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Serum neurofilament light in familial
Alzheimer disease
A marker of early neurodegeneration

ABSTRACT

Objectives: To investigate whether serum neurofilament light (NfL) concentration is increased in
familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated
with markers of disease stage and severity.

Methods: We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-
sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at
50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay
on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33
participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established
mutation status. A generalized least squares regression model was used to compare serum NfL
among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for
age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated
years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy.

Results: Nineteen of the asymptomatic participants were mutation carriers (mean EYO 29.6); 11
were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symp-
tomatic (p , 0.0001) and presymptomatic mutation carriers (p 5 0.007). Across all mutation
carriers, serum NfL correlated with EYO (r 5 0.81, p , 0.0001) and multiple cognitive and
imaging measures, including Mini-Mental State Examination (r 5 20.62, p 5 0.0001), Clinical
Dementia Rating Scale sum of boxes (r 5 0.79, p , 0.0001), baseline brain volume (r 5 20.62,
p 5 0.0002), and whole-brain atrophy rate (r 5 0.53, p 5 0.01).

Conclusions: Serum NfL concentration is increased in FAD prior to symptom onset and correlates
with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early
AD-related neurodegeneration. Neurology® 2017;89:2167–2175

GLOSSARY
AD 5 Alzheimer disease; ALS 5 amyotrophic lateral sclerosis; CDR 5 Clinical Dementia Rating Scale; CI 5 confidence
interval; EYO 5 estimated years from symptom onset; FAD 5 familial Alzheimer disease; FTD 5 frontotemporal dementia;
MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State Examination; NART 5 National Adult Reading Test; NfL 5
neurofilament light; PSP5 progressive supranuclear palsy; QC5 quality control; RMT5 Recognition Memory Test; Simoa5
single molecule array; SOB 5 sum of boxes; TIV 5 total intracranial volume; WASI 5 Wechsler Abbreviated Scale of
Intelligence.

There is great interest in testing potential disease-modifying treatments for Alzheimer disease
(AD) prior to onset of symptoms. To facilitate this, biomarkers are needed to identify at-risk
individuals, stage their disease, and track disease progression.1 Ideally, such biomarkers should
be noninvasive, inexpensive, and simple to acquire.2 Blood-based biomarkers would be very
valuable but are more challenging than CSF measures for several reasons, including lower blood
concentration of the target analyte, making reliable quantification more difficult.3
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One promising neurodegeneration bio-
marker in CSF is neurofilament light (NfL),
which increases in a number of neurologic
conditions, including AD.4–8 NfL can be de-
tected in serum using standard immunoassay
formats,9,10 but many samples have concentra-
tions below the analytical sensitivity of the
methods.11 We therefore used a recently devel-
oped immunoassay based on the single mole-
cule array (Simoa)12 that is 25-fold as sensitive
as the previous electrochemiluminescence-
based method for NfL.11

We measured serum NfL concentrations in
familial AD (FAD) mutation carriers and
mutation-negative relatives. FAD shares many
features, pathophysiologically and clinically,
with the more common sporadic form of dis-
ease.13 FAD mutation carriers have relatively
predictable ages at onset,14 which allows pro-
spective study of individuals prior to onset of
clinical AD. We hypothesized that, with
a more sensitive assay, elevated serum NfL
would be detectable in FAD mutation carriers
prior to symptom onset, and would correlate
with disease stage and rate of decline.

METHODS Standard protocol approvals, registrations,
and patient consents. The study was approved by the local

research ethics committee and all participants provided written

informed consent.

Participants. We recruited 48 participants from 24 FAD fami-

lies to a study at the Dementia Research Centre, University Col-

lege London, between April 2010 and September 2015.

Individuals were eligible if they had either a clinical diagnosis

of FAD or a parent with FAD. Eighteen participants were symp-

tomatic, with pathogenic mutations in the PSEN1 or APP genes;

30 individuals were asymptomatic but, by virtue of having an

affected parent, were at 50% risk of having inherited a mutation

and thereby of developing symptoms at a similar age to their

parent (see table e-1 at Neurology.org for family mutations).

For all participants, genetic testing using Sanger sequencing

determined the presence or absence of a mutation. Genetic data

were provided only to statisticians, ensuring participants and

clinicians remained blinded to genetic status; for this reason, it

was not possible prospectively to match asymptomatic mutation

carriers and noncarriers. Estimated years from symptom onset

(EYO) was calculated for mutation carriers by subtracting the

age at which the participant’s affected parent first developed pro-

gressive cognitive symptoms from the participant’s current age.

