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Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in 
animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used 
by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 
infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we 
investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals 
diagnosed with COVID-19 may lead to dysbiosis.
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Introduction

Ivermectin (IVM), produced by Streptomyces avermetilis 
(previously classified as S. avermectinius) [1], is 
successfully used in the treatment of onchocerciasis (river 
blindness) caused by the filarial (arthropod-borne) nematode 
Onchocerca volvulus [2, 3]. Since the approval of IVM in 
1988 as an antiparasitic drug, 600 million people were 
treated over little less than two decades [2]. IVM binds to 
the glutamate-dependent chloride channels of invertebrate 
nerve and muscle cells, which leads to an increase in 
membrane permeability and neuromuscular paralysis of 
certain parasites. The drug is strictly microfilaricidal [4] 
and as such prevents the development of adult nematodes 
that cause blindness [2]. Other parasitic infections that have 
been treated with IVM include ascariasis, cutaneous larva 
migrans, filariases, gnathostomiasis, lymphatic filariasis, 
and trichuriasis [5, 6]. Further properties of IVM were 
demonstrated in the killing of lice and mites associated with 
pediculosis and scabies [5]. More recent findings have shown 
that IVM is also effective in killing vectors and parasites 
associated with malaria (Anopheles and Plasmodium spp., 
respectively), fly larvae causing orbital myiasis, roundworms 

such as Trichinella spp. responsible for trichinosis, Demodex 
mites linked with rosacea and cancer cells [7–15].

Further investigation into the bioactive capacities of IVM 
resulted in the discovery of the drug harbouring antiviral 
activity, at least in vitro [16–19]. Amongst the first anti-
viral findings reported was inactivation of the integrase 
protein of the human immunodeficiency virus-1 (HIV-1) 
and the importin α/β1 heterodimer (IMPα/β1) that assists 
the protein with entering the nucleus [20]. The IMPα/β1 
heterodimer is an integral trafficker of host proteins [21]. 
Viruses exploit this heterodimer system to circumvent host 
immune responses and to enhance the replication of virions 
[22, 23]. A follow-up study by these authors revealed that 
IVM could also inhibit the replication of the HIV-1 virus 
[19]. Despite viral transport into the nucleus by the IMPα/β1 
heterodimer being integral to viral infection, small-molecule 
inhibitors of this heterodimer (such as IVM in this instance) 
have only had their antiviral activity documented for the past 
decade [21]. Due to IVM’s ability to inhibit nuclear import 
of host- and viral proteins [24, 25], IVM is able to prevent 
the replication of the West Nile Virus (flavivirus) [26], yel-
low fever virus [27], dengue [18], Japanese encephalitis, 
and tick-borne encephalitis [17, 27]. This is not surprising, 
as many RNA viruses rely on binding to IMPα/β1 to enter 
nuclei [28, 29].

Flaviviruses share many similarities with the + ssRNA 
severe acute respiratory syndrome-coronavirus 2 (SARS-
CoV-2) responsible for the COVID-19 pandemic. Because of 
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this, the use of IVM as a prophylactic and treatment against 
SARS-CoV-2 infection has led to much intrigue and contro-
versy and, hence, a renewed interest in IVM [30–34]. Caly 
et al. [33] reported a MOI (multiplicity of infection) value of 
0.1 for 2 h in Vero/hSLAM cells after exposure to 5.0 μM IVM 
and suggested that a single dose could control viral replication 
for 24–48 h. These findings were, however, based on in vitro 
experiments, and it is difficult to extrapolate to clinical con-
ditions. Schmith et al. [35] argued that 5.0 μM IVM, which 
resulted in 50% inhibition  (IC50; 2 µM), was at least 35 times 
higher than the maximum plasma concentration (Cmax), which 
was determined to be 0.05 µM (46.6 ng/mL) after oral admin-
istration of fasting individuals (200 μg/kg bodyweight; FDA 
approved dosage). The authors argued that the total (bound and 
unbound) plasma concentration of IVM and unbound levels 
are below the  IC50 value, even when administered at levels 
10 × higher than the FDA-approved dosage. They also argued 
that a single dosage of IVM, orally administered, does not 
reach  IC50 levels in the lungs, not even when administered at 
doses 10 × higher than the approved. Based on these findings, 
Schmith et al. [35] concluded that it is highly unlikely that clin-
ical trials with IVM would show inhibition of SARS-CoV-2 
and that IVM on its own, at recommended concentrations, may 
thus not be successful in the treatment of COVID-19.

