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Abstract

Background: We are all aware of day-to-day healthy stress, but, when sustained for long periods, stress is
believed to lead to serious physical and mental health issues.
Materials and Methods: In this study, we investigated the potential effects of transcutaneous auricular vagus
nerve stimulation (taVNS) on stress processing as reflected in the electrocardiogram (ECG)-derived
biomarkers of stress adaptability. Stress reflecting biomarkers included a range of heart rate variability
metrics: standard deviation of N-N intervals (SDNN), root mean squared of successive differences in
heartbeat intervals (RMSSD), low-frequency component, high-frequency component and their ratio (LF,
HF, and LF/HF).
In addition, we created a machine learning model capable of distinguishing between the stimulated and
nonstimulated conditions from the ECG-derive data from various subjects and states. The model consisted of a
deep convolutional neural network, which was trained on R-R interval (RRI) data extracted from ECG and time
traces of LF, HF, LF/HF, SDNN, and RMSSD.
Results: Only LF/HF ratio demonstrated a statistically significant change in response to stimulation. Although
the LF/HF ratio is expected to increase during exposure to stress, we have observed that stimulation during
exposure to stress counteracts this increase or even reduces the LF/HF ratio. This could be an indication that the
vagus nerve stimulation decreases the sympathetic activation during stress inducement.
Our Machine Learning model achieved an accuracy of 70% with no significant variations across the three states
(baseline, stress, and recovery). However, training an analogous neural network to identify the states (baseline,
stress, and recovery) proved to be unsuccessful.
Conclusion: Overall, in this study, we showed further evidence of the beneficial effect of taVNS on stress
processing. Importantly we have also demonstrated the promising potential of ECG metrics as a biomarker for
the development of closed-loop stimulation systems.

Keywords: tVNS, taVNS, HRV, AI, ML, stress

1BrainPatch Ltd., London, United Kingdom.
2School of Physics and CRANN Institute, Trinity College Dublin, Dublin, Ireland.

ª Anna Tarasenko et al. 2022; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the
Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and re-
production in any medium, provided the original work is properly cited.

This article has been updated on July 29, 2022 after first online publication of July 26, 2022 to reflect Open Access, with copyright
transferring to the author(s), and a Creative Commons License (CY-BY) added (http://creativecommons.org/licenses/by/4.0).

BIOELECTRICITY
Volume 4, Number 3, 2022
Mary Ann Liebert, Inc.
DOI: 10.1089/bioe.2021.0033

168



Introduction

We are all aware of day-to-day healthy stress, but,
when sustained for long periods, stress is believed to

lead to serious physiological and mental health issues.1–3 At
the time of writing this article, the global pandemic and the
changes imposed by related restrictions are having a pro-
found effect on the mental health and well-being of people
around the world.4 This created an unprecedented demand to
develop effective tools for measuring and controlling stress to
prevent stress-related disorders and disabilities. This is a
complex task requiring a multifaceted approach and in this
article, we investigated the potential for noninvasive brain
stimulation and heart rate-derived parameters for this pur-
pose. However, to recapitulate stress in a well-controlled
environment, we had to limit the definition of stress to one
that is specific to our research as a ‘‘lasting unpleasant
emotional sensation triggered by an external visual cue.’’

When looking at heart rate-derived parameters, one of the
key features of a healthy heart is the ability to quickly react to
various stressors. This property is controlled by a network of
complex mechanisms and can be jointly referred to as heart
rate variability (HRV). Various measures were proposed to
both quantify and analyze HRV.5 These include time-domain
analysis techniques (e.g., standard deviation of N-N intervals
[SDNN], root mean squared of successive differences in
heartbeat intervals [RMSSD]), and frequency domain tech-
niques of analyzing HRV band powers and their ratios (e.g.,
high frequency [HF], low frequency [LF], and LF/HF ratio).