Study procedures included blood sampling, a semi-structured

health questionnaire (including exclusion of recent head injury),

neurologic examination, cognitive assessment, and volumetric

brain MRI, with all assessments completed within 4 months of

blood sample collection.

The study was approved by the Queen Square Research

Ethics Committee and all participants provided written informed

consent.

Cognitive assessment. Cognitive assessment included the

Wechsler Abbreviated Scale of Intelligence (WASI),15 the

National Adult Reading Test (NART) (a measure of premorbid

IQ),16 Recognition Memory Test (RMT) for Faces and Words,17

and the Mini-Mental State Examination (MMSE). A close

informant was interviewed separately to obtain a collateral his-

tory. The Clinical Dementia Rating Scale (CDR)18 provided an

additional estimate of clinical severity; both global CDR and

CDR sum of boxes (SOB) were calculated. Individuals were

defined as symptomatic if global CDR was .0 and consistent

symptoms of cognitive decline were reported by the participant or

an informant.

Measurement of serum NfL concentrations. Serum samples

were collected, processed, aliquoted, and frozen at2808C accord-

ing to standardized procedures. We measured serum NfL using

an ultrasensitive immunoassay on the Simoa platform, using the

same methodology as described previously.19 The lower limits of

detection and quantification, as defined by the concentration

derived from the signal of blank samples (sample diluent) 13

and 10 SDs, were 0.97 and 2.93 pg/mL, respectively. For a quality

control (QC) sample with a concentration of 13.0 pg/mL, repeat-

ability was 14.0% and intermediate precision was 15.7%. For

a QC sample with a concentration of 131.8 pg/mL, repeatability

was 13.3% and intermediate precision was 13.3%. All measure-

ments were performed by board-certified laboratory technicians

in one round of experiments using one batch of reagents.

MRI acquisition and analysis. MRI was obtained on 43 of the

48 participants at the time of the blood sample. Five participants

were not scanned due to either declining or an inability to tolerate

the scan (e.g., claustrophobia). For 33 of the 43 participants with

an initial scan, a second scan was performed at a separate visit

(mean interval 6 SD 5 1.3 6 0.46 years); the other 10 individ-

uals had no second scan due to either leaving the study (n5 5) or

it finishing before their second scan date (n 5 5).

All scans were performed on the same 3T Siemens (Munich,

Germany) TIM Trio scanner using a 32-channel phased array

head coil. A sagittal 3D magnetization-prepared rapid gradient

echo T1-weighted volumetric MRI (echo time/repetition time/

inversion time 5 2.9/2,200/900 ms, dimensions 256 3 256 3

208, voxel size 1.1 3 1.1 3 1.1 mm) was acquired. Images were

visually checked for artifacts. Four baseline scans and 2 follow-up

scans were excluded due to either movement or metallic dental

artifact, leaving 39 scans available for baseline volume measure-

ments and 30 pairs of scans for rates of atrophy measurements.

Whole brain, ventricular, and hippocampal volumes were calcu-

lated using semiautomated methods.20 For ventricles and hippo-

campi, the mean volume from right and left hemispheres was

calculated. All volumes were corrected for total intracranial vol-

ume (TIV) by dividing a participant’s volume by TIV and mul-

tiplying by the group mean TIV. Annualized rates of brain,

ventricular, and hippocampal volume change during the interscan

interval were calculated using the boundary shift interval, a regis-

tration-based measure of within-subject volume change.21

Statistical analysis. The primary objective of the study was to

compare serum NfL among symptomatic mutation carriers, pre-

symptomatic mutation carriers, and noncarrier controls. A gener-

alized least squares linear regression model, an extension of the t
test/analysis of variance model that allows different group-specific

residual variances, was used to compare NfL between groups,

adjusting for age and sex. Family was included as a random effect

to assess any effect of clustering within a family.

Spearman correlation coefficients were calculated to assess the

association between NfL and EYO, first across all mutation
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carriers and then in presymptomatic carriers only and symptom-

atic carriers only. This rank-based approach, which can be used

with bounded variables and is robust to non-normality and out-

liers, was also used for NfL and cognitive measures, including esti-

mated change in IQ (WASI IQ minus NART-predicted

premorbid IQ), recognition memory (an average of scores from

RMT faces and RMT words), MMSE, and CDR SOB. We also

assessed associations between NfL and the MRI measures. For

each association, we first calculated the Spearman coefficient

using all available data points, and second using data only from

individuals who completed all assessments.

