CO2 [29]. Cultures were harvested with triple ex-
press (replacement for trypsin, Invitrogen, Life Technolo-
gies, Carlsbad, CA, USA) in PBS and sub-cultured every
3 days.

Bacterial cell culture
Porphyromonas gingivalis (ATCC 33277) was cultured
anaerobically for 24 h at 37 °C in a trypticase soy broth
supplemented with haemin (5 mg/ml, Sigma) and mena-
dione (1 mg/ml, Sigma). On the day of cell treatment,
bacteria were centrifuged at 5000 rpm, and 4 °C for
15 min, washed twice and re-suspended in cold PBS,
pH 7.3.

Cell treatment
Confluent H413 cell cultures (5 × 106 cells in T-25 cm2

flasks) were washed three times with PBS and infected
with P. gingivalis at a multiplicity of infection (MOI) of
100 bacterial cells per one epithelial cell [30] for 2 and
4 h [31, 32], or stimulated with 1-μg/mL ultrapure lipo-
polysaccharide (LPS) from P. gingivalis (Invivogen, San
Diego, CA, USA) in the cell growth media for 2 and 4 h.
Uninfected and non-stimulated cells served as controls.

Guo et al. BMC Oral Health  (2015) 15:133 Page 2 of 11



Experiments were also carried out after pre-incubating
the cells with 5 mM adenosine triphosphate (ATP) (Invi-
vogen) for 3 h prior to infection with P. gingivalis or
stimulation with P. gingivalis LPS for 2 and 4 h. Cells
pre-incubated with 5 mM ATP for 3 h were as controls
for these groups.

RNA isolation and quantitative real-time RT-PCR
After treatment, cells were harvested in 1 ml of Trizol re-
agent (Invitrogen) and RNA extracted as per the Trizol
protocol. For reverse transcription, the First-Strand cDNAs
were synthesized with oligo (dT)12–18 (Invitrogen), 10 mM
dNTP (Promega, Madison, WI, USA), 5× first stand buffer,
RNaseOUT™ Recombinant RNase Inhibitor (Invitrogen)
and SuperScript™ III Reverse Transcriptase (Invitrogen) ac-
cording to the manufacturer’s protocol.
Primers for genes encoding inflammasome compo-

nents (NLRP3, ASC and caspase-1) and the cytokines
IL-1β and IL-18 (Table 1) were designed using Oligo Ex-
plorer software (1.1.0) and synthesised by Integrated
DNA Technologies (IDT, Coralville, IA, USA). Real-time
RT-PCR analyses were performed by SYBR Green based
assays using the Stratagene MxPro-Mx3005P System
(Agilent Technologies, Santa Clara, CA, USA). PCR re-
actions were conducted with 2 μl of diluted cDNA sam-
ples, 200 nM of each respective forward and reverse
primer in a 20 μl final reaction mixture with Platinum
SYBR Green qPCR SuperMix-UDG (Invitrogen). cDNA
samples isolated from non-manipulated H413 clone-1
cells were quantified by PicoGreen kit (Invitrogen) and
then used for constructing standard curves (2–2000 pg)
by reference to the expression of the house keeping gene
encoding β-actin. The PCR reactions for each gene were
carried out in triplicate in 96-well plates, and initiated
by activation at 95 °C for 2 min, followed by 40 PCR

cycles of denaturation at 95 °C for 15 s, annealing and
extension at 60 °C for 30 s. The results were analysed
using MxPro 4.10 software.

