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Abstract: Computer color-matching (CCM) and the levelness of poly(ethylene glycol)-based
reverse-micellar dyed wool fabrics in octane and nonane were investigated and compared with
a conventional water-based dyeing system. Reflectance curves and calibration curves exhibited no
chromatic change and maintained high linearity in both dyeing systems. The linearity of water-dyed
calibration curves was slightly higher than that of the reverse-micellar dyed curves. The color yield,
in term of K/Ssum values, of solvent-dyed samples was found to be generally higher than that of
water-based dyed samples at various calibrated dye concentrations. The concentrations predicted by
CCM were close to the theoretical concentrations for both dyeing methods. This indicates that octane-
and nonane-assisted reverse-micellar dyeing of wool is able to generate color recipes comparable to
the conventional water-based dyeing system. The solvent-dyed samples, measured by the relative
unlevelness indices (RUI), exhibit good-to-excellent levelness, which is highly comparable with the
water-dyed samples.

Keywords: wool fiber; non-ionic surfactant; octane; nonane; reverse micelle; reactive dye;
color-matching; levelness

1. Introduction

Wool, with distinct characteristics of soft handle, good warmth retention, high moisture regain,
and high ignition temperature, is an important natural animal protein fiber that helps human beings
live an eco-friendly lifestyle [1,2]. Wool is an important fiber in the textile industry; however, due to
the presence of a high number of disulfide cysteine cross-linkages (–S–S–), it has hydrophobicity on its
surface [3,4] and, thus, problems of wettability and dyeability.

In the conventional water-based dyeing procedure, textile reactive dyes are widely used for
coloration of wool fiber owing to their excellent fastness properties. Unlike the reactive coloration
of cotton, the fixation of dye on wool fiber is achieved via an increase in temperature under weak
acidic conditions (pH 4–6), instead of the addition of alkali, which may cause fiber degradation [5].
The dye-fiber interaction is relevant to the chemical bonding between water-soluble groups of the dyes
and the amino and hydroxyl groups of wool fiber, improving the fixation rate and colorfastness [6].
However, the fixation of reactive dyes on wool is insufficient to achieve good wet-fastness properties
since fixation via Coulombic interaction is unavoidable, and additional alkali after-treatment is required
for neutralization [7,8]. In addition, the use of reactive dyes in the conventional water-based dyeing
approach reveals some drawbacks, such as low dye fixation, requirement of a huge amount of dyeing
auxiliaries, and high volume of effluent discharge [9]. These problems adversely affect the environment,
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as well as the quality of life of human beings, animals, and aquatic living beings, and it is contradictory
to stringent environmental regulations.

To reduce wastewater discharges and environmental impacts, various methods were used to
improve the exhaustion and fixation of dyes on wool fiber. These attempts included (a) pretreatment
or modification of wool fiber before coloration [10–16]; (b) synthesis of novel dyestuffs [8,17];
(c) microencapsulation with liposomes [18,19]; (d) reuse of dyebath [20] and seawater [21]; (e) foam
dyeing [22]; (g) ultrasound-assisted dyeing [23–25]; and (h) solvent-assisted dyeing using mixed
solvent [26], supercritical critical fluid, and/or reverse micelle [27–32].

Reverse micelles are self-assembled colloidal structures formed by non-ionic surfactants in organic
solvent with nanoscale water pools in hydrophilic cores [33]. Previous literature on the colorimetric
measurement of textiles was achieved using spectrophotometry [34–38]. In our previous studies,
we successfully used poly(ethylene glycol) (PEG)-based non-ionic surfactants to facilitate the formation
of reverse micelles, the analysis of stability and dispersity of well-defined reverse micelles with different
reverse-micellar dyeing parameters, and the application of the computer color-matching (CCM)
technique to study the dyeing properties of cotton fiber in different non-aqueous solvent media [39–44].
As the aesthetic appearance of most textile products is a mixture of colors rather than a single color,
CCM is an important aspect that cannot be neglected in industrial dyeing applications [45,46]. However,
to the best of our knowledge, most researchers focused on dyeing of wool with a single color, while the
feasibility of CCM’s application on wool fiber is still unknown and is yet to be reported in the literature.