We calculated Spearman correlation coefficients between

EYO and each cognitive and imaging measure, including only

presymptomatic participants. To allow results to be comparable,

these analyses were done using only individuals with all available

data points. For all analyses, missing values were assumed to be

missing completely at random. Throughout, the threshold for sta-

tistical significance was set at p , 0.05 (2-tailed) and no adjust-

ment was made for multiple testing.

RESULTS Participants’ demographic details, cogni-
tive scores, neuroimaging measures, and serum NfL
values are shown in table 1 and figure 1. Of the
asymptomatic participants, 19 were mutation carriers
and 11 were noncarriers; noncarriers were used as
healthy controls. The mean EYO of the presymptom-
atic mutation carriers was 29.6 years. Adjusting for
age and sex, serum NfL concentration was

significantly higher in symptomatic mutation carriers
compared with presymptomatic mutation carriers
(estimated difference in means 23.2 pg/mL, 95%
confidence interval [CI] 13.1–33.2; p , 0.0001)
and with noncarriers (29.2 pg/mL, 19.3–39.1; p ,

0.0001). Presymptomatic mutation carriers had sig-
nificantly higher NfL concentrations than noncarriers
(6.1 pg/mL, 1.6–10.5, p5 0.007). Allowing for clus-
tering within a family had no effect on results.

Across all mutation carriers, there was evidence of
an association between serum NfL concentrations
and EYO (Spearman r 5 0.81, p , 0.0001), with
individuals at a later disease stage having higher NfL
concentrations (figure 2). Furthermore, this associa-
tion was significant separately for both the presymp-
tomatic (r5 0.55, p5 0.01) and symptomatic (r5
0.49, p 5 0.04) groups. A post hoc linear regression
analysis in mutation carriers found no statistically
significant association between NfL and age, after
adjusting for EYO (i.e., disease stage) (p 5 0.15).

Figure 3 shows scatterplots and Spearman coeffi-
cients for serum NfL against cognitive and imaging
measures for all mutation carriers, with NfL concen-
tration showing a relatively even distribution
throughout the spectrum of disease severity. There

Table 1 Participant demographics, cognitive test scores, imaging measures, and serum neurofilament light (NfL) concentration

Noncarriers Presymptomatic carriers Symptomatic carriers

n 11 19 18

Age, y, mean (SD) 38.9 (9.5) 36.0 (5.7) 46.6 (9.3)

Sex, M/F 3/8 10/9 13/5

EYO, y — 29.6 (5.5) 13.4 (3.3)

MMSE/30 30.0 (30.0–30.0) 29.0 (29.0–30.0) 20.0 (19.0–27.0) (n 5 17)

Global CDR 0 (0–0) 0 (0–0) 0.5 (0.5–1.0) (n 5 16)

CDR SOB 0 (0–0) 0 (0–0) 3.75 (2–4.75) (n 5 16)

NART predicted IQ 101.0 (7.1) (n 5 10) 97.3 (11.9) 98.8 (13.9) (n 5 13)

WASI IQ 110.1 (10.2) (n 5 10) 98.7 (10.4) 85.7 (20.0) (n 5 13)

Estimated change in IQ 9.1 (8.0) (n 5 10) 1.4 (2) 213.2 (14.2) (n 5 13)

Combined RMT average/50 46.5 (45.5–47.5) (n 5 10) 44.5 (41.5–47.0) 38.0 (32.0–41.0) (n 5 13)

Baseline brain volume (corrected for TIV), mL 1,230 (56) (n 5 9) 1,220 (67) (n 5 17) 1,110 (59) (n 5 13)

Rate of whole brain atrophy, %/y 0.1 (0.4) (n 5 8) 0.1 (0.7) (n 5 13) 1.3 (1.6) (n 5 9)

Baseline ventricular volume (corrected for TIV), mL 10.5 (5) (n 5 9) 13.2 (7.5) (n 5 17) 24.3 (9.2) (n 5 12)

Rate of change in ventricular volume, %/y 0.6 (6.5) (n 5 8) 1.3 (5.6) (n 5 13) 16.4 (10.5) (n 5 9)

Baseline hippocampal volume (corrected for TIV), mL 2.8 (0.3) (n 5 8) 3.0 (0.2) (n 5 17) 2.5 (0.3) (n 5 12)

Rate of hippocampal atrophy, %/y (0.1) 1.0 (n 5 8) 0.6 (1.5) (n 5 13) 3.9 (2.5) (n 5 8)