HRV is obtained by calculating the time intervals between
the heartbeats—RR intervals. It is believed that inter-beat
intervals reflect the balance between the sympathetic and
parasympathetic nervous systems. Therefore, the aforemen-
tioned measures are associated with the activation or deac-
tivation in either sympathetic or parasympathetic nervous
systems.5–7 Studies investigating the effects of stress on HRV
have shown that it results in a decrease in the RR intervals,
increase in LF/HF ratio, mixed results in changes to SDNN,
consistent decrease in RMSSD.8–10 Therefore, potentially
these can be used as biomarkers for stress.10–12

However, there is a high degree of contradiction in research
with regard to the direction of change of these parameters and
their relative importance for stress discrimination.13 Therefore,
for the purposes of this study, we did not limit ourselves to one
particular metric and included all of them in the analysis
pipeline. In the literature, there is a small number of studies that
used these features to design machine learning (ML) models,
which would identify stressful and resting states.14,15 Never-
theless, there is a lack of studies that look at the change in HRV
factors before, during, and after stress inducement within the
same sample. As a result, we have a poor understanding of the
dynamics of HRV throughout stressful situations.

One of the key structures responsible for the activity of the
parasympathetic nervous system is the vagus nerve. Because of
its extensive network of innervated internal organs, it is able
to affect vascular, digestive, and immune activities.16–18 The
functional magnetic resonance imaging studies of vagus nerve
stimulation (VNS) demonstrate a decrease in activation of the
limbic system after the stimulation.19,20 This is important be-
cause the limbic system is often hyperactive in people with
psychiatric disorders such as major depressive disorder and
general anxiety disorder.21 It has been suggested that the vagus
nerve is able to affect hypothalamic-pituitary-adrenal (HPA)
axis, which is responsible for stress response and is affected in the
cases of emotional dysregulation.22

At present, invasive VNS has been Food and Drug Ad-
ministration (FDA) approved as a treatment for refractory
major depression and intractable epilepsy.23 Moreover, the
noninvasive analogue was widely investigated as to whether
it can bring similar benefits without surgical risks. There are
data to suggest positive effects in depression, anxiety, irri-
table bowel syndrome, rheumatoid arthritis, tinnitus, and
Crohn’s disease.16,18,22–28 Nevertheless, an important caveat
is that although it might seem that there is a positive rela-
tionship between the degree of vagal activation and well-
being, this notion has been challenged. There is evidence to
suggest a nonlinear relationship between the vagal tone and
well-being.29 This further demonstrates the need for a per-
sonalized system of stimulation rather than generic protocols.
Our study is one step toward the development of such a
system. Therefore, the aims of our study were as follows:

� To investigate potential effects of transcutaneous au-
ricular vagus nerve stimulation (taVNS) on stress
processing as reflected in the biomarkers of stress
adaptability calculated from electrocardiogram (ECG).
� To create an ML model capable of distinguishing between

the stimulated and nonstimulated conditions from the
ECG data, and generalized to various subjects and states.

Materials and Methods

Details of materials and methods, including information on
ML algorithms are in the Supplementary Materials. In brief,
within-subject design was used; ECG was recorded from
healthy volunteers during a stressful video paradigm with and
without taVNS (Fig. 1). Experimental design broadly adhered
to the recommendations put forward in the literature.30 All the
participants were debriefed about the experimental aims and
procedures; informed consent was obtained before the be-
ginning of the experiment. The design of the experiment and
all associated procedures adhered to the WMA Declaration of
Helsinki. The ECG data were extracted and analyzed using
conventional methods as well as using deep learning. The
results are presented in the following section.

FIG. 1. Experimental design. There were two sessions: no stimulation and stimulation. Each lasted 25 min and contained
10 min of baseline, 5 min of stress inducement, and 10 min of recovery. There was also a 20 min break in between the sessions.
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No stimulation (Stim = 0)

With stimulation (Stim = 1)

b

a

FIG. 2. Distribution of metric values derived from ECG as described in section S1.6 in Supplementary Material across
subjects for each state for both conditions: with (b) and without (a) stimulation. The values do not have units for the
frequency domain metrics (LF, HF, and LF/HF), and they represent spectral power for the respective bands. For the time
domain metrics (RMSSD and SDNN), the values are in milliseconds. The box and whiskers refer to distribution parameters
as described in section S1.7 in Supplementary Material. ECG, electrocardiogram; HF, high frequency; LF, low frequency;
RMSSD, root mean squared of successive differences in heartbeat intervals; SDNN, standard deviation of N-N intervals.