Immunoassay-ELISA to quantify levels of IL-1β and IL-18
A standard sandwich enzyme-linked immuno-sorbent
assay (ELISA) was used to measure cytokine production
of IL-1β and IL-18. Briefly, supernatants of test (treated
with P. gingivalis, P. gingivalis LPS, ATP+ P. gingivalis
or ATP+ P. gingivalis LPS) and control cell cultures were
collected at each hour (1, 2, 3, 4, 5, 6 h), then particles
removed by centrifugation and analysed immediately or
aliquoted and stored at −20 °C. Human IL-1β and IL-18
specific monoclonal and polyclonal antibodies (1 μg/ml)
were pre-coated onto high binding 96-well plates (Corning
Incorporated, USA) in carbonate buffer (pH 9.0) at 4 °C
overnight. After removing the coating solution and wash-
ing the plate three times with 200-μl PBS/well, with the
plate was blocked with 3 % bovine serum albumin (BSA,
Sigma) at 4 °C overnight. The test samples were added to
triplicate wells for 90 min at room temperature, and
followed by washing with 0.05 % Tween20/PBS (TPBS)
three times; then incubated with secondary antibody
(goat-anti mouse/rabbit IgG, (DAKO, Glostrup, Denmark)
conjugated with alkaline phosphatase (AP)) diluted 1:1500
in TPBS for 2 h at room temperature then washed with
TPBS buffer 3 times. Bound conjugates were detected by
pNPP (p-Nitrophenyl-phosphate) and the absorbance
measured at 405 nm in a microplate reader (Bio-Rad,
Hercules, CA, USA) after 15–30 min incubation at room
temperature. Reactions were stopped by adding an equal
volume of 1.00 M NaOH. The human IL-1β and IL-18
concentration of the samples were interpreted from a
standard curve.

Table 1 Primers used for real-time RT-PCR

Genes Oligos Primers5′-3′ Expected amplicon size UniGene numbers

NLRP3 F-primer GCTGGACCTGAGTGACAAC 151 bp Hs.159483

R-primer GCTGAGTACCGAGGACAAAG

ASC F-primer AGGCCTGCACTTTATAGACC 174 bp Hs.499094

R-primer GCTGGTGTGAAACTGAAGAG

caspase-1 F-primer GAAAAGCCATGGCCGACAAG 205 bp Hs.2490

R-primer GCCCCTTTCGGAATAACGGA

IL-1β F-primer GGCCCTAAACAGATGAAGTG 90 bp Hs.126256

R-primer GTAGTGGTGGTCGGAGATTC

IL-18 F-primer GCATCAACTTTGTGGCAAT 161 bp Hs.83077

R-primer CCGATTTCCTTGGTCAAT

β-actin F-primer ACTCTTCCAGCCTTCCTTC 216 bp Hs.520640

R-primer GGAGCAATGATCTTGATCTTC
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Immunoblots for NLRP3, ASC and caspase-1 proteins
To measure inflammasome protein expression, 2- and 4-h
cultures of the different conditions (treated with P. gingiva-
lis, P. gingivalis LPS, ATP 3 h + P. gingivalis or ATP 3 h +
P. gingivalis LPS) were extracted in SDS sample buffer and
separated by PAGE using gradient 5 to 12 % mini-gels,
transferred to nitrocellulose membranes (Bio-Rad) and
blocked overnight with 3 % BSA (Sigma) in 0.1 M Tris
buffered salts solution pH 7.4 (TBS). Blotted antigens were
incubated with rabbit polyclonal anti-human antibodies
CIAS1/NALP3, TMS1/ASC, Caspase-1 (1 μg/ml, Abcam,
Cambridge, UK), and β-actin (0.1 μg/ml, GenTex, Zeeland,
MI, USA) as a loading control in 0.05 % Tween20/TBS for
4 h, washed three times and subsequently incubated with
alkaline phosphatase (AP)-conjugated secondary antibody
(goat-anti rabbit IgG, DAKO) diluted 1:1500 in Tween20/
TBS for 2 h. Bound antibody was visualized with AP sub-
strate (Bio-Rad) after development of reactivity for proteins
from control antibody.

Statistical analysis
All data were analysed by paired t-test (mean ± S.D.,
two-tailed, 95 % CI range) from at least three consecu-
tive experiments for real-time RT-PCR and ELISA. For
western blot quantification, the densitometric analysis
was performed on the grey level intensity of target bands
relative to control β-actin bands derived from scanned
films, processed by using Gene Tool image analysis soft-
ware (GeneToos, version 4.02; Syngene, Cambridge, UK)
[33]. P < 0.05 was considered statistically significant.

