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Abstract: An eco-friendly biogenic method for the synthesis of nickel oxide nanoparticles (NiONPs)
using phytochemically rich Berberis pachyacantha leaf extract (BPL) was established. To achieve
this purpose, 80 mL of BPL extract was used as a suitable reducing and capping agent for the
synthesis of NiONPs. The synthesis of BPL-based nickel oxide nanoparticles (BPL@NiONPs) was
confirmed using different microscopic and spectroscopic techniques: UV Visible spectroscopy (UV-
Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive
X-ray (EDX), dynamic light scattering (DLS) and scanning electron microscopy (SEM) analysis.
Spectroscopically, BPL-NiONPs was found with a pure elemental composition (oxygen and nickel),
average size (22.53 nm) and rhombohedral structure with multiple functional groups (-OH group and
Ni-O formation) on their surface. In the next step, the BPL extract and BPL@NiONPs were further
investigated for various biological activities. As compared to BPL extract, BPL@NiONPs exhibited
strong biological activities. BPL@NiONPs showed remarkable antioxidant activities in terms of
2,2-diphenyl-1-picrylhydrazyl (76.08%) and total antioxidant capacity (68.74%). Antibacterial action
was found against Pseudomonas aeruginosa (27 mm), Staphylococcus aureus (20 mm) and Escherichia
coli (19.67 mm) at 500 µg/mL. While antifungal potentials were shown against Alternaria alternata
(81.25%), Fusarium oxysporum (42.86%) and Aspergillus niger (42%) at 1000 µg/mL. Similarly, dose-
dependent cytotoxicity response was confirmed against brine shrimp with IC50 value (45.08 µg/mL).
Additionally, BPL@NiONPs exhibited stimulatory efficacy by enhancing seed germination rate at
low concentrations (31.25 and 62.5 µg/mL). In conclusion, this study depicted that BPL extract has
important phytochemicals with remarkable antioxidant activities, which successfully reduced and
stabilized the BPL@NiONPs. The overall result of this study suggested that BPL@NiONPs could be
used as nanomedicines and nanofertilizers in biomedical and agrarian fields.

Keywords: Berberis pachyacantha; leaf extract; green synthesis; BPL-NiONPs; antioxidant; antimicrobial;
cytotoxicity; phytotoxicity; nano fertilizer
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1. Introduction

Nanotechnology is one of the most outstanding and fast-growing areas of science,
which has the ability to make particles at the nano scale (1 and 100 nm) in at least one dimen-
sion [1]. Nanotechnologies make the nanoparticles (NPs) more inspiring concerning their
physicochemical and biological properties as compared to bulk ingredients [2]. Due to their
nano size and high surface-to-volume ratio, the synthesized NPs have great demands in
multiple fields, such as the biomedical, pharmaceutical, industrial, commercial, mechanical,
electrical, agricultural, and environmental fields [2,3]. Nanoparticles have been reported
with potent biological application against various infectious diseases as the causative agents
of many infectious diseases are continuously developing resistance against available drugs
such as pesticides, fungicides and other synthetic chemical compounds [4]. Therefore, an
alternative, easy and safe option is the use of natural products with potent biomedical
potential against these causative agents [5]. Moreover, with the arrival of nanotechnology,
researchers are developing nanoparticles (NPs) to control the growth of diverse infectious
pathogens [6].

Nanoparticles are synthesized by physical, chemical, and biological approaches.
Among these, biological approaches using medicinal plants are gaining great popular-
ity due to their cheap, easy and eco-friendly behaviours [7]. Through green synthesis,
various metal and metal oxide NPs such as gold (Au), silver (Ag), iron (II) oxide (FeO), zinc
oxide (ZnO), cobalt (II) oxide (CoO) and nickel oxide (NiO) have been prepared and used
for numerous purposes [3,8–10].

The green synthesis of nanoparticles uses plant extracts and precursor salts (nitrates,
sulphates, oxides, and chloride) as strong reducing, stabilising and capping agents [1].
Plants contain many phytochemicals in the form of secondary metabolites, which act as
reducing agents to convert metal ions into metal atoms, while salt has electron donating
and reduction potential. These two factors are involved in increasing the electron density.
As a result, metals in the ionic form are easily separated from the anionic part and are finally
reduced and stabilized by plant extracts. Plant extracts have numerous phytocompounds
such as alkaloids, polyphenols, flavonoids, terpenoids, sugar, and proteins, which reduce
the metal ions into a stable state. Mostly, functional groups such as the hydroxyl group
(-OH) of biomolecules are involved in nanoparticle formation [2]. However, the size, struc-
ture and morphological nature of NPs depend upon the bioactive phytochemicals present in
the plant extract [11]. Recently, green synthesised NiONPs have received great admiration
due to their easy, cost-effective and biological applications against various pathogens [3,12].
Numerous biological applications (cytotoxic, antimicrobial, anti-inflammatory and anti-
cancer) and environmental potentials (pollutant and dye degradations) of NiONPs have
been reported [13–15]. The biological activities of NiONPs, such as antimicrobial and
antioxidant activities, can play a significant role in biomedical fields and nutraceutical in-
dustries to make useful medicines, surgical apparatus, preserved food additives and other
edible products [1]. Due to the nano size, the nanoparticles displayed potent biological
activities against various infectious pathogens. Nanoparticles have more attachment and
penetration ability with the cell membrane of pathogens as compared to bulk materials [3].
Different studies have shown that the inhibitory potential of nanoparticles is due to the
penetration and interference of nanoparticles with intracellular machinery. Briefly, this
particle released nickel ions that attached and penetrated inside the cells and caused leakage
of the cell membrane. Inside the cell, the nickel oxide nanoparticles generated reactive
oxygen species (ROS), which are toxic, highly reactive by-products of oxygen metabolism
such as peroxides, hydroxyl radicals, superoxides and singlet oxygen [4]. ROS directly
inhibited the cellular life machinery such as breaking phosphate and hydrogen bonding
of the DNA strand, destroying the three-dimensional structure of proteins and causing
oxidative stress in the powerhouse of the cell [5].