The main aims of this study included (a) construction of calibration curves for reactive dyes in
conventional aqueous and alkane non-aqueous dyeing media; (b) simulated dyeing of wool fabrics with
known dye concentration for both dyeing approaches; (c) measurement of the reflectance, K/Ssum,
CIE L*a*b* values, and levelness of the dyed wool samples; (d) prediction of the color recipe between
batch samples and standard samples using computer color-matching (CCM); and (e) assessment of the
difference between computer color-matching and levelness of conventional water-dyed samples and
alkane-dyed samples.

2. Materials and Methods

2.1. Materials and Reagents

Woven wool plain fabrics (73 warps per inch × 60 wefts per inch) were firstly immersed
in acetone (GR grade, Duksan, Gyunggido, Korea) for 5 min and then rinsed with 2 g/L soap.
After soaping, the fabrics were washed in cold water and then air-dried at room temperature.
The air-dried fabrics were then conditioned for at least 24 h at 20 ± 2 ◦C and relative humidity of
65 ± 2% prior to further experiment. The non-ionic surfactant, poly(ethylene glycol) (12) tridecylether
(C13H27(OCH2CH2)12OH) was used (reagent grade, Sigma Aldrich, St. Louis, MO, USA). Octane and
nonane (reagent grade, ACROS, Fair Lawn, NJ, USA) were used as the dyeing media and n-octanol
(reagent grade, Alfa Aesar, Heysham, UK) was used as a co-surfactant in the dyeing process. Acetic acid
(reagent grade, Sigma Aldrich, St. Louis, MO, USA) and sodium sulfate (reagent grade, Sigma Aldrich,
St. Louis, MO, USA) were used in conventional aqueous dyeing. Realan reactive dyes (Realan Red
EHF, Realan Yellow EHF, and Realan Blue EHF, Dystar, Shanghai, China) were used directly without
further purification.

2.2. Preparation of Calibration Curvex

Wool woven fabrics were used. Calibrated dyeing of reverse-micellar dyeing and conventional
aqueous dyeing (dye concentrations of 0.1%, 0.5%, 1.5%, 2.5%, and 3.5% of weight of wool fiber (owf))
was conducted with dyeing parameters shown in Tables 1 and 2, respectively. Figures 1 and 2 show the
dyeing profiles of the conventional aqueous dyeing approach and the alkane reverse-micellar dyeing
approach, respectively. The dyed samples used for the preparation of calibration curves were named
as batch samples.
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Table 1. Dyeing parameters for octane and nonane.

Parameter Value

Wool-to-solvent weight ratio (w/v) 1:10
Surfactant-to-co-surfactant molar ratio 1:8

Surfactant-to-water molar ratio 0.04:1
Water-pool volume for dye (mL) 0.5

Dyeing time (min) 50
Dyeing temperature (◦C) 88

Table 2. The concentration of Na2SO4 and pH at various weight percentages of reactive dye for
conventional water dyeing.

Liquid Ratio 50:1, 98 ◦C

Dye % of weight of wool fiber (% owf) 0.1 0.5 1.5 2.5 3.5
Salt (Na2SO4) g/L 2 2 2 2 2

pH 5 4.5 4.2 4 3.8
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2.3. Simulated Dyeing

Simulated dyeing using known concentrations of dye was launched to predict the dye
concentrations of calibrated conventional water-based and reverse-micellar methods. The dyed
woven wool fabrics were used for color-matching and these samples were named as standard samples.
Table 3 shows the concentrations of dye used for the preparation of color mixtures.

Table 3. Dye concentrations (%) for preparing color mixtures.

