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Abstract
Background: Mesenchymal stem cell (MSC) transplantation has been reported to 
improve neurological function following neural injury. Many physiological and molecu-
lar mechanisms involving MSC therapy-related neuroprotection have been identified.
Methods: A review is presented of articles that pertain to MSC therapy and diverse 
brain injuries including stroke, neural trauma, and heat stroke, which were identified 
using an electronic search (e.g., PubMed), emphasize mechanisms of MSC therapy-
related neuroprotection. We aim to discuss neuroprotective mechanisms that underlie 
the beneficial effects of MSCs in treating stroke, neural trauma, and heatstroke.
Results: MSC therapy is promising as a means of augmenting brain repair. Cell incorpora-
tion into the injured tissue is not a prerequisite for the beneficial effects exerted by 
MSCs. Paracrine signaling is believed to be the most important mediator of MSC therapy 
in brain injury. The multiple mechanisms of action of MSCs include enhanced angiogen-
esis and neurogenesis, immunomodulation, and anti-inflammatory effects. Microglia are 
the first source of the inflammatory cascade during brain injury. Cytokines, including 
tumor necrosis factor-α, interleukin-1β, and interleukin-6, are significantly produced by 
microglia in the brain after experimental brain injury. The proinflammatory M1 pheno-
type of microglia is associated with tissue destruction, whereas the anti-inflammatory 
M2 phenotype of microglia facilitates repair and regeneration. MSC therapy may improve 
outcomes of ischemic stroke, neural trauma, and heatstroke by inhibiting the activity of 
M1 phenotype of microglia but augmenting the activity of M2 phenotype of microglia.
Conclusion: This review offers a testable platform for targeting microglial-mediated 
cytokines in clinical trials based upon the rational design of MSC therapy in the future. 
MSCs that are derived from the placenta provide a great choice for stem cell therapy. 
Although targeting the microglial activation is an important approach to reduce the 
burden of the injury, it is not the only one. This review focuses on this specific aspect.
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1  | INTRODUCTION

1.1 | Neuroinflammation is a hallmark of brain injury

Inflammation is a hallmark of stroke (Lambertsen, Biber, & Finsen, 
2012), traumatic brain injury (TBI) (Mannix & Whalen, 2012), and heat-
stroke pathology (Chen, Lin, & Chang, 2013). The cytokines that mod-
ulate tissue injury in ischemic stroke, TBI, spinal cord injury (SCI), or 
heatstroke, including tumor necrosis factor-α (TNF-α), interleukin (IL)-
1, and IL-6, are potential targets for future therapy. The production of 
these cytokines in greatly increased by microglia in the brain the first 
24 hours after experimental stroke (Clausen, Lambertsen, Meldgaard, 
& Finsen, 2005; Clausen et al., 2008; Hill et al., 1999; Lambertsen, 
Meldgaard, Ladeby, & Finsen, 2005). Interleukin-1β and TNF-α are 
produced by a largely segregated population of microglia and infiltrat-
ing macrophages after ischemic stroke in mice (Clausen et al., 2008). 
This has promoted the hypothesis that inhibiting proinflammatory 
cytokine production may be a therapeutic approach in treating brain 
injury (Barone & Parsons, 2000). Indeed, according to an observational 
study that involved 629 consecutive patients with chronic neurologi-
cal, neuropsychiatric, and clinical impairment after stroke and TBI, the 
perispinal administration of etanercept produces clinical improve-
ment (Tobinick, Rodriguez-Romancce, Levine, Ignatowski, & Spengler, 
2014). In addition, various drugs or strategies improve outcomes of 
experimental heatstroke by reducing the overproduction of these pro-
inflammatory cytokines resulting from heat stress (Chen et al., 2013).

1.2 | Microglial activation is involved in brain 
injury pathology

In contrast to their well-known deleterious roles, TNF-α and IL-6 
have also been shown to exhibit neuroprotective properties. In both 
TNF-deficient mice (Bruce et al., 1996; Gary, Bruce-Keller, Kindy, & 
Mattson, 1998; Lambertsen et al., 2009; Taoufik et al., 2007) and IL-6-
deficient mice (Herrmann et al., 2003), infarct sizes were significantly 
increased following cerebral injury. In addition, TNF-α and IL-6 double-
receptor knockout mice had higher mortality rates than did their wild-
type controls following heatstroke collapse (Leon, Blaha, & DuBose, 
2006). Adult IL-6 knockout mice have also shown to compromise 
neurogenesis (Bowen, Dempsey, & Vemuganti, 2011). A complete 
lack of TNF-α or IL-6 might be detrimental to neurogenesis in the 
adult brain (Monje, Toda, & Palmer, 2003; Vallières, Campbell, Gage, 
& Sawchenko, 2002). This can be concluded by previous studies that 
show that an appropriate baseline level of TNF-α or IL-6 is necessary 
and essential for neurogenesis or host defense, whereas higher levels 
of TNF-α or IL-6 are detrimental to neurogenesis or host defense.