For better growth and development, the plant needs various minerals and fertilizers.
Different types of fertilizer are available on the market, all of which play a significant role
during stress conditions by enhancing the nutritional status of autotrophs. Globally, in
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the past several decades, chemical fertilizers have been extensively used to increase the
quality and quantity of plant products. However, these types of synthetic fertilizer are not
recommended economically and environmentally due to their various problems such as
being costly, their unavailability, leaching, environment pollution, etc. [6]. Consequently,
the best, easy alternative method is the adaptation of green nano technology to limit the loss
of crop yields by producing nano-fertilizers [7]. Recently, a new era of research, ‘the process
of nano fertilization’ has been gaining great attention globally. Khalaki and Moameri [16]
encapsulate the positive effect of NPs on critical stages of plants and described that NPs
have great stimulatory effects on the seed germination and seedling growth of the plants.
Some metal and metal oxide nanoparticles such as silicon dioxide (SiO2), iron (II) oxide
(FeO), copper (II) oxide (CuO), ceric oxide (CeO2), zinc oxide (ZnO) and Titanium dioxide
(TiO2) have been reported with stimulatory effects on plant life cycles [17,18]. In the
present study, the eco-friendly green method was adopted to synthesise NiO nanoparticles
from precursor salt (nickel nitrate) using aqueous leaf extracts of Berberis pachyacantha
(family Berberidaceae) [19]. Berberis pachyacantha is widely distributed in the temperate
and semi-temperate areas of Pakistan, such as the north-west Himalayas and Kashmir [19].
The plants of this family are famous for medicinal properties due to the presence of
bioactive phytocompounds in its fruit, bark and roots [20]. Limited literature is available
on the phytochemicals and biological applications of B. pachycantha. However, various
species of this family have been used by local communities for the treatment of various
illness and diseases such as high blood pressure, blood purification, poisoning that can
be caused by a snake bite, cough, diabetes, microbial infection, and internal wounds of
human beings and livestock [21,22]. Recently, 18–37 compounds have been identified
from B. crataegina, B. integerrima, B. aetnensis and B. libanotica [8]. Similarly, other Berberis
species such as B. Balochistanica, B. aristata, B. orthobotrys, B. thomsonian, B. vulgaris, B.
asiatica, B. croatica and B. thomsoniana have an adequate amount of phenol and flavonoid
content [9–16]. These reported phytochemicals have a rich pool of electrons, which are
directly involved in radical scavenging activities against biotic and abiotic stresses [17,18].
Oxidative stresses are responsible for numerous health conditions, including cardiovascular
diseases, neurodegenerative disorders and most deadly diseases such as cancers [19]. The
potent antioxidant activity of Berberis plants could be due to the presence of different
phenolic and flavonoid contents that absorbed and neutralized the free radicals [20–22].

These biomolecules play a great role in reducing and capping metal salts into NPs.
Previously, different species such as B. valgarus and B. aristate have been used for the
biofabrication of Ag NPs and Zn ONPs [23–26]. To the best of our knowledge and according
to a literature review, this is the first study to provide information about the biochemical,
antioxidant and biological potentials of leaf extracts of a BP plant. After the confirmation of
biomolecules in a leaf extract of BP, this broth was sourced as a reducing and capping agent
during the green synthesis of NiONPs. The synthesized BPL-NiONPs were characterized
using different analytical methods (UV, FTIR, XRD, EDS, SEM and DLS), followed by
multiple in vitro biological activities.

2. Results
2.1. Physical Characterization of BPL Extract
2.1.1. UV-VIS Analysis

The UV-VIS profile of BPL broth was characterized using the range of 200 to 800 nm.
BPL extract showed multiple peaks at 209 nm, 265.5 nm, 301, 306 nm, 330 nm and 663 nm,
with absorption at 1.41, 0.414, 0.73, 0.725, 0.892 and 0.008, respectively (Figure 1a).
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Figure 1. Spectroscopic and phytochemical profile of BPL extract (a) UV-Visible spectroscopy (b) FTIR
analysis (c) TPC and TFC.

2.1.2. FTIR Analysis

The extracts were subjected to FTIR to separate and identify the functional groups of
the molecules present in plant samples based on peak values. The spectrum profile and
peak values representing functional groups were compared with the IR standard chart, as
shown in Figure 1b and Table 1. The analysed part showed comparable peak values and
confirmed the presence of phenols, alcohols, amides, amines, alkanes, alkenes, aromatic
compounds, carboxylic acid and alkyl halides. Most interestingly, the absence of peaks at
2220–2260 cm−1 showed that there were no cyanide derivatives in the BPL extract.