Results
Inflammasome (NLRP3, ASC and caspase-1) expression in
response to P. gingivalis, P. gingivalis LPS and ATP plus
P. gingivalis/P. gingivalis LPS
In all experiments, there were no significant differences
in gene expression between unstimulated control groups
and control groups pretreated with ATP.
As shown in Fig. 1a, there was down-regulation of

NLRP3 gene expression after P. gingivalis infection at 2
and 4 h compared with the control group. In contrast,
there was increased gene expression of NLRP3 at 2 h
with P. gingivalis LPS stimulation. In addition, NLRP3
was significantly up-regulated after pre-incubation with
ATP for 3 h then infection with P. gingivalis and stimu-
lation with P. gingivalis LPS for 2 h, but was down-
regulated at 4 h. At the protein level (Fig. 2), while cells
were incubated for 2 and 4 h with P. gingivalis and P.
gingivalis LPS stimulation or pretreatment with ATP for
3 h, the trends of the proteolysis of NLRP3 bands corre-
sponded to that of the gene expression. This indicated
that the activation of NLRP3 depended on P. gingivalis
LPS or/and ATP, but not P. gingivalis infection.

In Fig.1b, during the time course of P. gingivalis infec-
tion, there were significant decreases in ASC mRNA
levels (2 and 4 h) compared with the control group, and
significant increases of ASC mRNA levels were observed
at 2 h stimulation with P. gingivalis LPS. For ATP plus
P. gingivalis infection, there was up-regulation of ASC at
2 h, followed by down-regulation at 4 h compared with
the ATP pre-treatment group. For ATP plus P. gingivalis
LPS stimulation, there was a marked reduction of ASC
at 4 h compared with the ATP pre-treatment group.
These results suggest that ASC mRNA changes are critical
in P. gingivalis LPS and ATP induced NLRP3 inflamma-
some activation. At the protein level, similar changes in
ASC protein were measured (data not shown).
Additionally, as evident in Fig. 1c, the data showed

that there was no increase in caspase-1 gene expres-
sion in both P. gingivalis infected and P. gingivalis
LPS stimulated groups. After cells were pre-incubated
with ATP for 3 h, the caspase-1 level in both P. gin-
givalis infection (2 h) and P. gingivalis LPS stimula-
tion (2 and 4 h) groups was significant up-regulated
compared with the ATP pretreatment group. These
results indicate that caspase-1 activation depends on
ATP stimulation in P. gingivalis infected or P. gingi-
valis LPS treated cells. There were no changes on
caspase-1 protein level by immunoblots (data not
shown).

IL-1β expression in response to P. gingivalis, P. gingivalis
LPS and ATP plus P. gingivalis/P. gingivalis LPS
Similarly, to determine changes in IL-1β expression
through inflammasome components activation, the
gene expression of IL-1β was measured by real-time
RT-PCR (Fig. 3a). During the time course of P. gingi-
valis infection, a significant increase in pro-IL-1β
mRNA level was measured at 2 h compared with the
control group, which then decreased to the control
level at 4 h. Increased pro-IL-1β mRNA levels were
also observed after cells pre-treated with ATP for 3 h
then infected by P. gingivalis at 2 and 4 h. There
were no changes with cells stimulated with P. gingiva-
lis LPS and ATP plus P. gingivalis LPS. In cell culture
supernatants (Fig. 3b), there was a high concentration
of mature IL-1β at 2 h in the P. gingivalis infection
group, and at 3 and 4 h in the ATP plus P. gingivalis
infection group, which corresponded with pro-IL-1β
gene expression (Fig. 3a). There was no secretion of
IL-1β detected in the P. gingivalis LPS stimulation
group, but a notable delayed increase in response to
ATP plus P. gingivalis LPS group at 5 h (Fig. 3b).
These results indicated that P. gingivalis infection has
a greater capacity to induce IL-1β secretion than P.
gingivalis LPS.
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Fig. 1 Gene expressions of NLRP3、ASC and caspase-1. Significant changes in inflammasome genes encoding NLRP3 (a), associated adaptor protein
(ASC) (b), and caspase-1 (c) with different treatments of P. gingivalis infection, P. gingivalis LPS stimuli, and ATP plus P. gingivalis or P. gingivalis LPS in
H413 epithelial cells. * P < 0.05, ** P < 0.01, paired t-test
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IL-18 expression in response to in response to
P. gingivalis, P. gingivalis LPS and ATP plus P. gingivalis/P.
gingivalis LPS
The gene expression of IL-18 was also measured by real-
time RT-PCR (Fig. 4a). There was no change in pro-IL-
18 measured in the P. gingivalis infection group, but
significantly decreased pro-IL-18 in the P. gingivalis LPS
stimuli group at 2 h. In addition, the pre-treatment of
cells with ATP for 3 h induced the up-regulation of pro-
IL-18 at all time points and significantly increased IL-18
expression in both the P. gingivalis infection and P. gin-
givalis LPS stimuli groups. In cell culture supernatants
(Fig. 4b), cells stimulated with P. gingivalis LPS had a
significant increase in mature IL-18 secretion which
reached a peak between 4 h and 5 h. This was not evi-
dent in the P. gingivalis infection group. This high pro-
tein level did not correspond with the low pro-IL-18
mRNA level in the P. gingivalis LPS group, possibly as
protein concentration is affected by several parameters -
mainly synthesis and cleavage [34]. After cells were pre-
treated with ATP for 3 h, secretion of mature IL-18 into
cell culture media was measured in the ATP plus P. gingi-
valis infection group, and demonstrated a notable increase
in cytokine concentration. However, in the ATP plus P.
gingivalis LPS group, a biphasic curve was shown, which