Microglia are activated rapidly in response to central nervous sys-
tem injury and produce proinflammatory cytokines, growth factors, 
reactive oxygen species, nitric oxide, and glutamate (Block & Hong, 
2005; Jin, Yang, & Li, 2010; Stolp & Dziegielewska, 2009). An appropri-
ate state of microglial activation is necessary and crucial for host normal 
neurogenesis and defense; however, microglial overactivation results in 
deleterious and neurotoxic consequences. Proinflammatory cytokines, 

such as TNF-α, IL-1β, and IL-6, which are increasingly expressed during 
experimental stroke, have a crucial role in the progression of neuronal 
loss and brain injury (Banati, Gehrmann, Schubert, & Kreutzberg, 1993; 
Barone et al., 1997; Rothwell, Allan, & Toulmond, 1997).

Recent developments in magnetic resonance (MR) and positron 
emission tomography (PET) imaging techniques have demonstrated 
that increased binding of the peripheral benzodiazepine receptor (PBR) 
PET ligand 11C-RK11195 is interpreted as a marker of microglial acti-
vation and hence neuroinflammation in several brain diseases (Denes 
et al., 2010). Increases in 11C-PK11195 binding are found 30 days 
after stroke in patients, which suggests a contribution of microgli-
al activation to ongoing processes in the ischemic brain (Price et al., 
2006). In a rat stroke model, evidence supports a role for microglia as 
a central mediator in the ongoing processes of stroke damage (Gelosa 
et al., 2014). In addition, microglial activation is involved in other neu-
rodegenerative disease models, such as Alzheimer’s and Parkinson’s 
disease (Mosher & Wyss-Coray, 2014; Walker et al., 2014), traumatic 
brain injury (Chio, Lin, & Chang, 2015), and heatstroke (Chen et al., 
2013).

Tumor necrosis factor-alpha levels in both serum and cerebrospi-
nal fluid are found to be significantly elevated in ischemic stroke, trau-
matic brain injury, and heatstroke (Chen et al., 2013; Chio et al., 2015; 
Gelosa et al., 2014). Activation of TNF receptor 1 (TNF-R1) is believed 
to promote proinflammatory and proapoptotic action, astrogliosis, 
leukocyte extravasation, and disrupted blood–brain barrier (BBB) 
permeability (McCoy & Tansey, 2008). However, other results have 
demonstrated that TNF-R1 is required for erythropoietin receptor and 
vasculoendothelial growth factor expression and protective effects in 
primary cortical neurons after ischemic and excitotoxic injury (Taoufik 
et al., 2008).

1.3 | MSC therapy may improve outcomes of brain 
injury by modulating microglial activation

Mesenchymal stem cells (MSCs) can be derived from different sourc-
es, including bone marrow, adipose tissue, the umbilical cord, and the 
placenta. Currently, clinical trials are being conducted to investigate 
the therapeutic effects of human MSCs in many cardiovascular and 
neurodegenerative disorders (Kalladka & Muir, 2014; Mastri, Lin, & 
Lee, 2014). In addition to their multilineage differentiation poten-
tial, MSCs may exert their regenerative effect via the production 
of multiple paracrine factors (Kalladka & Muir, 2014; Mastri et al., 
2014). Production of IL-6, vascular endothelial growth factor (VEGF), 
hepatocytes growth factor (HGF), brain-derived neurotrophic factors 
(BDNF), glial-derived neurotrophic factor (GDNF), neurotrophin-3 
(NT3), fibroblast growth factor (FGF), and thrombospondins can be 
promoted by MSCs. It is well known that neural injury results in BBB 
breakdown and the infiltration of tissue neutrophils and macrophages 
into damaged brain tissue, which causes microglial activation. In addi-
tion, microglia have been promoted as a compelling target for treating 
infectious and inflammatory diseases of the brain (Chio et al., 2015; 
Denes et al., 2010; Rock & Peterson, 2006). It is likely that MSC ther-
apy may improve outcomes of brain injury by modulating microglial 



Hsuan et al.�

  

  |  ﻿(3 of 11) e00526

activation. Although targeting the microglial activation is an important 
approach to reduce the burden of the injury, it is not the only one.

1.4 | MSCs fulfill the criteria that have been 
established by the international society of 
cellular therapy

Mesenchymal stem cells are multipotent, self-renewing cells (Friedenstein, 
Petrakova, Kurolesova, & Frolova, 1968). They fulfill the following crite-
ria that have been established by the International Society of Cellular 
Therapy (Dominici et al., 2006): (i) adherence to plastic, (ii) expression 
of CD105, CD73, and CD90; lack of expression of CD45, CD34, CD14, 
CD116, CD79a, CD19, and HLA11; and (iii) ability to differentiate into 
osteoblasts, adipocytes, and chondroblasts in vitro. Due to extensive self-
renewal capacity, their ease of isolation, and their presence during young 
and fetal life, MSCs that are derived from the placenta are an appropriate 
source for stem cell therapy.