Table 1. FTIR analysis of leaf extracts of B. pachyncantha.

Peak Values (cm−1) Strength Functional Groups Interpretations

3278.91 Medium OH Phenol, Alcohol
2981.10–2840.51 Medium C-H Alkane

1645.87 Medium C=N Imine
1396.31 Weak C=C Aromatic compounds

1114.94–1013.15 Weak C–O Alcohol, ether
550.9 Medium C-Cl Alkyl halides

(www.thermoscientific.com/ftir, accessed on 26 January 2022).

2.2. Phytochemical Analysis of BPL Extract
Total Phenolic and Flavonoid Contents

A significant amount of total phenolic content and total flavonoid content were shown
by BPL extraction (Figure 1c). The TPC was articulated as gallic acid equivalents (milligram
of gallic acid per gram of extract), while the TFC of the BPL extract was enumerated as
Quercetin equivalents (milligram of Quercetin per gram of plant extract). Comparatively
more TPC (73.74 mg GA/g) was detected compared to TFC (62.58 mg QE/g).

www.thermoscientific.com/ftir
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2.3. Physical Characterization of BPL-NiONPs

The reduction of nickel nitrate into NiONPs by BPL extract can be verified by the
change in colour from green to dark grey. The UV-Vis profile of BPL-NiONPs exhibited the
characteristic absorption peak which was noticed at 312.2 nm (Figure 2a). The presence
of functional groups on the surface of BPL-NiONPs was determined by FTIR analysis.
Figure 2b presents the multiple absorption bands associated with functional groups, such
as 612.48 cm−1 (Ni-O), 1015.87 cm−1(C-O) 1636.13 cm−1 (C=N) and 3292.87 cm−1(OH),
respectively. These functional groups depicted the presence of phytochemicals such as
phenols, alcohols, amides, amines, alkanes and carboxylic acid, which bind to the surface
of nickel oxide nanoparticles and maintained their stability. Further, the structural nature
of the BPL-NiONPs was investigated by XRD analysis and a pure crystalline edifice was
confirmed. The planes of the peaks were (003), (012), and (110) at 0.2411 nm, 0.2088 nm,
and 0.147 nm, respectively (Figure 2c). Additionally, the average size of BPL@NiONPs
was ~22.53 nm and the peaks were matched with standard JCPDS Card #: ICSD ID 00-022-
1189, as shown in Table 2. The peaks sharpness and intensity showed that BPL-NiONPs
are synthesized in BPL extract. Moreover, the XRD spectra also confirmed the purity of
BPL-NiONPs as no other peaks were detected. The zeta size distribution and ζ- potential of
the synthesized BPL-NiONPs was confirmed by DLS. The hydrodynamic distribution and
ζ- potential of BPL-NiONPs were 27.79 nm and 4.6 mV, as shown in Figure 3a,b. The DLS
result confirmed that our NPs are less aggregated in colloidal medium. The morphological
profile of BPL@NiONPs was performed using SEM analysis (Figure 2d). Additionally, the
purity and the presence of Ni-O was confirmed by EDX analysis (Figure 3c).
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Table 2. XRD analysis of BPL based NiONPs.

No 2θB θB 2Θ1 2Θ2
β= 2θ2−2θ1

2
× π

180 (Radian)

Interplanar
Spacing d

(A◦)

D= 0.9 λ
β cosθB

(nm)

Miller
Indices

(hkl)

1 37.04◦ 18.52◦ 36.75◦ 37.41◦ 0.00575 2.41200 24.7 nm (003)

2 43.12◦ 21.56◦ 42.47◦ 43.53◦ 0.00925 2.08900 15.69 nm (012)

3 62.77◦ 31.38◦ 62.45◦ 63.09◦ 0.00558 1.47700 28.33 nm (104)
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2.4. Comparative Biological Analysis of BPL Extract and BPL-NiONPs
2.4.1. Antioxidant Potential

The results confirmed that both BPL extract and BPL-NiONPs have dose-dependent
antioxidant activities in terms of DPPH and TAC. Notably, BPL-NiONPs have a higher
% inhibition of DPPH radicals (76.08–30.48%) compared to BPL extract (45.72–3.53%).
Similarly, efficient TAC activity was shown by BPL-NIONPs (68.74–31.52%) relative to BPL
extract (51.18–15.90%) across different concentrations (200–50 µg/mL). In short, strong
DPPH scavenging activity and moderate TAC activity was reported in both substituents
(Figure 4).

2.4.2. Antimicrobial Potential of BPL Extract and BPL-NiONPs

In the present study, the antibacterial actions of BPL extract and BPL@NiONPs were
tested as potential antibacterial agents using three bacterial strains: E. coli, S. aureus and
P. aeruginosa. Both representatives showed dose-dependent antibacterial response against
all three bacterial pathogens, as depicted in Figure 5a. Comparatively, synthesized BPL-
NiONPs showed potent bacterial inhibition as compared to BPL extract. The maximum
zone of inhibition of BPL-NiONPs was observed against P. aeruginosa (28 mm) and the min-
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imum zone of inhibition was detected against E. coli (19.67 mm) at 500 µg/mL (Figure 5b).
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Figure 5. Antibacterial activity of BPL-NiONPs against E. coli, S. aureus and P. aeruginosa. (a) Zone
of inhibition against 500, 250 and 100 µg/mL; (b) The clear inhibited area of tested pathogens at
500, 250 and 100 µg/mL of BPL-NiONPs. The obtained data are presented as mean ± standard
deviation (n = 3). The numbers: 1, 2 and 3 represent the concentration of BPL@NiONPs (500, 250
and 100 µg/mL), while C+ and C− refer to the positive (Kanamycin) and negative control (distilled
water), respectively.