Solvent Standard Sample Red (%) Yellow (%) Blue (%)

Water Sample 1 0.100 0.100 0.100
Sample 2 0.500 0.500 0.500
Sample 3 1.000 1.000 1.000

Octane Sample 4 0.100 0.100 0.100
Sample 5 0.500 0.500 0.500
Sample 6 1.000 1.000 1.000

Nonane Sample 7 0.100 0.100 0.100
Sample 8 0.500 0.500 0.500
Sample 9 1.000 1.000 1.000

2.4. Plot of Calibration Curves

A spectrophotometer (Color Eye 7000A, X-Rite, Grand Rapids, MI, USA) was used for measuring
the color yield of the dyed samples. The K/Ssum value was obtained by summation of K/S values
within 400–700-nm wavelength range. The condition of measurement on the dyed fabric surface was
specular reflection under a large aperture with a diameter of 30 mm. A 10◦ observer angle and a D65

light source were used. Dyed samples were folded to ensure opacity. Graphical plots (calibration
curves) of K/Ssum value versus concentration of dye (%) were then prepared.

The color yield, K/S value, was calculated from Equation (1) at wavelengths ranging from 400 to
700 nm in steps of 10 nm. As the K/S value increases, the dye uptake and color yield improve.

K/S = (1 − R)2/2R, (1)

where K is the absorption coefficient, depending on the colorant concentration, S is the scattering
coefficient, caused by the dyed substrate, and R is the reflectance factor of the colored sample at a
specific wavelength [39].

2.5. Dye Recipe Prediction

Nine color difference equations, including CIE L*a*b*, CIE L*u*v*, ANLAB, Hunter lab, FMC2,
JPC 79, CMC 1.0, BFD 1.0, and CIE94 1.0, were used to predict the dye recipe. Color yields of samples
dyed with different concentrations of dye were measured with apparatus and conditions similar to
those mentioned in Section 2.4.

2.6. The CIE L*a*b* Value Measurement

CIE L*a*b* values of the dyed fabrics were measured with similar apparatus and conditions as
those mentioned in Section 2.4.
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2.7. Levelness Measurement

Relative unlevelness indices (RUI), an indicator of levelness of the dyed samples, were obtained by
calculating the reflectance values of three randomly selected locations of standard and batch samples
with the use of Equations (2)–(5) [47]. The interpretation of the value of RUI is as listed in Table 4.

sλ =

√
∑n

i=1
(
Ri − R

)2

n− 1
; (2)

(RUIu) =
700

∑
λ=400

sλ; (3)

(RUIc) =
700

∑
λ=400

sλ/R; (4)

RUI =
700

∑
λ=400

(sλ/R ) Vλ. (5)

Table 4. Relative unlevelness index (RUI) interpretation [41].

Visual Appearance of Levelness RUI

Excellent (unlevelness not detectable) <0.2
Good (noticeable unlevelness under close examination) 0.2–0.49

Poor (apparent unlevelness) 0.5–1.0
Bad (conspicuous unlevelness) >1.0

3. Results

3.1. Reflectance Values of the Dyed Samples

The reflectance curves for a set of wool fabrics dyed with reactive dyes (red, yellow, and blue)
in aqueous, octane, and nonane media are presented in Figures 3–5, respectively. The shapes of the
reflectance curves for the set of primary dyes should be almost similar (identical), without crossed lines.

As indicated by Figures 3–5, the reflectance curves of fabrics dyed in higher concentrations
are presented at the bottom of the graph with lower reflectance values, which indicates that more
dyes were absorbed and bonded to fabrics, resulting in darker shades, and vice versa. From the
evaluation of reflectance-versus-wavelength graphs, reflectance curves of the set of primary dyes in all
concentrations revealed their own color patterns, which were almost identical in shape, and the results
obtained were highly consistent.

Moreover, there were curves with a trough profile in the reflectance spectra. These trough profiles
became deeper when dye concentration increased, since more light was selectively absorbed by the
dye molecules. For instance, as shown in Figure 3a, Figure 4a, Figure 5a, and Figure 6a, the dyed wool
fabric appeared “red” since violet-to-yellow light (400–590 nm) was absorbed, leaving predominantly
orange-to-red light (590–725 nm) in the reflected beam. The increase in spectral reflectance with
decreasing dye concentration occurred since the dye on the wool surface scattered light more effectively,
resulting in a greater portion of the light beam being reflected back from the dyed wool.