Along with antiviral activity, several reports document-
ing direct pathogenic bacterial inhibition by IVM have been 
published [15]. However, literature in this field is sparse, and 
little is known about the possible mode of action of IVM 
on microorganisms. This is likely due to the possibility that 
drug targets for IVM are absent/scarce in microorganisms. 
The plausibility of this theory is strengthened by the fact that 
there are no known homologues of IMPα/β1 or glutamate-
dependent chloride channels in prokaryotes. However, Sac-
charomyces cerevisiae and other lower eukaryotes such as 
Caenorhabditis elegans, Drosophila melanogaster, Danio 
rerio, Xenopus tropicalis, Gallus gallus and Mus musculus 
have β-karyopherin import receptors making them possibly 
sensitive to IVM. Despite the apparent absence of IVM targets, 
antibacterial activity attributed to IVM has been documented 
and was reported for the first time in 2018 by Ashraf et al. [36].

The question we ought to ask is whether IVM, orally 
taken, has any effect on gut microbiota and, if so, what long-
term effects could emanate from prolonged treatment. This 
review sketches possible scenarios and addresses some of 
the concerns related to gut impairment associated with IVM 
administration.

Antibacterial Activity of IVM

Ashraf et  al. [36] showed that IVM acted as a bacte-
riostatic agent (confirmed by time-kill kinetics assays) 
against clinical isolates of methicillin-resistant and 

methicillin-sensitive strains of Staphylococcus aureus 
(MRSA and MSSA, respectively). The authors reported 
12.5 µg/mL IVM as minimum inhibitory concentration 
(MIC) against MRSA, which is double the MIC deter-
mined against MSSA (6.25 µg/ml). Tan et al. [37], how-
ever, reported bacteriostatic MIC values of 20.0 µg/mL 
against the methicillin-resistant S. aureus ATCC 43,300. 
The authors have also shown that a derivative of IVM, 
with an OH group replaced by an  NH2 group at carbon 
position 4 (referred to as molecule D4), was much more 
effective against MRSA and reported a fourfold decrease 
in MIC values.

The natural form of IVM, a semisynthetic mixture 
of two chemically modified avermectins comprising 
80% 22 ,23-d ihydroaver mec t in -B1a  and  20% 
22,23-dihydroavermectin-B1b [15], also inhibited the 
growth of multi- and extensively drug-resistant strains 
of Mycobacterium tuberculosis (MDR-TB and XDR-TB, 
respectively) [38]. The  MIC90 of IVM, determined against 33 
strains of M. tuberculosis (of which seven were classified as 
XDR-TB), ranged from 1.5 to 16.0 µg/mL [38]. Interestingly, 
the  MIC90 of IVM against the seven isolated XDR-TB strains 
ranged from 3.0 to 12.0 µg/mL, which is low considering 
their drug resistance. Five of the 33 strains were not affected 
by IVM. Time-kill kinetic studies with M. tuberculosis 
strains exposed to 20 µg/mL IVM over 21 days resulted in 
a 3-log reduction of viable cell numbers of wild-type (WT) 
strains and a 4-log reduction of cell counts pertaining to the 
MDR-TB strain  mc25857. Based on these results, IVM has a 
bactericidal effect on some strains of M. tuberculosis. IVM 
also inhibited the proliferation of Chlamydia trachomatis on 
epithelial cells (HeLa 229) [39]. Production of infectious 
elementary bodies (EBs) and chlamydial 16 s rRNA was 
inhibited when exposed to 5 µM IVM [39]. This is important, 
as chlamydiae have a biphasic life cycle [40, 41], with 
metabolically inert EBs acting as infective agents that mature 
to metabolically active, but non-infectious, reticulate bodies 
giving rise to infectious EBs [42, 43]. An IVM concentration 
of 5 µM decreased the size of C. trachomatis inclusions, 
whilst 10 µM completely inhibited inclusion development 
[42]. Chlamydial maturation occurs in a host cell vacuole 
termed the chlamydial inclusion [42], and as such, inclusion 
suppression correlates with infection suppression.