2.4.3. Mycelial Growth in Inhibition

The food poison method (FPM) was used to observe the effect of BPL extract and
BPL-NiONPs on the mycelium growth of three fungal pathogens including Aspergillus
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niger, Alternaria alternate and Fusarium oxysporum, whereas fluconazole was used as the
positive control. A dose-dependent response was exhibited by both constituents against all
analysed pathogens. In the case of BPL extract, the maximum colonial growth inhibition
was carried out against A. alternata (57.65%), followed by A. niger (37.70%) and F. oxysporum
(35.71%) at 2000 µg/mL (Figure 6h), while, on the other hand, the BPL-NiONPs showed
more inhibitory activity at 1000 µg/mL against all three pathogens as compared to the
BPL extract. The BPL-NiONPs showed maximum inhibition against A. alternata (81.25%),
followed by F. oxysporum (42.86%) and A. niger (42.17%) at 1000 µg/mL (Figure 6g). In
short, A. alternata was found more susceptible towards both BPL-NiONPs and BPL extract
(Figure 6).
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against F. oxysporum: (a) control (non-treated) and (b) treated with BPL-NiONPs; A. niger: (c) control
(non-treated) and (d) treated with BPL-NiONPs; and A. alternata: (e) control (non-treated) and
(f) treated with BPL-NiONPs. Antifungal activity: (g) BPL extract; (h) BPL-NiONPs. C+ refers to
positive control (fluconazole). The obtained data are presented as mean ± standard deviation (n = 3).
Letters specify a significant difference (p < 0.05) between control and BPL-NiONPs treated samples.

2.4.4. Cytotoxic Activity

To determine the cytotoxic nature of BPL extract and BPL-NiONPs, an in vitro lethality
test was conducted using brine shrimp. Both solutions showed a dose-dependent cytotoxic
response against brine shrimp at different concentrations (Figure 7A). Considerable cyto-
toxic activities were proven in BPL extract and BPL-NiONPs with IC50 values of 87.023 and
45.083 µg/mL, respectively. However, the green BPL@NiONPs showed more mortality
(85.71%) compared to the extract (66.67%) at 200 µg/mL. These findings indicate that
BPL extracts have bioactive compounds that are potent against brine shrimps and play a
significant role in the biofabrication of NPs.
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2.4.5. Stimulatory and Inhibitory Potential

Figure 8a,b, indicate the seed germination rate at applied concentrations
(1000–31.25 µg/mL) of BPL extract and BPL-NiONPs. The seed germination was stim-
ulated at lower concentrations (31.25 and 62.5 µg/mL), while it was delayed at higher
concentrations (250, 500 and 1000 µg/mL). At lower concentrations (31.25 and 62.5 µg/mL),
the speed of germination was enhanced 7% and 5% more by BPL-NiONPs than non-treated
controls during first day of counting. Similar results were reported for the second day
(Day 2) of counting by increasing the germination speed up to 8.3% and 5% at 31.25 and
62.5 µg/mL, respectively. Further germination percentage (%) was calculated and no
inhibitory effect at a lower dose was reported. However, the inhibition of seed germination
(6.67, 20 and 30%) was observed at higher concentrations (Figure 7B). In brief, BPL-NiONPs
showed stimulatory activity at lower concentrations by increasing the germination rate
without any inhibitory effect. Aside from BPL-NiONPs, BPL extracts have no satisfactory
effects on seed germination.
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germination rate (RGR) of seed during first two days (D1 and D2): (a) rate of germination of radish
seeds against various concentrations (1000–31.25 µg/mL) of BPL-NiONPs; (b) rate of germination of
radish seeds against various concentrations (1000–31.25 µg/mL) of BPL extract. The obtained data
are presented as mean ± standard deviation (n = 3). Letters specify a significant difference (p < 0.05)
between control and BPL-NiONP-treated samples.