As illustrated in Figures 3–5, reflectance curves of the water-based and reverse-micellar dyed
wool maintained identical profiles and exhibited no substantial peak shift in terms of wavelength.
This indicates that the reactive dyes remained highly stable in terms of chemical structure after
encapsulation in the reverse micelles and complete dyeing process in alkane solvent medium.
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3.2. CIE L*a*b* Values

Table 5 depicts CIE L*a*b* values of wool fabrics dyed in water, octane, and nonane dyeing media.
With regards to the red color, wool fabrics dyed using the reverse-micellar dyeing approach in octane
and nonane solvent generally had lower L*, and higher a* and b* values than those seen using the
conventional water-based dyeing approach. The measured CIE L*a*b* values indicate that alkane
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solvent-dyed fabrics in red are darker, redder, and yellower than the conventional water-dyed wool
fabrics. Concerning the yellow color, wool fabrics dyed using the reverse-micellar dyeing approach
in octane and nonane solvent generally had higher L*, lower a*, and higher b* values than those
seen in the conventional water-based dyeing approach. This means reverse-micellar dyed fabrics
in yellow color are lighter, greener, and yellower than the conventional water-dyed wool fabrics.
Regarding the blue color, wool woven fabrics dyed in octane and nonane solvent generally had lower
L*, higher a*, and lower b* values than fabrics dyed in water, indicating that the resultant blue color of
reverse-micelle dyeing is darker, redder, and bluer than that of the conventional water-based dyeing.

Table 5. The CIE L*a*b* values of dyed wool fabrics in various dyeing media (woven wool fabrics,
Realan reactive dye).

Solvent Water Octane Nonane

Sample (%) L* a* b* L* a* b* L* a* b*

Red 0.1 61.337 31.254 −1.043 59.61 35.431 −0.864 60.768 33.315 0.030
Red 0.5 47.070 45.574 1.972 46.484 48.976 1.939 46.213 49.451 2.772
Red 1.5 38.009 49.965 6.687 35.454 52.490 9.185 35.691 51.966 8.551
Red 2.5 33.238 49.285 9.580 31.108 50.184 12.679 33.507 53.042 16.384
Red 3.5 29.518 47.711 12.063 28.775 48.130 15.538 28.382 47.09 15.652

Yellow 0.1 79.059 -5.516 35.130 80.338 −5.813 36.958 80.371 −6.052 38.364
Yellow 0.5 76.850 -2.476 61.000 77.565 −2.974 65.359 76.918 −1.931 65.065
Yellow 1.5 74.322 3.117 78.398 74.937 3.941 84.543 74.800 4.522 84.212
Yellow 2.5 73.081 7.676 86.107 73.450 7.847 91.897 73.174 8.393 88.616
Yellow 3.5 70.665 14.771 90.549 71.927 11.824 93.782 71.920 11.288 90.928

Blue 0.1 62.619 −7.199 −12.262 61.184 −7.351 −15.578 60.811 −7.413 −15.078
Blue 0.5 43.906 −5.392 −22.837 40.789 −5.312 −24.752 40.515 −5.380 −24.244
Blue 1.5 30.788 −2.005 −25.929 26.587 −1.112 −26.841 27.289 −1.869 −24.966
Blue 2.5 25.727 −0.193 −25.902 20.334 1.545 −24.503 20.67 0.629 −21.704
Blue 3.5 21.181 1.884 −23.685 17.507 2.150 −21.859 18.066 1.871 −19.012

3.3. Computer Color-Matching

3.3.1. Linearity of the Calibration Curves

Calibration curves of the red, yellow, and blue batch samples dyed in water and reverse-micellar
octane and nonane media are illustrated in Figure 6. The K/Ssum values of red, yellow, and blue
samples dyed in the reverse-micellar system were higher than those in water system, indicating that
the octane and nonane dyeing system can obtain better color yield than the water-dyeing system.

As illustrated in Figure 6 and Table 6, values of R2 of water-dyed fabrics ranged from 0.997 (water
blue) to 0.999 (water yellow), whereas R2 values of octane-dyed and nonane-dyed fabrics ranged
from 0.976 (octane red) to 0.987 (octane blue), and from 0.952 (nonane yellow) to 0.980 (nonane blue),
respectively. This indicates that the calibration curves of both reverse-micellar dyed and water-dyed
samples are linear-type functions and, thus, appropriate for computer color-matching.
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Table 6. R2 values of dyeing in three primary colors based on dyeing method.