No stimulation (Stim = 0)

With stimulation (Stim = 1)
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b

FIG. 3. Distribution of the changes in values of ECG-derived metrics between neighboring states, that is, baseline to
stress (B! S) and stress to recovery (S! R) for both conditions: with (b) and without (a) stimulation. The values do not
have units for the frequency domain metrics (LF, HF, and LF/HF), and they represent spectral power for the respective
bands. For the time domain metrics (RMSSD and SDNN), the values are in milliseconds. We quantify the statistical
significance of the change by testing against the null hypothesis that the population mean of the changes in metric is equal to
0 through the Wilcoxon signed-rank test. The resulting p-values are listed in the title of each panel.
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Results

Statistical analysis of the effect of stress on HRV

Before establishing the effects of the stimulation on stress
management, it was important to test whether the experimental
design could induce stress in the participants and which of the
measured ECG-derived parameters were affected by the stress
inducement. To accomplish this, we selected the data from the
nonstimulated section of the experiments, Stim = 0, and tested
whether stress inducement affected each parameter individu-
ally. The distribution of values across the different metrics and
stress states are shown in Figure 2a.

The presence of a difference between the three subsequent
states was quantified by using a Wilcoxon signed-rank test. It
looked at the difference in value between the selected metric
for each of the two combinations of states for each subject and
tested whether the two samples come from populations with the
same distribution. The p-values obtained from the tests are
listed in the title of each panel of Figure 3a for comparing the
distributions of baseline to stress (B! S) and stress to recovery
(S!R) metrics. The panels themselves show the distributions
of these differences and highlight the position of their quartiles.
The same process was then repeated for the data collected
during stimulation, leading to Figures 2b and 3b.

There are trends that are commonly reported in the liter-
ature after stress inducement, which we were expecting to see
in our data. These include increase in LF/HF ratio after stress
inducement and decrease in RMSSD.8–12

As can be seen from Figure 3a and b, the observed trends
were somewhat different. Figure 2a and b shows that there
was a lot of interindividual variability in all the metrics. In
the nonstimulated condition (Fig. 3a), there was no statis-
tically significant difference between the baseline and stress
in any metric. There was a statistically significant change in
LF and LF/HF in the transition between stress and recovery.
Both LF and LF/HF increased going from stress to recovery.
This is the opposite of what we expected. It might be caused
by a delay in stress processing, meaning that people did not
get stressed immediately after the beginning of the video but
a bit later. In the stimulation condition, the situation was sim-
ilar. There was a statistically significant increase in the LF/HF
ratio between the stress and recovery states. But also, there was
a statistically significant decrease in the LF/HF ratio and a
decrease in RMSSD between the baseline and stress states.

Statistical analysis of the effect of taVNS on HRV

Overall, 15 people out of 22 reported feeling more relaxed
during stress inducement if the stimulation was applied com-
pared with the absence of stimulation. The rest reported not
feeling a difference. To quantify the effect of applying taVNS
stimulation on a subject, while at the same time taking into
account interindividual variability, we focused on the differ-
ences between the two subsequent states (baseline-stress and
stress-recovery) with and without stimulation as derived in
Figure 3a and b. For ease of comparison, we have plotted the

      Effect of stimulation on the differences between Baseline to Stress

      Effect of stimulation on the differences between Stress and Recovery

a

b

FIG. 4. Effect of stimulation on change in HRV metrics between neighboring states, i.e. baseline to stress (a) and stress to recovery
(b). Values on the left show if a metric increased (>0) or decreased (<0) in going from one state to the next when no stimulation is
applied. Values on the right correspond to the change in the value of the same metric for the stimulated condition. Lines joining
the points are colored depending on whether they represent an increase (green), a decrease (orange), or a stationary value (purple).
The threshold between increase, stationary, and decrease is set at 0:5 · r¢, where r¢ is the standard deviation obtained from all the
changes between the two relevant states with and without stimulation. p-Values in the title come from the Wilcoxon signed-rank test
between the values on the left (Stim = 0) and on the right (Stim = 1) of each plot. HRV, heart rate variability.
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two conditions on the same graph. Figure 4a shows the stim-
ulation’s effect on changes between baseline and stress states
(B! S). Similarly, Figure 4b shows the effect of stimulation
on changes that occur between stress and recovery (S! R).