Serum NfL, pg/mL 12.7 (7.2) 16.7 (7.7) 46.0 (20.8)

Abbreviations: CDR5 Clinical Dementia Rating Scale; EYO5 estimated years from onset; MMSE5Mini-Mental State Examination; NART 5 National Adult
Reading Test; RMT 5 Recognition Memory Test; SOB 5 sum of boxes; TIV 5 total intracranial volume; WASI 5 Wechsler Abbreviated Scale of Intelligence.
Estimated change in IQ was calculated by subtracting the current IQ (measured by the WASI) from the predicted premorbid IQ (measured by the NART). All
values are group means (with SD), except for constrained variables (MMSE, global CDR, CDR SOB, and combined RMT), which are shown as median
(interquartile range). Measures are uncorrected for any covariables. For variables with missing data points, the number of observations is shown after
the group average value (e.g., n 5 x).
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were statistically significant correlations between
serum NfL and cognitive measures, including
MMSE, CDR SOB, and estimated change in IQ,
with weaker evidence for a correlation with recogni-
tion memory score. In mutation carriers, there was
a significant correlation between NfL and cross-
sectional neuroimaging measures, including baseline
brain volume, baseline ventricular volume, and base-
line hippocampal volume. There was also a significant
correlation between serum NfL and subsequent rate
of change in both brain volume and ventricular vol-
ume, but not hippocampal volume. Repeating the
analysis including data only from the 19 individuals
who completed all assessments did not lead to mate-
rial change in results, other than for NfL and com-
bined RMT (p value changed from 0.06 to 0.6).

For presymptomatic carriers only, there was weak
evidence of a correlation between NfL and baseline
ventricular volume (r5 0.43, p5 0.08) and between
NfL and CDR SOB (r 5 0.40, p 5 0.08), but no
evidence of correlations with any other neuroimaging
or cognitive measures.

When including only the 13 presymptomatic in-
dividuals with serial imaging, there remained a signif-
icant correlation between serum NfL and EYO

(table 2). However, when assessing the correlations
between each of the 6 imaging measures and EYO in
the same individuals, none was statistically
significant.

DISCUSSION Using an ultrasensitive immunoassay,
we found serum NfL concentrations are increased in
a group of symptomatic FAD mutation carriers who
on average are only mildly clinically affected (median
global CDR 0.5); we also found increased NfL con-
centrations in presymptomatic mutation carriers,
who were on average 9 years from their predicted
symptom onset. Serum NfL correlated significantly
with the estimated years to/from symptom onset
(EYO) across all mutation carriers, as well as in the
symptomatic and presymptomatic groups separately.

Across all carriers, serum NfL correlated with
CDR SOB and several cognitive measures. There
was also a correlation between serum NfL and MRI
measures of AD-related neurodegeneration, both in
terms of cross-sectional volume loss and subsequent
rates of atrophy. This suggests serum NfL concentra-
tions may relate to disease severity or rate of
progression.

Our serum NfL concentrations for symptomatic
FAD are similar to a recent study of sporadic AD that
used the same ultrasensitive immunoassay
approach.22 The mean concentration for our symp-
tomatic group (46.0 pg/mL) (which contained a mix-
ture of mild cognitive impairment [MCI] and AD
dementia) lies between their mean values for separate
sporadic MCI (42.8 pg/mL) and AD dementia (51.0
pg/mL) groups. However, here we extend previous
findings by showing that measurable increases in
serum NfL precede the onset of symptomatic disease,
and are correlated with predicted time to symptom
onset. The observed progressive presymptomatic rise
is consistent with proposed models of presymptom-
atic AD neurodegeneration.23 NfL forms an impor-
tant part of axonal structural integrity, with its rise
likely to reflect early axonal breakdown.24

Our finding of a presymptomatic increase in
serum NfL in FAD mutation carriers contrasts with
findings from familial amyotrophic lateral sclerosis
(ALS), where no increase was detected until after
symptom onset despite symptomatic ALS partici-
pants having much higher concentrations than has
been detected in either familial or sporadic AD.25

This likely reflects differences in the underlying biol-
ogy and temporal pattern of neurodegeneration in
AD vs ALS. ALS is a more aggressive neurodegener-
ative process in the symptomatic stage, but without
the long, gradually progressive presymptomatic phase
characteristic of AD. Importantly, atrophy rates are
raised in the 5 years before symptoms in FAD and
amyloid deposition appears even earlier.26–28