3. Discussion
3.1. Analysis of BPL Extracts

In recent years, medicinal plants have been gaining the attention of pharmacological
industries due to the presence of bioactive compounds that have no/fewer side effects and
easy availability [25]. Medicinal plants are a rich source of secondary metabolites with
significant biological activities and are also used as dietary and nutrient supplements [18].
In the present study, for the first time, BPL extract was found as a highly rich source of TPC
and TFC. These reported phytochemicals have a pool of electrons that are directly involved
in radical scavenging activities against biotic and abiotic stresses [17]. A similar result was
reported in the leaf extract of B. thunbergini [26]. The BPL extract was further characterized
using UV-Visible and FTIR spectroscopy, and various peaks were detected. The UV-Vis
result of the present study showed that leaf extracts exhibited peak values in the range of
209 nm, 265.5 nm, 301 nm, 306 nm, 330 nm and 663 nm, respectively. Usually, it is reported
that the peaks in the ranges of 240–280 nm, 290–350 nm, 300–380 nm and 600–700 nm
indicated the presence of glycosides, phenolic acids, flavones and chlorophyll contents [21].
Similarly, in another study it was reported that the presence of one or multiple peaks in the
range of 200–400 nm clearly indicated the presence of unsaturated hydrocarbon groups
and heteroatoms [22]. Similarly, the FTIR result in Table 2 shows various functional group
stretchings, which interpret the relevant compounds present in the tested extract. The
obtained functional groups specified the following biomolecules; phenols, alcohols, amides,
amines, alkanes, alkenes, aromatic compounds, carboxylic acid and alkyl halides [23]. The
peak values of the BPL extract are comparable with previous studies in which similar peaks
were detected in the stem and leaves of the B. aristata plant [24]. The results of the present
study show that BPL extract has the best antioxidant activities in terms of DPPH and total
antioxidant capacity. This present finding is strongly supported by the results of other
studies that Berberis species, such as B. baluchitanica [13] and B. lyceum [27], have strong
antioxidant activities. Similar findings with high antioxidant activity have been reported
by Malik, et al. [28], using Citrus nobilis peel methanolic extract. These remarkable activities
might be due to the kinetic release of antioxidants from plant extract [28,29]. Based on the
results of TPC, TFC, FTIR spectra and potent antioxidant activity, BPL extract was used
further for the synthesis of NiONPs.
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3.2. Analysis of Green Synthesized BPL-NiONPs
3.2.1. Spectroscopic Screening of BPL-NiONPs

The FTIR spectrum of BPL-NiONPs displayed multiple vibrations representing various
functional groups, such as OH, C-H, C=C, CHO, and C-O stretching, which clearly revealed
the information about NiO in NiNO3. Similar IR bands have been reported in the range
of 470 and 800 cm−1 for Ni-O vibration [30–32]. The FTIR results are strongly supported
by the XRD and EDS profiles of BPL-NiONPs, where no impurity was detected. The
XRD profile of BPL-NiONPs showed an average size of 22.53 nm and a rhombohedral
shape with respect to Debye Scherer’s equation and JCPDS Card #: ICSD ID 00-022-1189.
Present XRD analyses bear resemblance to previous studies of NiONPs using various plant
extracts [30,33]. The pure nature of BPL@NiONPs was confirmed by EDS analysis and the
presence of nickel, oxygen and trace amounts of carbon were reported. The occurrence of
carbon in the spectra might be due to the attachment of functional groups of phytochemicals
on the surface of NPs and attributed to grid assistance [3,30]. The enormity of zeta potential
represented the stability of the particles; for example, NPs with high zeta potential should
have high stability and a low agglomeration of NPs. In the present data, the zeta potential
and hydrodynamic size distributions of BPL@NiONPs were 4.6 mV and 27.79 nm. These
results are a sign of stability and low aggregation in colloidal suspension, as previous
studies have also described NPs with charges in the range of −25 and +25 mV as a sign of
stability [34]. Our finding agrees with earlier reported data about NiONPs using Rhamnus
virgate, Rhamnus triquetra and Rhamnella gilgitica plants [30,35].

3.2.2. Biological Analysis of BPL-NiONPs

Owing to their nano nature and biological activities, along with recent developments
in medicine, the application of NPs against infectious diseases is becoming a hot topic for
researchers. The typical potential of NiONPs coupled with a nano size, high surface are and
high energy make them a desirable candidate for various biological activities. The results
of the present study exhibited that BPL@NiONPs showed strong DPPH scavenging activity
and TAC activity as compared to BPL extracts. Subsequently, the antioxidant potencies of
BBS-NiONPs might be due to the presence of phytocompounds in the BPL extract, which
interact with the surface of NPs [31,33]. In the present study, the dose-reliant antibacterial
activity was reported against all three pathogens. Comparatively, synthesized BPL-NiONPs
showed potent bacterial inhibition as compared to the BPL extract. The maximum zone of
inhibition of BPL-NiONPs was observed against P. aeruginosa (28 mm) and the minimum
zone of inhibition was detected against E. coli (19.67 mm) at 1000 µg/mL. The small size
and high surface-to-volume ratio make the NPs more inspiring concerning their biological
properties as compared to bulk ingredients [36]. Generally, the bacterial mortality depends
on the quantity of NPs, methods of synthesis and treatment duration [37]. A similar
finding was reported against some microbial pathogens such as S. typhimurium, S. aureus,
E. coli and K. pneumonia using copper nanoparticles capped with 1% gum arabic [38]. The
significant antimicrobial activities of BPL-NiONPs may be due to the presence of various
bioactive functional groups and phenolic compounds of BPL extract, which individually
also showed remarkable antimicrobial activities. The results of the present study were in
accordance with the findings of Malik, Najda, Bains, Nurzyńska-Wierdak and Chawla [28]
who observed the antimicrobial effect of Citrus nobilis peels against pathogenic bacteria
and fungi.