In this review, we collected publications that pertain to MSC therapy 
and cerebral injury that is caused by stroke, neural trauma, and heat-
stroke. In doing so, we emphasized the mechanisms of MSC therapy-
related neuroprotection, which were identified using an electronic 
search (e.g., using PubMed). It reports the feasibility of MSCs to improve 
neurological function after injury. It focuses on adult injuries such stroke, 
TBI, and heatstroke. It summarizes the pathophysiology of the injury 
briefly and offers an overview of MSCs therapeutic approaches.

2  | THERAPEUTIC EFFECTS OF MSCS IN 
ISCHEMIC STROKE

2.1 | Neonatal stroke rats or mice

Neonatal stroke occurs frequently in live birth and presents motor dys-
function, cognitive deficits, and epilepsy (Ferriero, 2004; Kirton & de 

Veber, 2009). However, treatment options are not currently available. 
The transplantation of MSCs into neonatal animal models of ischemic 
stroke promotes functional recovery by stimulating neurogenesis, oli-
godendrogenesis, and axonal remodeling (van Velthoven, Kavelaars, 
van Bel, & Feijene, 2010a,b; Yasuhara et al., 2008). The beneficial 
effect of MSC transplantation might involve the augmentation of the 
secretion of growth and differentiation factors and the fostering of an 
environment that stimulates both angiogenesis and neurogenesis (van 
Velthoven et al., 2010b, 2012, 2013) (Table 1). The secretome that 
has been obtained from MSCs contains several neurotrophic factors, 
including insulin-like growth factor-1 and brain-derived neurotrophic 
factor, which are responsible for the protective effects of MSCs that 
were observed in studies with in vitro and in vivo neuronal injury mod-
els (Wei et al., 2009). When compared with adults, it is believed that 
newborns benefit more from cell therapy because newborns have an 
increased brain plasticity as well as a different pathophysiology of the 
injury. In addition, in newborns the microglial activation is more pro-
nounced as microglial activation is present during physiological brain 
development as well.

2.2 | Adult ischemic stroke models

2.2.1 | MSC therapy improves outcomes of stroke 
mainly by secreting paracrine factors

Mesenchymal stem cells have the potential to differentiate into osteo-
blasts, chondrocytes, adipocytes, hepatocytes, and neurons (Sanchez-
Ramos et al., 2000). Although, MSCs are able to pass through the BBB 
(Kopen, Prockop, & Phinney, 1999), MSCs that are transplanted by 
intracerebral or intravenous routes minimally and selectively migrate 
to the ischemic boundary sites (Li et al., 2002; Zhao et al., 2002). 
Considering the small number of MSCs in injured brain tissue, the pres-
ence of therapeutic neurotrophic factors that are secreted by MSCs 

TABLE  1 Effects of mesenchymal stem cells (MSCs) therapy on ischemic stroke damage

Treatment regimens Main results References no.

1. Neonatal stroke rats or mice received 
intranasal or intracerebral injection of 
MSCs

Decreasing cerebral damage by reducing both 
overproduction of IL-6 and TNF-α and microgliosis, 
but stimulating neurogenesis (e.g., increased 
production of HGF, VEGF, IGF, EGF, 6FGF, IL-10, 
GDNF, BDNF, NF3, angiopoietin, TGF, and I-CAM 1

van Velthoven et al. (2010a,b), Yasuhara et al. 
(2008), van Velthoven et al. (2012, 2013), 
Wei et al. (2009)

2. Adult stroke rats received intravenous  
or intracerebral injection of MSCs

Decreasing cerebral damage by stimulating 
synaptogenesis and vessel density, reducing 
apoptosis in the ischemic boundary zone, and 
increasing proliferation of progenitor cells in the 
subventricular zone.

Wakabayashi et al. (2010), Xu et al. (2010); 
Bao et al. (2011), Lin et al. (2011); Walker 
et al. (2010), Wei et al. (2012), Ma et al. 
(2013), Tang et al. (2014a,b), Cheng et al. 
(2015)

3. Adult stroke monkeys received  
intracerebral injection of MSCs

Reducing cerebral damage by stimulating produc-
tion of IL-10

Li et al. (2010)

4. Adult stroke patients received  
intravenous injection of MSCs

Reducing cerebral damage by promoting nerve cell 
proliferation

Weimann et al. (2003) 
Bang et al. (2005) 
Lee et al. (2010)