did not reflect the mRNA level [34]. These results indicate
that P. gingivalis infection did not induce mature IL-18 se-
cretion, while P. gingivalis LPS or ATP stimulation led to
a mature IL-18 production.

Changes in the NLRP3 inflammasome complex after
stimulation with P. gingivalis, P. gingivalis LPS and ATP
Figure 5 shows a summary of the innate immune re-
sponse against P. gingivalis infection, and P. gingivalis
LPS and ATP stimulation in this cell model. When cells
are not pretreated with ATP (left panel), infection with
P. gingivalis in this model does not trigger the activation
of the NLRP3 inflammasome complex, including NLRP3,
ASC and caspase-1, until P. gingivalis LPS stimulation,
even though in a short time 2 h (except caspase-1). Not-
ably, IL-1β production did not rely on activation of the
NLRP3 inflammasome and is involved in the early stages
of inflammation. IL-18 production requires both NLRP3
and ASC activation after stimulation with P. gingivalis
LPS. When cells are pretreated with ATP (right panel), a
rapid response of activation of NLRP3 inflammasome was
shown (2 h), with subsequent production of the cyto-
kines IL-1 β and IL-18 in cells with P. gingivalis in-
fection. However, when cells are stimulated with P.
gingivalis LPS, IL-1β production required caspase-1

Fig. 2 Western blot showing NLRP3 protein expression in H413 epithelial cells treated with different conditions (P. gingivalis, P. gingivalis LPS, and
ATP plus P. gingivalis or P. gingivalis LPS). The trends of the measured NLRP3 bands corresponded to NLRP3 gene expression. * P < 0.05, paired t-test
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Fig. 3 a Changes in pro-IL-1β mRNA levels in H413 cells treated with P. gingivalis infection and ATP pretreatment. b ELISA data showing mature IL-1β
protein released from H413 cells after different treatments. * P< 0.05, ** P< 0.01, paired t-test
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Fig. 4 a Changes in pro-IL-18 mRNA levels in H413 cells with different treatments of P. gingivalis LPS stimuli and ATP plus P. gingivalis infection or
P. gingivalis LPS. b ELISA data showing mature IL-18 protein released from H413 cells after different treatments. * P < 0.05, ** P < 0.01, paired t-test
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activation and showed a delayed increase in response
to ATP treatment (right panel). The results indicate
that P. gingivalis, P. gingivalis LPS and ATP all have
different effects on epithelial cells to produce the final
inflammatory response.