The BPL-NiONPs showed maximum inhibition against A. alternata > F. oxysporum
> A. niger at 1000 µg/mL. The mycelial inhibition of A. alternata and F. oxysporum at
1 mg/mL was also reported in previous studies using iron oxide nanoparticles [3,39]. In
recent times, researchers have effectively used NiONPs as an antifungal agent against
several fungal pathogens, including M. racemosus, R. solani, A. flavus, A. niger, C. albican,
and F. solanai [33,40]. The antimicrobial activities of the nanoparticles are still under
dispute. However, the rudimentary mechanism of inhibition might be due the reduction of
nanoparticles by bioactive compounds. As a result, interaction between released ions from
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NPs and the cell membrane of microbes occurred. This interaction leads to penetration
inside the cell and starts the inhibition of metabolic machinery, and, ultimately, destruction
of the cell ensues [3,30,41] (Figure 9). The inhibitory frequency of NPs varies due to different
factors, including salt, biogenic source, species of pathogen, shape, size, and concentration,
of the nanoparticles used [41]. The results of the present study show that BPL-NiONPs are
not only useful for the control of phytopathogens but also used as alternative to chemical
fungicides. The strong cytotoxic potential of leaf part and their synthesized NPs were
confirmed by brine shrimp mortality test. Both carcasses showed cytotoxic response with
IC50 values 45.083 (BPL-NiONPs) and 87.023 µg/mL (BPL extract), respectively. However,
biogenic BPL-NiONPs showed more mortality (85.71%) as compared to extracts (66.67%) at
200 µg/mL. Research studies have concluded that nanoparticles show cytotoxic potentials
by reducing metabolic activities, generating reactive oxygen species (ROS), and damaging
DNA and protein.
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These findings indicate that BPL extract has bioactive compounds that are potent
against brine shrimp larvae and play a significant role in the biofabrication of NPs. The
present result has agreement with the results of previous study of Iqbal, Abbasi, Mahmood,
Hameed, Munir and Kanwal [31] as dose-dependent repressive reactions were observed
during biological activities by BPL-NiONPs. Literature review has shown that biological
activities of NPs may possibly be due to the crystalline nature and nano scale size of the
particles and the reducing nature of the extract [3]. Cytotoxicity effect depends upon the
concentration of NiONPs, which makes NIONPs applicable in various fields, especially in
toxin removal and biomedical fields [42].
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3.2.3. Stimulatory Effect and Phytotoxic Effect

Plants have a significant contribution as a primary producer in the food web of all
ecosystems. Plants also exchange different element with biotic and abiotic components of
the environment. For better growth and development, the plant needs various minerals and
fertilizer, which are not easily available due to complex formation, leaching, degradation by
hydrolysis, photolysis and parsing of the elements. Consequently, the best easy, alternative
method is the adaptation of green nano technology to limit the loss of crop yields by
producing nano fertilizer. However, these NPs have positive or negative influences on the
life processes of plants.

Nowadays, many studies have reported that nanomaterials have both positive and
negative effects on living organisms and the environment. However, these dual effects are
totally dependent on concentration, size, stability, shape, coating of the NPs and behaviours
of the organism toward that NPs [43]. Plants also showed different behaviours towards
various NPs. In numerous studies, it has been reported that NPs can penetrate, transform,
and be translocated to various parts of the plant. Szőllősi et al. [44] extensively summarized
the stimulatory and inhibitory effects of different NMs. They found that stimulatory effects
might be due to an increase in antioxidant and metabolic activities at the cellular level,
while inhibitory effects of different NPs on seed germination and seedling growth might
be due to chromosomal aberration, abnormalities in cell division, hormonal imbalance
and over production of ROS. Khalaki, et al. [45] encapsulate the positive effect of NPs on
the critical stage of plant and described that NPs have great stimulatory effects on seed
germination and seedling growth of the plants. Some metal and metal oxide nanoparticles
are Ag, Au, SiO2, FeO, CuO, CeO2, ZnO and TiO2, which have been reported to have
stimulatory effects on plant life cycles [46,47]. These NPs play a great role in agricultural
fields by increasing the germination rate, breaking the dormancy, and limiting the usage of
chemical fertilizers [48,49]. The most critical stages in a plant’s life are seed germination and
seedling growth. The current study is innovative by reporting the nano fertilizing nature
of BPL@NIONPs. At lower concentrations, BPL@NIONPs increased the germination rate
with no side effects on the final germination of seeds. The stimulatory mechanism might be
due the interaction of NPs with the seed coat, releasing ions, enhancing the nutrient and
water uptake. All these factors help in breaking the seed dormancy and the germination
of seedlings [48,50–52]. Hence, BPL-NiONPs can be used as a plant growth promoter,
nano fertilizer and an alternative to chemical fertilizers. The BPL-NiONPs showed potent
biological potential as compared to plant extract. This might be due to the nano size with
single dimension (1 and 100 nm) of the nanomaterials, which make the NPs more inspiring
concerning their physicochemical properties as compared to bulk ingredients. Careful
screening is required as diverse responses have been shown by different plants toward
applied NPs [53]. Therefore, it is important to consider the positive role of nanomaterials,
but also focus on their downsides ahead of release in the agriculture market.

4. Materials and Methods
4.1. Berberis pachyancantha (BP)
4.1.1. Plant Collection

The medicinal plant Berberis pachyancantha (BP) was collected during April-June 2018–
2019 from the mountainous regions of Kaghan valley Narran, District Mansehra, Khyber
Pakhtunkhwa, Pakistan. After sampling, the plant was identified and deposited (RAW-
100433) in the National Herbarium, Islamabad, Pakistan. The plant leaves were carefully
separated, washed and properly dried at room temperature for two weeks.