Each point on the left corresponds to a change in the relevant
metric for a given subject when no stimulation was applied.
Corresponding change with stimulation applied is marked on
the right and joined by a line to reflect on the individual effects
of the stimulation. For visualization purposes, the color of
each line is determined by the difference in metric changes
between left (Stim = 0) and right (Stim = 1) of the plot
where orange marks a clear decrease, green a clear increase,
and purple a negligible effect, that is, a change smaller than
half the standard deviation of all the metric changes be-
tween the two relevant stress phases with and without

stimulation. As before, the statistical significance of the
change was evaluated through the Wilcoxon signed-rank
test of the points on the left and right of each panel, leading
to the p-values indicated in the title.

In the literature, there is a proposed concept of responders
and nonresponders to stimulation.26 Moreover, it seems that
the presence or absence of the response might be related to
the baseline LF/HF value. In the LF/HF section of Figure 4a
there are two similar-sized groups of subjects whose LF/HF
decreases or stays stationary. The former might be considered
responders to stimulation given the presence of an effect on
the HRV metric. Similarly, the latter could be identified as
nonresponders, given the absence of the response. The
Pearson correlation coefficient between stimulation effect
and baseline (nonstimulated) value was evaluated to test

FIG. 5. Confusion matrices for discerning stimulated (Stim = 1) and nonstimulated (Stim = 0) conditions. The numbers
inside the panels represent percentages of the total number of samples (1760 from 22 individuals) in the test set. Panel (a) is
an aggregate across all three states, (b) baseline, (c) stress, and (d) recovery. Here the matrices (b, c, and d) are a
decomposition of matrix (a).
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whether the baseline value can predict the association with a
particular category. The results show that there is a weak but
statistically significant correlation (p < 0:05) in the LF/HF
metric between the stimulation effect and the baseline value
for both the baseline to stress (r¼ � 0:64, p¼ 0:001) and
stress to recovery transitions (r¼ 0:51, p¼ 0:015).

The negative correlation between the baseline value and the
stimulation effect in the stress condition means the higher
values of LF/HF in the baseline predict the bigger decrease in
the LF/HF ratio in the stress state. Thus, implying that people
with the higher baseline LF/HF ratio are more susceptible to
the effects of stimulation and can be classified as responders.
This is supported by the literature.26,31 In turn, the positive
correlation of r¼ 0:51 between the baseline LF/HF ratio and
the effect of stimulation between the stress and recovery means
that the higher the baseline, the higher is the stimulation-
induced increase in LF/HF from stress to recovery.

ML: discerning stimulated
and nonstimulated conditions

By employing a convolutional neural network trained on
the HRV data to discern stimulated versus nonstimulated
conditions, we obtained a performance of 70% for both
conditions and an F1 score of 69%. As was described in the
section S1.8 in Supplementary Material, the two categories of
data were fed into the model: temporal RRI series and their
transformations in the frequency space (LF, HF, their ratio,
RMSSD, and SDNN). Feeding both to the model yields better
performance than training separately (data not shown).
Figure 5 shows the confusion matrices first totaling all
samples and then breaking them into confusion matrices for
different states (baseline, stress, and recovery). The propor-
tion of true labels coinciding with the predicted labels is 0.38
and 0.33 for the baseline state, 0.32 and 0.39 for the stress
state, and 0.36 and 0.33 for the recovery state.

Interestingly, although misclassification is similar in baseline
and stress states, it is somewhat different in the recovery state.
The proportion of cases classified as stimulated while coming
from the nonstimulated condition is 0.15. In contrast, the pro-
portion of cases classified as nonstimulated while coming from
the stimulated condition is 0.17. This slight bias toward the non-
stimulated condition shown by the ML classifier might indicate
that features correlated with stimulation presence are different
in the recovery state compared to baseline and stress.

To identify whether the model performed equally well across
all individuals in determining whether they were stimulated or
not, we identified the number of mismatches for each individual
for each condition. To visualize the results and look into the
reasons for the misclassifications, we expressed them as a
fraction of mismatches and plotted the distribution in Figure 6.