Dyeing Medium R2 Value

Water (red) 0.998
Water (yellow) 0.999

Water (blue) 0.997

Octane (red) 0.976
Octane (yellow) 0.977

Octane (blue) 0.987

Nonane (red) 0.978
Nonane (yellow) 0.952

Nonane (blue) 0.980

3.3.2. CCM Results

The color-matching predictions of water-dyed standard wool samples with several color difference
formulae are presented in Table 7. The generated color-matching recipes of Sample 1 were nearly the
same (red: 0.108; yellow: 0.114; blue: 0.095) as each other when different formulae were employed.
Consistent results were also obtained for color-matching recipes of Sample 2 (red: 0.477; yellow: 0.488;
blue: 0.554) and Sample 3 (red: 1.021; yellow: 0.974; blue: 1.081) through different formulations. However,
it was observed that variations between color-matching recipes and samples dyed in 1.5% and 3.0%
concentrations were generally larger than seen in the case of recipes with 0.3% dye concentration.

Table 7. Color-matching recipes of water-dyed standard wool samples.

Formulae Color
Water-Based Wool Dyeing

Sample 1 (0.3%) Sample 2 (1.5%) Sample 3 (3%)

Theoretical
Red 0.100 0.500 1.000

Yellow 0.100 0.500 1.000
Blue 0.100 0.500 1.000

CIE L*a*b*
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081
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Table 7. Cont.

Formulae Color
Water-Based Wool Dyeing

Sample 1 (0.3%) Sample 2 (1.5%) Sample 3 (3%)

CIE L*u*v*
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

ANLAB
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

Hunter lab
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

FMC2
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

JPC79
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

CMC 1.0
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

BFD 1.0
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

CIE94 1.0
Red 0.108 0.477 1.021

Yellow 0.114 0.488 0.974
Blue 0.095 0.554 1.081

The color-matching recipes of octane-dyed standard wool samples are shown in Table 8.
Results were found to be consistent for color-matching predictions of Sample 4 (red: 0.080; yellow:
0.113; blue: 0.105), Sample 5 (red: 0.543; yellow: 0.439; blue: 0.459), and Sample 6 (red: 1.144; yellow:
0.971; blue: 0.959), even though different formulae were used.

Table 8. Color-matching recipes of octane-dyed standard wool samples.

Formulae Color
Octane Wool Dyeing

Sample 4 (0.3%) Sample 5 (1.5%) Sample 6 (3%)

Theoretical
Red 0.100 0.500 1.000

Yellow 0.100 0.500 1.000
Blue 0.100 0.500 1.000

CIE L*a*b*
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

CIE L*u*v*
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

ANLAB
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

Hunter lab
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959
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Table 8. Cont.

Formulae Color
Octane Wool Dyeing

Sample 4 (0.3%) Sample 5 (1.5%) Sample 6 (3%)

FMC2
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

JPC79
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

CMC 1.0
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

BFD 1.0
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

CIE94 1.0
Red 0.080 0.543 1.144

Yellow 0.113 0.439 0.971
Blue 0.105 0.459 0.959

The color-matching recipes of nonane-dyed standard wool samples are presented in Table 9.
The color-matching predictions of Sample 7, 8, and 9 were (red: 0.086; yellow: 0.081; blue: 0.097),
(red: 0.530; yellow: 0.428; blue: 0.464), and (red: 1.107; yellow: 0.960; blue: 0.952), respectively.

Table 9. Color-matching recipes of nonane-dyed standard wool samples.

Formulae Color
Nonane Solvent-Assisted Dyeing

Sample 7 (0.3%) Sample 8 (1.5%) Sample 9 (3%)

Theoretical
Red 0.100 0.500 1.000

Yellow 0.100 0.500 1.000
Blue 0.100 0.500 1.000

CIE L*a*b*
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

CIE L*u*v*
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

ANLAB
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

Hunter lab
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

FMC2
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

JPC79
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

CMC 1.0
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952
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Table 9. Cont.