In vitro studies have shown that the levels of IVM 
required to slow down the growth or kill S. aureus, M. tuber-
culosis and C. trachomatis (Table 1) are much higher than 
the recommended oral dosages effective in the treatment 
of parasites (0.046 µg/mL; 0.5 µM) [35] and SARS-CoV-2 
(0.438 µg/mL; 5 µM) [33]. It is well documented that 93% 
of IVM administered orally binds to serum albumin, which 
leaves only 7% available to react with bacterial cells [43]. 
Clearly, this refutes efforts to use IVM as an orally admin-
istered antibacterial drug.
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Possible Mode of Antibacterial Activity 
of IVM

IVM interacts with IMPα/β1 and by doing so prevents 
the translocation of viral particles into the nucleus. 
Prokaryotes do not have an IMPα/β1 transport system 
or a homologue of this system, which implies that IVM 
must have a different target in sensitive bacterial cells. 
Ivermectin (Fig. 1) is classified as an anthelmintic mac-
rocyclic lactone (ML) [44] and is similar in structure to 
a class of drugs known as macrolides that have antibiotic 
properties. However, unlike macrolides, MLs contain no 
deoxy sugars attached to the macrolide ring backbone 
[45]. Research conducted by Koyama et al. [46] on the 
ML albocycline and its effect on MRSA may shed some 
light on the antibacterial mode of action of IVM. By using 
radiolabelled precursors of  [3H]thymidine,  [3H]uracil, 
 [3H]leucine and  [3H]GlcNAc, the authors discovered that 
albocycline prevents the incorporation of  [3H]GlcNAc into 

macromolecules. Based on these findings, the authors sug-
gested that albocycline blocks peptidoglycan synthesis. 
IVM may act in a similar way. Scanning electron micros-
copy (SEM) images have shown structural changes of cell 
walls (wrinkles and sagging) when S. aureus cells were 
exposed to 4 × the MIC of IVM (80 µg/mL) [37]. This con-
firmed the hypothesis that IVM interferes with cell wall 
synthesis. Leaking of cellular contents was also visible 
in SEM images [37]. Transmission electron microscopy 
(TEM) has shown that S. aureus cells exposed to 80 µg/mL 
IVM form intracellular trachychromatic aggregates. This 
was confirmed by the leaking of uranyl acetate across dam-
aged cell walls [37]. Staining of the DNA of damaged cells 
with propidium iodide confirmed changes in the perme-
ability and integrity of cell walls [37]. These findings may 
also explain the bactericidal activity recorded with IVM 
against M. tuberculosis [38]. The peptidoglycan content of 
M. tuberculosis is similar to that of S. aureus [47]. Cells 
of M. tuberculosis are, however, protected by an acid-fast 
capsule, and IVM would have to penetrate, or damage, the 
outer layer. More research will have to be conducted to 
determine if other IVM target sites exist in bacteria.

Sensitivity of Gut Microbiota to IVM

The human gut hosts close to 4 trillion microorganisms 
and represents between 400 and 500 species [48, 49]. 
The composition of gut microbiota changes with age 
and is affected by diet, medication, hormonal changes 

Table 1  Levels of IVM required to act antibacterially compared 
to predetermined concentrations of the drug required to act as an 
anthelmintic (0.046  µg/mL; 0.5  µM) and anti-SARS-CoV-2 agent 
(0.438 µg/mL; 5 µM)

MIC levels of IVM, as determined in vitro Reference

S. aureus (6.25–12.5 µg/mL) [36]
S. aureus (20.0 µg/mL) [37]
M. tuberculosis (1.5–16.0 µg/mL) [38]
C. trachomatis (0.44 µg/mL) [39]