MSCs, mesenchymal stem cells; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; IL-10, interleukin-10; VEGF, vascular endothelial growth factor; HGF, 
hepatocytes growth factor; BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; NT3, neurotrophin-3; FGF, fibroblast growth 
factor; IGF-1, insulin-like growth factor; EGF, epidermal growth factor; TGF, transforming growth factor; ICAM-1, intercellular adhesion molecule-1.
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apparently confers neuroprotection. This suggests that providing the 
therapeutic molecules that are secreted by these cells can be neuro-
protective (Borlongan, Hadman, Sanberg, & Sanberg, 2004). Although 
MSCs have been shown to localize only to the injured brain using 
immunohistochemistry (Chen et al., 2001; Vendrame et al., 2004), 
intravenously transplanted human MSCs are functionally involved in 
repair in ischemic stroke rats, possibly by providing human insulin-like 
growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), 
epidermal growth factor (EGF), basic fibroblast growth factor (FGF), 
and neurotrophic neurotrophic factors to the host brain (Wakabayashi 
et al., 2010). Xu and colleagues (Xu et al., 2010) further suggested 
that the transplantation of neuronal cells induced from human MSCs 
improves neurological function after stroke without cell fusion.

2.2.2 | MSC therapy improves outcomes of stroke 
by stimulating angiogenesis, neurogenesis, and 
synapse formation

The mechanisms that underlie the beneficial effects of transplanted 
MSCs include transdifferentiation into the neural lineage as well as 
the induction of neurogenesis, angiogenesis, and synapse formation 
in rodents (Kurozumi et al., 2005; Li et al., 2002; Shen et al., 2006; 
Wislet-Gendebien et al., 2005). Transplantation of MSCs protects 
against cerebral injury and upregulates IL10 expression in Macaca 
fascicularis (Li et al., 2010), thereby suggesting the activation of 
endogenous neurotrophins. Angiogenesis that is induced by MSC 
transplantation promotes endogenous neurogenesis, which may pro-
duce functional recovery after cerebral injury in rats with ischemic 
stroke (Bao et al., 2011). Both histology and MRI reveal that human 
umbilical MSCs promote recovery after ischemic stroke in rats (Lin 
et al., 2011). The beneficial effects of MSC therapy are associated 
with improved revascularization in ischemic injured tissues.

2.2.3 | MSC therapy attenuates neuronal death by 
suppressing activated microglia

During the acute phase of cerebral injury, the expression of neuronal 
and microglial IL-6 is elevated in the injured penumbra (Berti et al., 
2002; Block, Peters, & Nolden-Koch, 2000). Direct intrathecal implan-
tation of MSCs results in enhanced neuroprotection. The implantation 
of MSCs into the injured brain activates resident stem cells niches via 
an NF kappa B-mediated increase in IL-6 production (Walker et al., 
2010). Microglia have also been implicated in the pathogenesis of a 
number of neurodegenerative diseases, such as stroke, Alzheimer’s 
disease, dementia, and multiple sclerosis (Danton & Dietrich, 2003). 
Microglia can defend against brain damage, but excessive or sustained 
microglia activation can contribute to apoptotic cell death (Ohmi 
et al., 2003). Bone marrow MSCs result in the suppression of acti-
vated microglia and to a delay of neuronal death (Ohmi et al., 2003; 
Wei, Fraser, Lu, Hu, & Yu, 2012). Human MSCs also stimulate angio-
genesis in focal cerebral injury by increasing expression of α-tubulin 
and angiopoietin 1 and 2 (Ma et al., 2013). MSC treatment reduces the 
expression of inflammatory cytokines in lipopolysaccharide-activated 

microglia and subsequently reduces aquaporin-4 expression and 
apoptosis of astrocytes after cerebral injury (Tang, Cai, et al. 2014, 
Tang, Liu, et al., 2014). In addition, the survival and function of trans-
planted MSCs after focal cerebral injury can be enhanced by mela-
tonin pretreatment (Tang et al., 2014b). Both neurological deficit and 
brain edema and infarct volume are significantly decreased postisch-
emic stroke with MSC treatment via the tail vein (Tang et al., 2014a). 
MSCs also protect against brain injury in the mouse by stimulating the 
production of TGF-β (transforming growth factor), but reduce proin-
flammatory cytokines (e.g., IL-1, TNF-α) (Cheng et al., 2015). Thus, it 
appears that MSCs improve outcomes of ischemic stroke in animal 
models by stimulating neurotrophic factors production and endog-
enous neurogenesis and modulating neuroinflammation.

2.3 | Stroke patients

Systemic delivery of MSCs has also been shown to be a feasible and 
safe therapy for treating ischemic stroke patients (Tang et al., 2014b). 
Long-term follow-up data further indicate a contribution of trans-
planted MSCs to Purkinje neurons in human adult brains (Bang, Lee, 
Lee, & Lee, 2005; Lee et al., 2010; Weimann, Charlton, Brazelton, 
Hackman, & Blau, 2003). Both clinical (Bang et al., 2005; Cheng et al., 
2015; Tang et al., 2014a) and experimental (Lee et al., 2015) studies 
demonstrate that the outcomes of ischemic stroke in patients and 
rodents are greatly improved by MSC therapy. Furthermore, earlier 
administration of MSCs produces an improved functional recovery, 
survival rate, stroke recurrences, or adverse effects.