Formulae Color
Nonane Solvent-Assisted Dyeing

Sample 7 (0.3%) Sample 8 (1.5%) Sample 9 (3%)

BFD 1.0
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

CIE94 1.0
Red 0.086 0.530 1.107

Yellow 0.081 0.428 0.960
Blue 0.097 0.464 0.952

Table 10 shows the percentage difference (%) between the theoretical and measured dye
concentrations used for standard wool samples dyed by water, octane reverse-micellar, and nonane
reverse-micellar approaches using various color difference formulae. Measured values below the
expected concentrations were due to the fact that dye molecules were non-uniformly distributed
on fabric matrices. Measured values above the predicted concentration were due to the occurrence
of various sizes of dye agglomerates, as well as interfering incident light absorption and scattering.
In addition, the variation between theoretical and measured concentration was influenced by the
linearity of the calibration curves. Generally speaking, a higher linearity of the calibration curves may
increase the accuracy and reproducibility of the result, thus leading to a smaller difference between the
theoretical and measured concentrations.

Table 10. Percentage (%) difference of dyed standard wool samples.

Percentage Difference (%)

Formulae Color
Water-Based Dyeing (%) Octane Dyeing (%) Nonane Dyeing (%)

Sample1
(0.3%)

Sample2
(1.5%)

Sample3
(3%)

Sample4
(0.3%)

Sample5
(1.5%)

Sample6
(3%)

Sample7
(0.3%)

Sample8
(1.5%)

Sample9
(3%)

CIE
L*a*b*

Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70
Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00

Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

CIE
L*u*v*

Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70
Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00

Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

ANLAB
Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70

Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00
Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

Hunter
lab

Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70
Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00

Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

FMC2
Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70

Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00
Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

JPC79
Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70

Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00
Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

CMC 1.0
Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70

Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00
Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

BFD 1.0
Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70

Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00
Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

CIE94
1.0

Red ↑8.00 ↓4.60 ↑2.10 ↓20.00 ↑8.60 ↑14.40 ↓14.00 ↑6.00 ↑10.70
Yellow ↑14.00 ↓2.40 ↓2.70 ↑13.00 ↓12.20 ↓2.90 ↓19.00 ↓14.40 ↓4.00

Blue ↓5.00 ↑10.80 ↑8.10 ↑5.00 ↓8.20 ↓4.10 ↓3.00 ↓7.20 ↓4.70

Remarks: ↑: higher than expected; ↓: lower than expected.
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3.4. Levelness

The relative unlevelness indices (RUI) and visual levelness assessments of water-dyed,
octane-dyed, and nonane-dyed wool fabrics are illustrated in Table 11. Water-dyed fabrics had
values between 0.05 and 0.46. Octane-dyed and nonane-dyed wool fabrics had values between 0.04
and 0.48 and between 0.04 and 0.43, respectively. The results indicate that samples dyed by water and
solvent methods resulted in good-to-excellent levelness.

Table 11. RUI and visual levelness evaluation of dyed wool samples.

Sample Water Octane Nonane

RUI Visual RUI Visual RUI Visual

Red 0.1% 0.40 Good 0.45 Good 0.26 Good
Red 0.5% 0.24 Good 0.48 Good 0.20 Good
Red 1.5% 0.13 Excellent 0.20 Good 0.43 Good
Red 2.5% 0.14 Excellent 0.13 Excellent 0.14 Excellent
Red 3.5% 0.09 Excellent 0.44 Excellent 0.30 Good

Yellow 0.1% 0.09 Excellent 0.04 Excellent 0.05 Excellent
Yellow 0.5% 0.06 Excellent 0.05 Excellent 0.12 Excellent
Yellow 1.5% 0.10 Excellent 0.13 Excellent 0.04 Excellent
Yellow 2.5% 0.09 Excellent 0.15 Excellent 0.08 Excellent
Yellow 3.5% 0.05 Excellent 0.13 Excellent 0.05 Excellent

Blue 0.1% 0.22 Good 0.12 Excellent 0.31 Good
Blue 0.5% 0.16 Excellent 0.45 Good 0.42 Good
Blue 1.5% 0.46 Good 0.17 Excellent 0.11 Excellent
Blue 2.5% 0.08 Excellent 0.14 Excellent 0.34 Good
Blue 3.5% 0.08 Excellent 0.07 Excellent 0.08 Excellent