We can see that there is no individual with complete ac-
curacy and only one individual with >60% mismatches.
There are only around seven individuals with >50% mis-
matches in total. Overall, in all three states, the distribution of
mismatches seems to be broadly distributed with the different
degrees of the shift to the left from 50% (Fig. 6a). In par-
ticular, in the baseline state, the stimulation is more accu-
rately determined as the distribution is shifted mainly to the
left of 50%, with the tallest peak at *10% (Fig. 6b). Simi-
larly, the stress condition is still left-shifted, with a tall peak
at *5% mismatches and an even broader overall distribution
(Fig. 6c). Recovery, however, is a bit worse, with the center
of the distribution lying closer to 50% (Fig. 6d).

ML: discerning baseline, stress, and recovery states

On the task of classifying the session state, that is, baseline,
stress, and recovery, two experiments were performed: base-
line/stress binary classification and three-way baseline/
stress/recovery classification. We built the train and test set by
including the samples corresponding to the states of baseline and

a b

c d

FIG. 6. (a) Distribution of
mismatches between the true
and predicted labels in stim-
ulation condition classifica-
tion across individual
subjects, including the source
of these mismatches across
the three different states. The
percentage of mismatches
was calculated for each ses-
sion (2 conditions and 22
subjects) across the 40 cross-
validation iterations and
placed into histogram bins
5% wide. (b–d) A similar
histogram where the data
were restricted to those lay-
ing in the baseline, stress,
and recovery state, respec-
tively.
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stress for the binary classification task and the recovery state for
the three-way task. This way, each state is represented equally in
the test set, with each test set containing 1760 samples.

Using this model, we achieved 55% accuracy and f1 scores
for the two-way classification (Fig. 7a) and 40% accuracy,
35% f1 scores for the three-way classification (Fig. 7b).

Under the assumption that data generated by the two-way
classifier can be described by the Poisson distribution, the
number of correctly identified examples would be
N2 � 968 � 31, where 31 is the statistical uncertainty.
Meanwhile, the random chance performance would add up to
880 (half of the total number of examples). This means that the
obtained performance is slightly better than chance. Similarly,
for the three-way classifier, the number of correctly identified
examples is N3 � 704 � 27 as compared with 587 obtained
by chance. Hence its performance is also slightly better than
chance. Interestingly, the classifier seemed to overfit the recovery
state and incorrectly predict it for both stress and baseline state.

Discussion

First, in this study, we have provided further evidence for
the beneficial effects of taVNS reflected in HRV metrics. In
Figure 4a we show that the stimulation is effective at redu-
cing the expected LF/HF increase in response to stress and
even reducing it below the baseline in several cases. This is
important because we know from the literature that there is a
disproportional increase in LF/HF in response to stress in
people with affective disorders, such as anxiety.32,33

Our results are in line with the findings on the effects of the
transcutaneous VNS (tVNS) on the cervical branch of the vagus
nerve. It was shown that tVNS decreases sympathetic activation
in response to stress in healthy individuals31,34 as well as the
people suffering from post-traumatic stress disorder (PTSD).35

All our participants tolerated the stimulation well, with only one
reporting a light muscle tension in the neck region during the

stimulation, which disappeared as soon as the stimulation
stopped. This goes in line with mounting evidence of the safety
of tVNS in the course of prolonged stimulation periods.36

Second, we have created and trained an algorithm that can
discern between stimulation and no stimulation conditions in
various states (baseline, stress, and recovery) with a high degree
of reliability (70%). Because the research in this area still re-
mains limited, in particular in different affective states, it is
difficult conclude the meaning of this accuracy value as there is
no benchmark. Based on the spread of the distribution of
mismatches shown in Figure 6, it might be that the features
associated with stimulation are the most prominent in the
baseline condition (Fig. 6b), with stress condition following
closely. In the recovery state, features seem to be the least
pronounced. The fact that the distributions of mismatches vary
across the different states might be indicative of the fact that the
stimulation effects also vary in different states. This is under the
assumption that the features learned by the model are indicative
of the beneficial effects of stimulation.