A more recent report has shown that CD4+ CD28- T cells (also 
called CD28 null cells) are increased in the clinical setting of acute 
ischemic stroke (Tuttolomondo et al., 2015). Among these T cells, 
CD28 null cells produce high amounts of γ-interferon and TNF-α and 
thus may have a direct pathogenetic role in neuronal damage. It is not 
known whether the peripheral frequency of CD28 null cells in acute 
ischemic stroke can be affected by MSC therapy.

3  | THERAPEUTIC EFFECTS OF MSCS IN 
NEURAL TRAUMA

3.1 | Microglial activation as a biomarker for neural 
trauma

Mechanical injury to the brain or spinal cord results in glutamate exci-
totoxicity, BBB disruption, ischemia, mitochondria dysfunction, apop-
totic and necrotic cell death, and inflammation (Mannix & Whalen, 
2012). Secondary injury following TBI (traumatic brain injury) includes 
microglial activation (Davalos et al., 2005). Microglial activation 
occurs as early as 72 hr after injury in human TBI patient and persists 
for years after injury. Activated M1 phenotype microglia causes the 
overexpression of both proinflammatory cytokines (such as IL-1β, IL-
6, and TNF-α) and other neurotoxic products (such as reactive oxygen 
species [ROS] and reactive nitrogen species [RNS]). M2 phenotype 
of microglia is able to release neuroprotective substances, including 
anti-inflammatory cytokines (IL-10, IL-1 receptor antagonist) and 
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neurotrophic factors, including nerve growth factor and transforming 
growth factor β (TGF-β) (Chio et al., 2015). Evidence has accumulated 
that indicates microglial activation as a biomarker for traumatic brain 
injury (Hernandez-Ontiveros et al., 2013).

4  | THERAPY WITH CONDITIONED 
MEDIUM FROM CULTURED MSCS IMPROVES 
OUTCOMES OF NEURAL TRAUMA

MSCs transplantations via different routes of administration have been 
widely studied in different species of SCI (spinal cord injury), and have 
been proven to produce beneficial effects following SCI (Table 2). The 
systemic or intraspinal cord administration of MSCs significantly atten-
uates SCI in rodents (Chopp et al., 2000; Hu et al., 2010; Kao, Chen, 
Chio, & Lin, 2008; Lu, Jones, & Tuszynski, 2005; Okano et al., 2003; 
Satake, Lou, & Lenke, 2004), dogs (Penha et al., 2014), rabbits (Moon 
et al., 2014), monkeys (Deng et al., 2006), or patients (Arien-Zakay 
et al., 2014; Cheng et al., 2014; Jiang et al., 2013; Mendonça et al., 
2014). MSCs are beneficial in reversing the neurological motor deficits 
of SCI, even when infused 5 days after injury (Saporta et al., 2003). 
Human MSCs are observed in the injured areas but not in noninjured 
areas, of rat spinal cords, and are never seen in corresponding areas of 
spinal cord of noninjured animals. Immunohistochemical examination 
reveals that transplanted MSCs survive in the host spinal cord for at 
least 3 weeks after transplantation but disappear by 5 weeks (Nishio 
et al., 2006). It is well known that MSCS secrete a variety of molecules 
that are beneficial in treating SCI (Cantinieaux et al., 2013). Indeed, the 
systemic administration of conditioned medium (or secretome) from 
MSCs is shown to improve recovery after SCI in rats (Cantinieaux et al., 

2013). In addition, in TBI mice, TBI rats, or TBI patients, intravenous 
or intrathecal administration of MSCs (Arien-Zakay et al., 2014; Chen 
et al., 2014; Lu et al., 2002; Nichols et al., 2013; Wang et al., 2013; 
Zanier et al., 2011; Zhang et al., 2013, 2015) significantly improves 
the outcomes of TBI. The systemic injection of the secretome of cul-
tured MSCs also improves the outcomes of TBI in rats (Chang et al., 
2013). The transplantation of hypoxia-preconditioned MSCs improves 
infracted heart function via the enhanced survival of implanted cells 
and angiogenesis (Hu et al., 2008). It seems that while MSCs exhibit 
a prominent multilineage differentiation potential, the MSCs-derived 
mediators contribute to cytoprotection, angiogenesis, tissue repair, 
and alleviation of inflammation during neural injury (Mastri et al., 
2014). Cell incorporation into the vessels or neurons is not a prereq-
uisite for the beneficial effects that are exerted by MSCs. MSCs may 
improve the outcomes of neural injury by modulating multiple mecha-
nisms, such as the secretion of trophic factor and immune function 
(Kalladka & Muir, 2014).