Discussion
In this study, P. gingivalis infection down-regulates
NLRP3 inflammasome components, including NLRP3,
ASC and caspase-1 in epithelial cells at all time points,
which indicates that P. gingivalis may either up-regulate
or down-regulate NLRP3 expression, depending on the
cell type [35]. In this model, P. gingivalis may dampen
the endpoint innate immune responses by inhibiting the
activation of NLRP3 inflammasome and evading host
surveillance, offering a survival advantage to all co-
habiting organisms of the biofilm [35]. Meanwhile,
up-regulated gene expression of IL-1β after P. gingi-
valis infection, demonstrates that IL-1β is a critical
cytokine in the host defence against P. gingivalis infection
[5]. Moreover, IL-1β is not NLRP3 or caspase-1 dependent
[5, 36] and other factors may also influence the IL-1β pro-
tein secretion. Therefore, we speculate that the secretion
of IL-1β in the early stages of P. gingivalis infection
would play a very important role in combating the

invading pathogen as part of the innate immune re-
sponse [37]. This is consistent with Dinarello’s con-
clusion that IL-1β is one of the earliest cytokines to
be secreted during the initial phases of inflammation
and participates in almost all events involved in the
activation and regulation of inflammation [36]. This kind
of inflammasome-independent IL-1β activation can sub-
stantially contribute to tissue inflammation [38].
In the present study, LPS elicits a striking immune re-

sponse through up-regulation of the gene expression of
NLRP3 and ASC, but not caspase-1, which indicates that
P. gingivalis LPS would be a key factor in eliciting the
inflammatory response that leads to the diseased state
[16] and is considered an important virulence factor in
the pathogenesis of periodontal disease. However, Jain
and Darveau’s research has elucidated that activation of
NLRP3 and ASC after proinflammatory stimuli such as
LPS may be involved in the apoptosis of host cells,
which supports the idea of P. gingivalis-induced cell death
[39], which would then facilitate periodonto-pathogens to
invade and destroy epithelial tissues. In addition, caspase-
1 is synthesised as an inactive zymogen. Its activation is
tightly regulated by inflammasomes and associated with a
rapid and lytic form of cell death known as pyroptosis
[40]. This could explain the mechanism that caspase-1

Fig. 5 Innate immune response to P. gingivalis infection, or P. gingivalis LPS and ATP stimulation in epithelial cells. In the left panel, when cells are
stimulated with P. gingivalis infection or P. gingivalis LPS without ATP pretreatment, the NLRP3 inflammasome complex is inhibited until P. gingivalis
LPS stimulation, except for caspase-1. IL-1β production is not NLRP3 inflammasome dependent, however IL-18 secretion relies on NLRP3 and ASC
activation. In the right panel, cells pretreated with ATP, which activates NLRP3 inflammasome, results in the subsequent release of the cytokines IL-1β
and IL-18 in P. gingivalis infected cells. ATP can also promote caspase-1 activation upon P. gingivalis LPS stimulation. Secretion of IL-1β is always consistent
with caspase-1 activation after stimulation with P. gingivalis LPS
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activation is inhibited after P. gingivalis LPS stimulation
until activated with ATP stimuli in the present study.
ATP is a very efficient extracellular distress signal [41].

As one of the first activators described to induce NLRP3
inflammasome formation, it is ascribed to the group of
endogenous DAMPs, which come from dying cells [22].
In this study, we demonstrate that ATP activates the
NLRP3 inflammasome, subsequently releasing cytokines
IL-1 β and IL-18, even though the effect is very transient
and the concentration may not be high enough to main-
tain the level of activated NLRP3 inflammasome. These
findings support that extracellular ATP, as a danger sig-
nal, results in assembly of NLRP3 inflammasome and se-
cretion of mature cytokines in P. gingivalis-infected cells
[26]. In addition, a common denominator of extracellu-
lar ATP activating NLRP3 has the ability to form mem-
brane pores that induce damage of membrane integrity
or cause perturbation of the intracellular ion concentra-
tion [22].
Moreover, after stimulation with ATP and P. gingivalis

LPS, the reduction of ASC gene expression may serve as
a mechanism for shutting down inflammation, thus
avoiding overzealous immune responses [32]. Similarly,
the epithelial cell line (H413) used in this study has the
function to restrain the activity and secretion of IL-1β
[42] to protect the cell against the tissue destruction.
This can explain our finding showing a postponed in-
crease of IL-1β in response to ATP plus P. gingivalis
LPS stimulation.

Conclusions
The findings indicate that P. gingivalis LPS stimula-
tion induced a greater proinflammatory reaction than
P. gingivalis infection, and this action becomes more
intense after pre-treatment of ATP. These results may
provide new insights into targets for therapeutic strategies
to treat inflammatory diseases such as periodontitis.
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