The state dependence of the response to the taVNS we
noted in Figure 4a and in the correlation analysis has been
noted before in the rat studies using invasive VNS. VNS can
reduce the overarousal present in rats that are stressed at the
baseline, however, has no effect on the arousal in the non-
stressed rats.37 Vagus nerve receives numerous afferent
projections that indicate the state of the viscera. If the subject
is already in a calm state, with a high level of parasympathetic
activity, the stimulation may not be as effective. This fits well
with the polyvagal theory that focuses on the adaptive
properties of the physiological state.38 According to this
theory, the physiological state defines the range of reactions
that are possible to a given stimulus. There is also an inter-
esting hypothesis that the release of adrenalin in response to
stressful situations affects the brain through the vagus nerve.39

The released adrenalin might bind to the beta-adrenergic
receptors on the vagus nerve, which then increases the release

FIG. 7. (a) Confusion matrix for discerning baseline and stress states in a binary classification mode across the stimulated and
nonstimulated conditions. In this figure the labels are Baseline¼ 0, Stress¼ 1, Recovery¼ 2. The numbers inside the panels
represent percentages of the total number of samples (1760 across 22 individuals) in the test set. (b) Confusion matrix for discerning
baseline, recovery, and stress states in a three-way classification mode across the stimulated and nonstimulated conditions.
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of norepinephrine in the brain as a homeostatic mechanism to
counteract stress. This was proposed as a mechanism of ef-
fectiveness of tVNS in the fear extinction in PTSD. This
could potentially explain why the differences between
baseline and stress states were enhanced after the stimulation.
Nevertheless, this hypothesis has only been tested in animal
models with invasive VNS. In addition, it is important to
mention a lack of studies on continuous changes in HRV after
stress inducement. These are essential to understand the ef-
fects of stimulation on the stress response, especially given
the contradictory findings about the importance of HRV
markers in stress identification.

The ability to discern the presence of the stimulation from
the HRV data using a small section (1 min) might imply that
stimulation effects can be used as optimization features for
the closed-loop system. Moreover, this might also mean that
this model can be further adapted for online data processing
to adjust the stimulation parameters immediately. The degree
of individual calibration of the model for every new user re-
quires further investigation. We envision the need for the
collection of preliminary ECG data in a range of different
stress scenarios to generate a versatile model. However, going
beyond 1 min for the online processing will impose a further
constraint on window length for the fast Fourier transform, as
that determines how far the metrics lag behind real time.

In this study, we have used simple previously reported26

stimulation parameters. However, optimal and desirable
stimulation may require more complex biphasic patterns that
would be the scope of our further investigations.

Another important part of the system that needs to be de-
veloped in parallel is the state recognition system. However, we
found that both state classifiers (two-way and a three-way) are
significantly worse than the stimulation condition classification
model. From Figure 7a it seems the data set contains some
features that allow distinguishing between the baseline and
stress (and recovery) states; however, these are not prominent
enough for the ML algorithm to reach a good accuracy. This
leads us to believe that higher performance could be achieved
by improving the quality and diversity of the collected data.

Alternatively, it might be due to the experimental design
flaws, which meant that the induced stress was not sufficient
to be discerned from the HRV metrics. Another possibility is
that the participants were already stressed at baseline as they
were expecting to see the stressful video. Using a nonstressful
video as the baseline instead of the black screen might allow a
clearer distinction. This, however, requires a more systematic
study. Alternative stress-inducing protocols may give the
model more information about the person’s reaction to stress,
thus enabling better recognition.

In principle, a state recognition system should conduct con-
tinuous labeling of states, rather than simple baseline-stress-
recovery. To achieve this, one would need to reframe the model
into a regression rather than classification. Therefore, the out-
come would be a probability of belonging to different states. This
would put the effects of the stimulation into the context of the
state of a person and, therefore, enable one to bring a user closer
to the desired state through the use of stimulation. However, the
usefulness of HRV metrics for such purposes remains an open
question given the poor performance of state classifier.

Thus, interpretation of our results has to be taken with a
range of considerations that directly impact the generaliz-
ability and validity of conclusions that could be drawn.

Experimental design considerations

There are a wide variety of stress inducement protocols used
in research. However, their common drawback is the lack of
realistic scenarios. Common stress paradigms include cold
water immersion, needle prickling, and electric shock.40,41 The
advantage of these protocols is that they are more generic and
less dependent on individual factors such as personality and
background. Nevertheless, apart from the obvious ethical im-
plications, these paradigms are difficult to administer remotely.
Therefore, in the context of this study, alternatives were used.