5  | THERAPEUTIC EFFECTS OF HUMAN 
MSCS IN EXPERIMENTAL HEATSTROKE

Heatstroke can be induced by severe heat exposure (i.e., classic heat-
stroke) or strenuous exercise (i.e., exertional heatstroke). Heatstroke 
syndrome is characterized by critical hyperthermia, which is asso-
ciated with systemic inflammatory responses that result in mul-
tiorgan dysfunction, including delirium, convulsion, or coma (Chen 
et al., 2013). After the onset of heatstroke, the reduction in blood 
flow to the brain (or cerebral ischemia) results in hypothalamic neu-
ronal damage, which induces multiple-organ dysfunction or failure. 

TABLE  2 Effects of MSCs therapy on spinal cord injury (SCI) or traumatic brain injury (TBI)

Treatment regimens Main results References no.

1. SCI rats or SCI mice received intravenous 
or intraspinal cord injection of MSCs

Reducing spinal cord damage or neurological deficits 
by stimulating production of both GDNF and VEGF 
and neurofilament fibers and axonal growth 
(angiogenesis and neurogenesis).

Chopp et al. (2000), Okano et al. (2003),  
Satake et al. (2004), Lu et al. (2005),  
Kao et al. (2008); Hu et al. (2010)

2. SCI rats received intravenous injection of 
MSCs-derived secretome

In vitro, secretome obtained from MSCs protects 
neurons from apoptosis, activates macrophages, and 
is proangiogenic. In vivo, MSCs secretome improves 
motor recovery.

Cantinieaux et al. (2013)

3. SCI dogs, rabbits, or monkeys received 
intraspinal cord injection of MSCs

Reducing spinal cord damage or neurological deficits 
by stimulating both de novo neurogenesis and 
production of BDNF

Deng et al., 2006; Penha et al., 2014;  
Moon et al., 2014

4. SCI patients received intrathecal or 
intraspinal cord injection of MSCs

Reducing spinal cord damage or neurological deficits Jiang et al., 2013; Mendonça et al., 2014; 
Cheng et al., 2014

5. TBI rats or mice received intravenous, 
intra-arterial, or intracerebroventricular 
injection of MSCs

Reducing cerebral damage or neurological deficits by 
stimulating production of BDNF, NGF, VEGF, and 
IL-10, angiogenesis, and neurogenesis.

Lu et al. 2002; Zanier et al., 2011; Zhang 
et al., 2013, 2015; Nichols et al., 2013; 
Chen et al., 2014; Arien-Zakay et al., 2014

6. TBI rats received intravenous injection of 
MSCs-derived secretome

Reducing cerebral damage or neurological deficits by 
secreting bioactive factors, including HGF and VEGF

Chang et al., 2013

7. TBI patients received intrathecal injection  
of MSCs

Reducing cerebral damage or neurological deficits Wang et al., 2013

Please see the legends of Table 1 for the explanation of abbreviations.
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Heat-tolerant rats exhibit low levels of both IL-1β and TNF-α mRNA 
in the hypothalamus as well as high corticosterone levels in serum (Hu 
et al., 2008). In contrast, heat-intolerant rats present higher hypotha-
lamic levels of both IL-1β and TNF-α mRNAs, but lower serum cor-
ticosterone level (Michel et al., 2007). Hypothalamic levels of IL-6, 
TNF-α, IL-1β, and nitrite in the hypothalamus were upregulated by 
heatstroke (Hsu, Chen, Lin, & Yung, 2014). It has been suggested that 
the inflammatory response in the acute phase of tissue injury may be 
related to aggravating tissue injury; however, in the later phase, these 
inflammatory mediators may contribute to tissue repair (Kadhim, 
Duchateau, & Sébire, 2008). Cytokines, such as IL-6 and TNF-α, may 
be essential at physiological levels for the maintenance of the endog-
enous neurogenesis in the brain (Bowen et al., 2011). Neither lack nor 
excess of IL-6 or TNF-α is beneficial for homeostasis of the inflamma-
tory mechanisms.

5.1 | Resuscitation from experimental heatstroke by 
transplantation of human umbilical cord blood cells 
(HUCBC) or HUCBC-derived CD34+ cells

The plasma levels of inflammatory cytokines, such as IL-6 and TNF-α, 
are elevated in humans (Bouchama, Al-Sedairy, Siddiqui, Shail, & 
Rezeig, 1993; Chang, 1993), rats, and rabbits (Lin, Kao, Su, & Hsu, 
1994; Lin, Liu, & Yang, 1997) and mice with heatstroke (Tseng, Chen, 
Lin, & Lin, 2014). HUCBCs improve outcomes of heatstroke by reduc-
ing circulatory shock, cerebral injury (Chen, Chang, Tsai, Huang, & 
Lin, 2005; Chen et al., 2006), and systemic inflammation (Chen et al., 
2006; Liu et al., 2009). The administration of HUCBC increases the 
serum levels of IL-10 and decreases the levels of TNF-α during heat-
stroke (Liu et al., 2009; Tseng et al., 2014).