Fig. 1  Chemical structure of 
ivermectin (IVM). The hydroxyl 
group highlighted in yellow 
was changed to an amino  (NH2) 
group in the study conducted by 
Tan et al. [37]
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and environmental stress [50]. Despite this, the adult gut 
has a common core of microbiota autochthonous to the 
gastrointestinal tract (GIT) [51], mostly consisting of 
genera belonging to Firmicutes and Bacteroidetes [52, 53]. 
Beneficial microbiota regulate gut wall permeability and 
modulate the immune system, but some have antibacterial 
and antiviral properties and keep the gut microbiota in a 
homeostatic state (reviewed by Dicks and Botes [54], van 
Zyl et al. [55] and Dicks and Grobbelaar [56]). Drastic 
changes in gut homeostasis may lead to inflammation caused 
by normal commensal microorganisms and pathogens. To 
the best of our knowledge, no in-depth studies have reported 
on the direct effect IVM has on gut microbiota and we do 
not know if continuous exposure to the drug could lead to 
dysbiosis. Several studies, reviewed by Dicks et al. [50], 
Chey and Menees [57] and Liu et al. [58], have shown that 
dysbiosis may lead to IBS (irritable bowel syndrome), 
enterocolitis and diarrhoea. An abnormal, or disturbed, gut 
microbiome may lead to the developing of neurological and 
psychiatric diseases, including anxiety, depression, major 
depressive disorder (MDD), schizophrenia, bipolar disorder, 
autism and obsessive–compulsive disorder (OCD) [59].

IVM is normally taken orally, which implies that pro-
longed dosage may lead to an imbalanced oral microbiome. 
Oral microorganisms play an important role in the develop-
ing of the gut microbiome, as shown in a recent study that 
linked first-phase schizophrenia, associated with gut dysbio-
sis, to changes in the salivary microbiome [60]. The study 
involved 208 individuals diagnosed with symptoms of first-
phase schizophrenia and psychosis (high risk schizophre-
nia) and a group without psychiatric disorders. Individuals 
diagnosed with first-phase schizophrenia had a much higher 
number of Firmicutes compared to Proteobacteria, similar 
to what has been recorded in the salivary microbiome of 
patients with primary Sjögren’s syndrome [61], an autoim-
mune disease involving chronic inflammation of the salivary 
and lacrimal glands. Qing et al. [60] suggested that these 
patients had higher cell numbers of microorganisms with 
the ability to produce branched-chain amino acids (BCAA) 
and lysine. This may explain the increase in cell numbers of 
Staphylococcus and Megasphaera in schizophrenic individu-
als. Species from both genera produce BCAA and lysine [62, 
63]. Since strains of species present in the oral cavity have 
been isolated from the large intestine [63–65], changes in 
the oral microbiome inflicted by IVM may have a profound 
effect on gut and mental health. It should, however, also be 
noted that SARS-CoV-2 infection, treated or not treated with 
IVM, may in any case lead to the abnormal shedding of oral 
microbiota [66] and dysbiosis of the GIT.

Schneeberger et al. [67] studied the effect of anthelmin-
tic drugs (both alone and in combination therapy treat-
ment regimens) on the gut microbiome of adult individu-
als infected with hookworm. After 24 h of treatment with 

orally administered tribendimidine (400 mg), combined with 
IVM (200 μg/kg), cell numbers of Bacteriodetes increased 
in individuals that received only IVM. The treatment groups 
receiving tribendimidine plus IVM showed no signs of bac-
terial inhibition, as the entire bacterial abundance between 
all phyla displayed no significant change. The two families 
found to account for the largest variations within the Bac-
teriodetes phylum were Prevotellaceae and Candidatus 
homothermaceae. The increase in Prevotellaceae may have 
a detrimental effect on human health, since members of this 
phylum are known to be opportunistic pathogens [68] target-
ing and disrupting mucosal layers and destroying protective 
barriers. Prevotellaceae are also dominant in individuals 
diagnosed with IBD [68–71]. Studies conducted on mice 
showed that Prevotellaceae reduce short-chain fatty acid 
(SCFA) levels in the GIT, which in turn leads to a decrease 
in interleukin (IL)-18 production and an increase in intesti-
nal inflammation [72]. Schneeberger et al. [67] also reported 
an increase in biotin metabolism and folate and N-glycan 
biosynthesis 24 h after treatment with IVM. These pathways 
are all involved in the synthesis of B vitamins. This finding 
may be explained as cell numbers of Candidatus homother-
maceae, which regulates vitamin B synthesis in the GIT 
of mammals [73], increased 24 h after treatment with IVM 
combined with tribendimidine. This may be beneficial to 
the host, as B vitamins act as cofactors and coenzymes in 
multiple metabolic pathways and aid in keeping the immune 
system balanced [74]. Treatment with only tribendimidine 
did not produce the same results observed with a combina-
tion of tribendimidine and IVM, suggesting that changes 
were caused by IVM or possibly by a synergism between the 
two drugs. Three weeks after treatment, bacterial cell num-
bers and relative abundance returned to pre-treatment levels 
[67], suggesting that IVM has a limited effect on gut micro-
biota, the immune system and vitamin B production. No 
changes in the population of gut microbiota were observed 
when individuals were treated with tribendimidine (400 mg), 
tribendimidine (400 mg) plus oxantel pamoate (25 mg/kg) 
and albendazole (400 mg) plus oxantel pamoate (25 mg/kg).