Although the stressful video paradigm used was easy to
administer remotely, it is similarly not representative of the
real-life stressors most people face. Further development
would be to explore other modalities and sensory inputs for
inducing specific mental states, especially combining them to
produce a more immersive environment (videos, auditory
and haptic inputs, and virtual reality). Our experimental
paradigm was aiming to recreate the scenario of acute stress
and demonstrate the change in the response to it. The effects
of tVNS in the conditions of chronic stress require further
investigation and more complex experimental designs.

Another important consideration is the duration of stress
inducement: it was twice shorter than the baseline and re-
covery, thereby providing much less information for the
training of the ML model. This potentially might contribute
to the poor performance on the state recognition task. This is
further supported by the fact that the classifier seemed to
overfit the recovery state slightly (Fig. 7b).

Finally, in our design we were comparing response to a
stressful video without and with stimulation within the same in-
dividuals to reduce interindividual variability assuming that any
placebo effects of the stimulation were relatively small. This was
done adhering to the recommendation on conduction of the HRV-
based studies.30 A double-blinded placebo controlled study in-
volving a sham stimulation could help further confirm the effects
of the stimulation. However, due to controversies on an appro-
priate taVNS sham, and complexities in study design, conducting
placebo-controlled study was beyond the scope of this research.

Choice of outcome measures

According to von Rosenberg et al.,12 the LF/HF ratio, which is
one of the key metrics in our model, does not perform equally
well in different stress scenarios. Their proposed alternative is to
look at the pair of values LF, HF, claiming that different com-
binations of high or low values of the two metrics are instru-
mental in identifying different kinds of stress. Yet, other research
suggests that LF is a poor marker of sympathetic activity as it is
influenced by the activity of both sympathetic and parasympa-
thetic systems.42 Hence it might be difficult to interpret.

In addition to the HRV metrics that we used, several new
‘‘nonlinear’’ metrics inspired by the behavior of other non-
linear systems have been proposed, such as the sample en-
tropy and correlation dimension.5,43 Even though these
metrics can be, at least partially, correlated with some of the
other time- or frequency-domain metrics, they could still
prove useful in our pipeline as they would lead to expanded
feature space for the ML analysis. Furthermore, respiration
rates could be measured to control for the contribution of
Respiratory Sinus Arrhythmia to HF. Finally, other ways of
measuring stress, including galvanic skin response, cortisol
levels, and questionnaires, could be added into the model.
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Data analysis considerations

Spline interpolation of RRI that we used, as described in
Section S1.6 in Supplementary Material, does not ensure a
monotonic behavior between sampling points and could,
therefore, introduce artefacts in which the interpolant over-
shoots the sampled values, thus introducing high-frequency
components. This is prevented when using more sophisti-
cated interpolation algorithms that ensure monotonic be-
havior, such as cubic interpolation.44

The architecture used for ML training was chosen be-
forehand and it is possible it may benefit from the hyperpa-
meter fine-tuning. However, this would require a separate
validation set as well as a test set.

Since we performed all our analysis over a time window,
some of the points in the time traces of different HRV metrics
contained information from neighboring states. These can be
referred to as ‘‘transition periods’’ between the states. If the
fraction of these ‘‘transition periods’’ is significant, the
change in the metric’s value between different states could be
reduced, making it harder to detect. Furthermore, having a
better synchronization between collected data and the start/
end of states would greatly improve our ability to remove
these ‘‘transition periods.’’ However, this is difficult to
arrange from both experimental and biological perspectives.

Conclusion

Our findings in this project further support the promise of
using taVNS in a variety of different conditions and appli-
cations suggested by previous research. In this study, we used
custom-made stimulation and recording devices together
with a novel method of data analysis on an example appli-
cation in acute stress. By demonstrating the feasibility of
using small snippets of data for determining the presence of
stimulation we are getting closer to the possibility of a closed-
loop taVNS system. Creating such a system requires a sig-
nificant amount of further research, technological develop-
ment, and trials. However, once developed, we believe that
its applications will extend beyond stress and could include
medical conditions that are currently trialed with taVNS such
as depression, epilepsy, irritable bowel syndrome, and
rheumatoid arthritis.
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