It has been estimated that approximately 2% of HUCBC are positive 
for CD34 expression (Bender et al., 1991). CD34+ cells transplantation 
also attenuates the outcomes of heatstroke by reducing TNF-α produc-
tion in serum, stimulating IL-10 production in serum, and stimulating 
production of GDNF in brain (Chen et al., 2007; Hwang et al., 2008).

5.2 | The potential use of granulocyte-colony 
stimulating factor (G-CSF) as a prophylactic agent 
for heatstroke

G-CSF is a polypeptide that promotes the mobilization of stem cells 
into peripheral blood (Lu & Xiao, 2006) and results in a reduction 
in mortality, infarct volume, and neurological deficits after cerebral 
ischemia in heatstroke rats (Lu & Xiao, 2006). Preconditioning with 
G-CSF attenuates heatstroke-induced hypothalamic apoptosis and 
neuronal damage by stimulating GDNF and VEGF overproduction in 
hypothalamus, thereby reducing levels of TNF-α, increasing levels of 
IL-10, and stimulating the expression of endothelial progenitor cells in 
the serum of rats (Yung et al., 2011).

5.3 | Transplantation of human dental pulp-derived 
stem cells protects against heatstroke

Human dental pulp-derived stem cells are self-renewing stem cells 
that reside within the perivascular niche of the dental pulp (Gronythos 
et al., 2002). They enhance recovery of focal cerebral injury in rats 
(Inoue et al., 2013). Human dental pulp-derived stem cells are also 
shown to attenuate ischemia and oxidative damage to the hypothal-
amus and the overproduction of systemic response syndrome mol-
ecules, including TNF-α and ICAM-1, in the peripheral blood stream 
in heatstroke mice (Tseng, Chen, Lin, & Lin, 2015). When considering 
the data presented herein, it appears that human MSCs may improve 
outcomes of heatstroke by reducing the overproduction of systemic 
response syndrome molecules as well as multiple-organ dysfunction 
or failure (Table 3).

Therefore, it can be concluded that some spontaneous but not 
extensive recovery (or increased endogenous neurogenesis) is typi-
cal following brain injury caused by stroke, neural trauma, and heat-
stroke. Exogenous cell therapy is promising as a means of augmenting 
brain repair by modulating microglial activation as depicted in Fig. 1. 
As mentioned in the foremost section, the proinflammatory M1 

TABLE  3 Effects of mesenchymal stem cells (MSCS) therapy on heatstroke-induced cerebral ischemic damage

Treatment regimens Main results References no.

1. Heatstroke rats received intravenous or 
intracerebroventricular injection of HUCBCs

MSCs attenuate cerebral ischemic damage by reducing overproduction 
of TNF-α, IL-1β, and IL-6, but stimulating production of IL-10.

Chen et al. (2005)  
Chen et al. (2006)  
Liu et al. (2009)

2. Heatstroke rats received intravenous injection 
of HICBC-derived CD34+ cells

MSCs reduce cerebral ischemic damage by reducing overproduction of 
both TNF-α and ICAM-1, but stimulating production of IL-10.

Hwang et al. (2008) 
Chen et al. (2007) 
Tseng et al. (2014)

3. Heatstroke rats received subcutaneous 
injection of granulocyte-colony stimulating 
factor

The factor attenuates cerebral ischemic damage by reducing overpro-
duction of both TNF-α and ICAM-1, but stimulating production of 
IL-10, EPSs, GDNF, and VEGF.

Yung et al. (2011)

4. Heatstroke mice received intravenous injection 
of human dental pulp-derived stem cells or 
HUCBCs

MSCs attenuate cerebral ischemic damage by reducing overproduction 
of TNF-α, intercellular adhesion molecule 1, and oxidative damage 
markers, but promoting both hypothalamo–pituitary–adrenocortical 
axis activity and IL-10 production.

Tseng et al. (2014) 
Tseng et al. (2015)

HUCBCs, human umbilical cord blood cells.

Please see the legends of Table 1 for the explanation of abbreviations.
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phenotype of microglia is associated with tissue destruction, where-
as the anti-inflammatory M2 phenotype of microglia facilitates repair 
and regeneration. Therefore, MSC therapy may improve outcomes of 
ischemic stroke, neural trauma, and heatstroke by inhibiting the activ-
ity of M1 phenotype of microglia but augmenting the activity of M2 
phenotype of microglia.