A study conducted on Amur Tigers showed that treatment 
with fenbendazole (2 500 mg) plus ivermectin (100 mg) 
resulted in a significant increase in the relative abundance 
of Firmicutes and Proteobacteria post treatment, whilst 
Actinobacteria levels decreased drastically [75]. Cell numbers 
of Collinsella, Clostridium XI and Megamonas decreased, 
whilst cell numbers of Escherichia and Clostridium sensu 
stricto increased. These changes led to several biochemical 
alterations and thus altered the tigers’ metabolic phenotypes. 
The concentration of five metabolites that were present before 
treatment increased significantly, whilst the concentration 
of 10 metabolites decreased. Although the authors did not 
elaborate on the benefits and disadvantages of these changes, 
treatment with a combination of fenbendazole and IVM was 
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considered advantageous, as cell numbers of pathogenic 
species from the Clostridium XI cluster were replaced by 
members of the Clostridium sensu stricto cluster, a cluster that 
has been documented for its gut-modulating abilities [76, 77]. 
Lowering of Collinsella numbers is considered beneficial, as 
they decrease the expression of tight junction proteins and may 
cause a leaky gut [78].

To the best of our knowledge, no information is available 
on the effect IVM has on beneficial gut microorganisms, 
especially probiotic lactic acid bacteria (LAB). A key fac-
tor in the survival and persistence of bacteria in the GIT is 
the ability to form biofilms [79]. Biofilm formation by LAB 
protects the GIT from bacterial and viral infections [55, 56] 
and keeps the gut wall impermeable [80]. Biofilm forma-
tion is beneficial to the proliferation of gut microorganisms 
[79] and human health [55, 56, 80]. In the study by Tan 
et al. [37], IVM at 40 µg/mL did not inhibit biofilm forma-
tion by the MRSA strain ATCC 43,300. However, treatment 
with IVM at 4 × MIC had a negative impact on the mRNA 
transcription of relQ, rsbU, spA, icaD and sigB, all genes 
associated with S. aureus biofilm formation. The genes 
were downregulated by 0.37–0.40, 0.23–0.28, 0.27–0.405, 
0.0004–0.00155 and 0.60-fold, respectively. Similar results 
were reported for MRSA strain TCH1516 [81]. Although the 
authors have shown that 6.8 µM IVM inhibited the growth 
of S. aureus TCH1516  (IC50 value), 20 µM IVM did not 
prevent biofilm formation. What these studies show is that 
IVM, even at relatively high experimental concentrations, is 
unable to inhibit S. aureus biofilm formation. More research 
on biofilm formation must be done. The bacteriostatic activ-
ity of IVM against S. aureus [36] is a concern, as biofilm-
forming strains may develop resistance [81, 82]. Apart from 
being protected from the host’s immune responses, biofilms 
are more resistant to antibacterial drugs [82], which neces-
sitate the search for more effective treatment of infections.

Conclusions

The use of IVM increased drastically since the outbreak of 
COVID-19 due to the publication of papers that suggest it 
may be used to combat SARS-CoV-2 infection. Conflicting 
reports on the efficacy of IVM inhibiting the proliferation of 
SARS-CoV-2 have been published. Despite scientific proof 
that dosage levels required for IVM to have a systemic effect 
on SARS-CoV-2 are well above that approved by the FDA, 
many believe that it has curing properties. The antibacte-
rial properties of IVM, although evidence of this is based 
on in vitro tests, are of concern as prolonged use may lead 
to gut dysbiosis. If IVM does indeed affect peptidoglycan 
synthesis, in-depth studies need to be done to determine the 
effect prolonged use has on gut microbiota and the possibil-
ity of developing resistant strains.
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