4.1.2. Berberis pachyancantha Leaf (BPL) Extracts Preparation

The leaf extract of Berberis pachyacantha was extracted and evaluated for various
phytochemicals and biological activities. The dry leaves were properly ground into a fine
powder, and about 20 g of powder was added into 200 mL of distilled water. The solution
of the extract was incubated for 2 h at 80 ◦C in a water bath with proper stirring, yielding a
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dark yellow-colour extract with pH 5.3. After cooling, the BPL extract was passed through
muslin cloth and was then filtered three times (Whatman filter paper), and the solvent was
evaporated using a rotary evaporator (BUCHI Rotavapor R-220, Shanghai, China). The
obtained dried powder was kept at 4 ◦C for further analysis

4.2. Green Synthesis of BPL-NiONPs
4.2.1. The BPL Assisted Synthesis of NiONPs

To determine the presence of biomolecules in BPL extract, characterization of aqueous
extract (BPL) was carried out through UV-visible and FTIR spectroscopy. The leaf extract
showed enough phytochemicals and important functional groups with the best antioxidant
activities. After confirmation of the presence of bioactive compounds in BPL, the dried pure
extract of BPL was re-dissolved in 100 mL distilled water for synthesis of BPL-NiONPs. Up
to 80 mL of BPL extract was found as a suitable capping agent for synthesis of NiONPs.
The BPL-mediated NiONPs were prepared by mixing nickel nitrate (1 gm) with BPL
(80 mL) extract and subjected to heating at 70 ◦C for 90 min with appropriate stirring.
During heating and stirring, the homogenous mixture changed colour (green to dark grey),
which formerly indicating the synthesis of BPL@NiONPs. The BPL@NiONPs solution
was centrifuged at 10,000 rpm for 10 min and supernatant was discarded. The collected
pellet of BPL@NiONPs was washed with distilled water and incubated at ~100 ◦C for
3 h to evaporate the remaining water molecules. For effective crystallization, the dried
sample was annealed for 4 h at 200 ◦C using an air furnace (KSL-1100X, MTI Corporation,
Hefei, China). Finally, the annealed powder of BPL-assisted NiONPs was stored at room
temperature for further characterization and biological application.

4.2.2. Characterization of BPL-NiONPs

The phytochemical capped NiONPs were analysed using different spectroscopic and
microscopic techniques. The initial step of the reduction process was observed by visual and
UV-Vis spectroscopy in the range of 200–800 nm. The role of phytochemicals as reducing,
capping and stabilizing agents during the phytofabrication of BPL-NiONPs was character-
ized using Fourier transform infrared (FTIR) spectroscopy (Bruker FTIR spectrophotometer)
in the range of 4000–400 cm−1, while the diffraction passions of BPL-induced NiONPs were
examined by an X-ray diffractometer (XRD) (PANalytical XRD, The Netherlands). The
elemental and morphological nature of prepared BPL-NiONPs were studied by an EDX
spectrophotometer and SEM. Further, the stability and dispersity of BPL-NiONPs were
checked by dynamic light scattering (DLS) using Malvern instrument (Malvern Zetasizer
Malvern Panalytical LTD, EA Almelo, The Netherlands). Detailed information about BPL
extract and BPL-NiONPs, characterizations and biological applications are provided in
Figure 10.

4.3. Biological Analysis of BPL Extract and BPL Mediated NiONPs
4.3.1. Total Phenolic and Total Flavonoid Contents Analysis (TPC and TFC)

Total phenolic contents in BPL extract and BPL-NiONPs were determined using Folin–
Ciocalteu reagent [54]. In brief, 20 µL of the analysed samples were mixed with 90 µL of
Folin–Ciocalteu reagent followed by 90 µL of NaCO3 solution. After incubation at room
temperature for 60 min, absorbance was measured. Gallic acid was used as a reference
for TPC.

Total flavonoids were estimated using the Aluminium Chloride Colorimetric method
with some modification. Briefly, for the reaction mixture, 20 µL of BPL extract and
BPL@NiONPs, 10 µL of aluminium chloride (10%), 10 µL of potassium acetate (1 M)
and 160 µL of distilled water were mixed using a 96-well plate and subjected to incubation
for 30 min. After incubation, absorbance of the solution was measured using a microplate
reader at 405 nm. Total flavonoid contents in BPL extract and BPL@NiONPs were expressed
as Quercetin equivalents (mg of QE/g) of the sample [55].
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4.3.2. 2,2-Diphenyl-1-picrylhydrazyl Assay (DPPH)

The free-radical-scavenging potential of BPL extract and synthesized BPL@NiONPs
was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay using a microplate reader [56].
For preparation of the reagent solution, 2.4 mg of DPPH was mixed with 25 mL of methanol.
The procedure involved the addition of 180 µL of reagent solution into 20 µL of test sample
to make the final 200 µL of reaction mixture. The mixture was subjected to shaking followed
by incubation for 1 h. Further, absorbance was measured at 517 nm using a microplate
reader to find radical scavenging activity using the formula below:

DPPH scavenging effect % =
AC − AS

AC
× 100

where AC and AS refer to absorbance of the control and sample at 517 nm.

4.3.3. Total Antioxidant Capacity (TAC)

The antioxidant capacity of leaf extract was evaluated using the phosphomolybde-
num method [56]. The reagent solutions of sulfuric acid (0.6 mol/L), sodium phosphate
(28 mmol/L) and ammonium molybdate (4 mmol/L) were prepared. The tested sample
(100 µL) was mixed with reagent solution (90 µL) and incubated at 95 ◦C for 90 min. The
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solution was cooled, and absorbance of the mixture was taken at 695 nm. Total antioxidant
capacity was calculated as µg/mg equivalent of ascorbic acid.