6  | CONCLUSIONS

6.1 | The targeting of microglial activation in clinical 
trials as a rational design of NSC therapy in the future

During ischemic stroke, after brain trauma, and during heatstroke, 
the intrinsic inflammatory mechanisms of the brain as well as those 
of the peripheral blood stream are mediated by the release of pro- 
and anti-inflammatory cytokines and chemokines. According to a 
more recent review (Chio et al., 2015; Tuttolomondo, Pecoraro, & 
Pinto, 2014), microglia are the first source of the inflammatory cas-
cade during brain ischemia and after brain trauma. Additionally, an 
important mediator of this inflammatory event is TNF-α. Etanercept, 
a TNF-α antagonist, which has been used therapeutically in animal 
models of ischemic stroke and neural damage (Kinnaird et al., 2004). 
In addition, various drugs or strategies have improved the outcomes 
of experimental heatstroke by reducing the overproduction of these 
proinflammatory cytokines in both the brain and the peripheral blood 
stream (Chen et al., 2013). Although some spontaneous recovery (due 
to endogenous neurogenesis) in humans is thought to contribute to 
repair, exogenous MSC therapy is promising as a means of augmenting 
brain repair. MSCs, when administered systemically, are observed in 
the injured brain areas but not in noninjured brain areas and are never 
seen in corresponding brain areas of noninjured animals (Nishio et al., 

2006). Nevertheless, paracrine signaling, rather than cell incorporation 
into vessels or neurons, is a prerequisite for the beneficial effects that 
are exerted by MSCs (Kinnaird et al., 2004). The multiple mechanisms 
of action of MSCs include enhanced angiogenesis and neurogenesis 
(by the secretion of trophic factors), immunomodulation, and anti-
inflammatory effects (Kalladka & Muir, 2014). Cytokines, including 
TNF-α, IL-1, and IL-6, are greatly produced by microglia in the brain 
after experimental stroke (Clausen et al., 2005, 2008; Hill et al., 1999; 
Lambertsen et al., 2005). Appropriate baseline levels of TNF-α or IL-6 
are necessary and essential for neurogenesis or host defense, whereas 
higher levels of TNF-α or IL-6 are detrimental to neurogenesis or host 
defense (please see the Introduction). The appropriate level of micro-
glial activation is necessary and crucial for normal neurogenesis and 
host defense, whereas microglial overactivation results in deleterious 
and neurotoxic consequences (please see the Introduction section). 
The exogenous administration of MSCs may promote tissue repair 
by stimulating trophic factor release and endogenous neurogenesis 
(Chamberlain, Fox, Ashton, & Middleton, 2007; Chen, Tredget, Wu, & 
Wu, 2008; Phinney & Prockop, 2007). The expression of prosurvival 
and proangiogenic markers in MSCs can be enhanced by hypoxic pre-
conditioning (Chacko et al., 2010). This review offers a testable plat-
form for the targeting of microglial activation in clinical trials that are 
based upon rational design of MSC therapy in the future.

It is most probable that the central concern that is considered in 
this review is that MSCs may exert their neuroprotective effects main-
ly by modulating the production of both cytokines and neurotrophic 
factors. In addition, immunosuppression of allogenic MSC transplanta-
tion after neural injury improves graft survival and beneficial outcomes 
in rats (Torres-Espín, Redondo-Castro, Hernandez, & Navarro, 2015). 
Conversely, the intravenous, intranasal, or intracerebral administration 
of MSCs is found to be beneficial in treating neurological damage. 

F IGURE  1 The mechanisms of MSC therapy-related neuroprotection. Microglia are the first source of the inflammatory cascade in brain 
injury. Microglia are activated rapidly in response to central nervous system injury and produce proinflammatory cytokines, growth factors, 
reactive oxygen species, nitric oxide, and glutamate (Block & Hong, 2005; Jin et al., 2010; Stolp & Dziegielewska, 2009). The proinflammatory 
M1 phenotype of microglia is associated with tissue destruction, whereas the anti-inflammatory M2 phenotype of microglia facilitates repair and 
regeneration. During brain injury, the activity of M1 phenotype microglia and M2 phenotype microglia is augmented and inhibited, respectively. 
In contrast, MSCs might improve outcomes of brain injury by inhibiting the activity of M1 phenotype microglia and augmenting the activity of 
M2 phenotype microglia
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To produce a similar beneficial effect, the intravenous route injection 
needs a lesser dosage than does the intracerebral route injection, sug-
gesting the central action of MSCs. Additionally, compared to MSCs 
therapy adopted postinjury, pretreatment regimens of MSCs has sig-
nificantly better beneficial effects. However, expansion of MSCs with-
out fetal bovine serum is a big problem during different pretreatment 
regimens and preparation of MSCs. Nevertheless, because substances 
that are administered via the peripheral blood stream are able to reach 
multiple organs (including brain tissues) during diseased conditions, 
intravenous route injection is the most practical approach for cell ther-
apy in general.

6.2 | MSCs that are derived from the placenta may 
be the most practical for use in the treatment of brain 
ischemic injury

To our knowledge, the in vitro characteristics and in vivo potency of 
placenta-derived MSCs have not been well explored or investigated 
thoroughly. In addition, future studies are warranted for the clinical 
application of placenta-derived MSCs in stroke, TBI, heatstroke, and 
other neurodegenerative diseases. In our opinion, MSCs fulfill the 
criteria that have been set by the International Society of Cellular 
Therapy (as described in the Introduction section). Therefore, in com-
parison with other types of stem cells, MSCs are the most practical to 
use in the case of brain ischemic injury.
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