Mixture 0.3% 0.19 Excellent 0.28 Excellent 0.20 Good
Mixture 1.5% 0.34 Good 0.22 Excellent 0.29 Good
Mixture 3.0% 0.08 Excellent 0.14 Excellent 0.18 Excellent

4. Conclusions

Computer color-matching and the levelness of octane and nonane reverse-micellar dyed wool
fabrics were investigated using PEG-based non-ionic surfactants, and the results were found
comparable to those found for the conventional water-based dyeing system. No chromatic change
was observed from the measured reflectance values. The calibration curves were almost linear in
reflectance functions for both dyeing systems. The linearity of the water-dyed calibration curves
was slightly higher than that for the reverse-micellar dyed curves. However, the color yield in terms
of K/Ssum values for solvent-dyed samples was found to be higher than that for the water-dyed
samples at each calibrated dye concentration. CCM was conducted using various spectral matching
methods, and the results revealed that the CCM-predicted concentrations closely matched with the
theoretical concentrations for both methods. This indicates that the octane and nonane dyeing of wool
can achieve color-matching comparable to the water dyeing of wool. The RUI results implied that both
water-dyed and solvent-dyed wool samples can subjectively and objectively achieve good-to-excellent
levelness performance.

Author Contributions: C.-W.K. and Y.W. designed the experiments; Y.W., Y.-l.T., and C.-h.L. performed the
experiments and analyzed the data; Y.W. and Y.-l.T. wrote the paper; C.-h.L. and C.-W.K. revised the paper.
All authors discussed the results and improved the final draft of the paper.

Funding: This research was funded by The Hong Kong Polytechnic University, grant numbers 4-ZZGK and
G-UADU. The APC was funded by G-UADU.

Acknowledgments: The authors are thankful to The Hong Kong Polytechnic University for providing
financial support.

Conflicts of Interest: The authors declare no conflicts of interest.



Polymers 2019, 11, 132 15 of 16

References

1. Long, J.J.; Cui, C.-L.; Wang, L.; Xu, H.M.; Yu, Z.J.; Bi, X.P. Effect of treatment pressure on wool fiber in
supercritical carbon dioxide fluid. J. Clean. Prod. 2013, 43, 52–58. [CrossRef]

2. Shen, J.; Gao, P.; Ma, H. The effect of tris(2-carboxyethyl)phosphine on the dyeing of wool fabrics with
natural dyes. Dyes Pigment. 2014, 108, 70–75. [CrossRef]

3. Kan, C.W.; Yuen, C.W.M.; Hung, O.N. Improving the pilling property of knitted wool fabric with atmospheric
pressure plasma treatment. Surf. Coat. Technol. 2013, 228 (Suppl. 1), S588–S592. [CrossRef]

4. Panda, P.K.; Rastogi, D.; Jassal, M.; Agrawal, A.K. Effect of atmospheric pressure helium plasma on felting
and low temperature dyeing of wool. J. Appl. Polym. Sci. 2012, 124, 4289–4297. [CrossRef]

5. Christie, R.M. The Chemistry of Colour Application; Blackwell Science: Oxford, UK; Malden, MA, USA, 2000.
6. Broadbent, A.D. Basic Principles of Textile Coloration (Textile Coloration); Society of Dyers and Colorists:

Bradford, UK, 2001.
7. Chen, L.; Wang, B.; Chen, J.; Ruan, X.; Yang, Y. Characterization of dimethyl sulfoxide-treated wool and

enhancement of reactive wool dyeing in non-aqueous medium. Text. Res. J. 2016, 86, 533–542. [CrossRef]
8. Cho, H.J.; Lewis, D.M.; Jia, B.H. Improved reactive dyeing of wool with novel trifunctional reactive dyes.

Color. Technol. 2007, 123, 86–95. [CrossRef]
9. Sadeghi-Kiakhani, M.; Safapour, S. Eco-friendly dyeing of treated wool fabrics with reactive dyes using

chitosanpoly(propylene imine) dendreimer hybrid. Clean Technol. Environ. Policy 2015, 17, 1019–1027.
[CrossRef]
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