4.3.4. Antimicrobial Activities Using Agar Well Diffusion Method (AWDM)

The bacterial pathogens were provided and cultured by Plant Pathology Laboratory
Quaid-i-Azam University, Islamabad, Pakistan. The agar well diffusion method was
performed to study the antimicrobial activity of BPL extract and BPL-NiONPs against
multidrug resistant (MDR) clinical isolates of P. aeruginosa (23451), S. aureus (48755) and
E. coli (30155). The Muller–Hinton agar was prepared by suspending 34 g agar per litter in
distilled water, adjusting the pH to 7, autoclaving for 15 min at 121 ◦C and finally cooling
down to 50–45 ◦C. The media were poured into Petri plates (diameter = 14 cm). The wells
were made and sealed by pouring 30 µL of liquid nutrient agar medium in each. Each well
was filled using 100 µL of test solution. Kanamycin and distal water were used as positive
and negative control, respectively. The plates were placed in the incubator for 24 h at 37 ◦C.
After 24 h, zones of inhibition were measured.

4.3.5. Antifungal Assay Using Poisoned Food Method (PFM)

Antifungal screening of BPL extract and BPL@NiONPs were determined using dif-
ferent phytopathogenic fungi such as A. alternate, A. niger and F. oxysporum. Sabouraud
dextrose agar media (Oxoid CMO147) was prepared and autoclaved for the growth of fun-
gal strains. Different concentrations (2000–50 µg/mL) of BPL extract and (1000–50 µg/mL)
BPL@NiONPs were mixed with SDA (Sabouraud Dextrose Agar) medium and were shaken
properly. A 5 mm in diameter disc of the 7-day-old culture of the above test fungus was
placed at the centre of the Petri dish and incubated at 27 ◦C for 3 days and the growth was
measured in millimetres. The SDA medium without plant extracts served as control and
fluconazole was taken as positive control. The antifungal activity of tested samples in terms
of percentage inhibition of mycelia growth were calculated using the formula below [57].

Percentage Inhibition = FC − FN/FC × 100

where FC and FN represent the average increase in fungal growth (F) in the control and
each treatment (NPs).

4.3.6. Cytotoxic Assay Using Brine Shrimp Lethality Assay (BSLA)

The cytotoxic effects of B. Pachyancantha leaf extract and BPL@NiONPs were evaluated
using brine shrimp cytotoxicity assay. Artificial sea water was prepared by adding 3.8 g
sea salt in 1 L distilled water using a partitioned hatching chamber. Eggs of brine shrimp
(Artemia salina) were put in the covered portion of the chamber and incubated for 48 h at
30 ◦C. Four different concentrations of BPL extract and BPL@NiONPs (200–1 µg/mL) were
added in each vial and their final volume was adjusted up to 5 mL by adding sea water.
Then, ten mature brine shrimps were introduced into each vial and left under the lamp.
After 24 h, alive brine shrimps were counted [58]. Potassium permanganate was used as a
positive control while sea water and distal water were used as a negative control. Lethality
concentration (LC50) values and percentage mortality were calculated.

4.3.7. Phytotoxicity Assay Using Radish Seed Assay (RSA)

The phytotoxic effect of BPL extract and BPL-NiONPs were evaluated using the radish
seed assay method. Different concentrations (1000–31.25 µg/mL) of tested samples were
introduced in each Petri plate containing sterilized filter paper (Whatman filter paper). In
each Petri plate, 15 seeds (after sterilization with sodium hypo chloride solution) were
placed at room temperature in dim light. All plates were wrapped with parafilm and
incubated at 25 ◦C in dim light. From day one to day five, seed germination indices were
calculated [59,60].
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4.3.8. Statistical Analysis

The obtained numerical data were described in triplicate and enumerated as
mean ± standard deviation. By one-way analysis of variance, the inhibitory activities
of BPL@NiONPs on fungal, bacterial and seed germination were found. Homogeneousness
of variance between means was assessed by Tukey’s test at a 95% confidence interval using
Statistix version 10. The cytotoxic potential of BPL@NiONPs was estimated by finding the
lethality concentration (IC50) values (GraphPad software, San Diego, CA, USA) [61,62].

5. Conclusions

In the current study, we introduced a sample, green, energy-efficient, eco-friendly and
cost-effective method for the synthesis NiONPs using Berberis pachyacantha leaf extract. In
the next step, the synthesis of BPL@NiONPs was confirmed using different characterization
tools. The data revealed that synthesized BPL@NiONPs have a rhombohedral structure and
are in the nano-scale range (22.53 nm). Once the synthesis was confirmed, the BPL@NiONPs
were investigated for diverse in vitro bioactivities and revealed significant antibacterial,
antifungal, antioxidant and cytotoxicity potential. More interestingly, at low concentrations,
the prepared BPL-NiONPs speed up the seed germination as compared to non-treated
seeds. This biofriendly NPs can be used for breaking and stimulating high dormancy,
and thus help in seed germination. In future, we recommend different other in vitro and
in vivo bioactivities to further study the biomedical applications of the Berberis pachyacantha-
mediated nanoparticles.
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