Figure 1 Box and whisker plots for serum neurofilament light (NfL) across the 3
groups

The measured unadjusted serum NfL concentrations are shown. Mutation carriers have been
divided into those who are symptomatic and those who are presymptomatic.
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The correlation of serum NfL with cognitive
measures known to be sensitive to AD-related decline
supports the clinical relevance of NfL. While early
cognitive changes in FAD most commonly involve
episodic memory,29 we found that serum NfL corre-
lated more strongly with global cognitive measures
than with memory scores. This may relate to the
physiologic role of NfL throughout the brain as an
essential component of axonal stability, with initial
rise possibly reflecting subtle widespread breakdown
of neural networks, rather than focal, hippocampal
(gray matter) atrophy. The possibility that elevated
serum NfL levels more closely reflect global neuro-
degeneration is also supported by its correlation,
across all carriers, with whole brain and ventricular
volume loss. This contrasts with findings in other
neurodegenerative diseases, including progressive
supranuclear palsy (PSP) and frontotemporal demen-
tia (FTD), where disease-specific focal atrophy ap-
peared to be more strongly associated with NfL
than whole brain atrophy.19,30

It is notable that, while serum NfL correlated sig-
nificantly with disease stage (i.e., EYO) even when
including only presymptomatic participants, imaging
and cognitive measures did not. Serum NfL may
therefore be a more sensitive marker of early
neurodegeneration.

When measured in the CSF of individuals with
MCI, NfL has been found to be predictive of sub-
sequent progression to AD dementia,4 with a recent
meta-analysis showing it to have comparable

discriminatory power to the well-established CSF
AD biomarkers of Ab1-42, total tau, and phosphor-
ylated tau.3 Recent studies comparing NfL mea-
surement in CSF and serum have shown close
correlation,9,10,22 implying serum NfL may simi-
larly predict subsequent progression, in keeping
with our results.

A study in a FAD mouse model, which knocked
out the NfL gene, showed that NfL deficiency signif-
icantly increased AD-related neurodegeneration,
a finding that might suggest a role for NfL in main-
taining neuronal structure in patients with AD.31

Moreover, in APP/PS1 mice, histopathologic exami-
nation found NfL-positive neuritic abnormalities,
consistent with increased NfL in AD, signifying
underlying axonal damage.10 The same study showed
serum NfL concentrations increased early in the dis-
ease and were closely associated with progression of
AD-like pathology. Serum NfL concentrations
decreased in response to anti-Ab immunotherapy,
the authors suggesting that serum NfL may serve as
a biomarker of treatment response.

There are obvious benefits to identifying AD
biomarkers in blood,2 with numerous candidates
proposed.32 However, recent comprehensive meta-
analyses of blood-based markers showed only total
tau reliably differentiated AD from healthy con-
trols.3,33 Moreover, blood tau has only proven useful
in identifying AD in established dementia cases, with
no evidence that it is useful in earlier disease, and
there is often overlap between patient and control
groups.3,32 Studies attempting to measure blood con-
centrations of Ab1-42, the other core molecular
marker of AD pathology, have so far produced con-
flicting results, with no strong overall evidence of
a difference between AD and controls.3,32 Further-
more, even if b-amyloid moieties could be reliably
identified and quantified, as cerebral Ab deposition
is thought to plateau some time before symptom
onset,28 it may not track progression unless very early
in disease. By contrast, a marker of downstream neu-
rodegeneration, such as NfL, which may reflect ongo-
ing (global) disease activity, might be useful as a trial
outcome measure, from presymptomatic to symp-
tomatic phases. A blood test for neurodegeneration
might also be useful clinically in identifying which
individuals with cognitive concerns to prioritize for
more detailed investigation.

A number of studies investigated plasma or serum
profiles in an attempt to identify a pathologic finger-
print of AD, using profiling approaches including
proteomics, lipidomics, and transcriptomics.34–36

However, poor reproducibility remains an issue when
assessing large panels of molecules involved in poten-
tially diverse biological pathways, with several follow-
on studies showing negative results.37–39 Although our

Figure 2 Scatterplot of serum neurofilament light (NfL) against estimated
years from symptom onset (EYO)

Mutation carriers are represented by dots and noncarriers by crosses. To ensure it is
not possible to identify any of the individual asymptomatic participants (based on their
EYO) and so determine their mutation status, 2 outlying participants have been removed
and a jitter of up to 62 years has been applied to all remaining participants.
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findings find support from previous studies of
serum NfL in symptomatic AD,9,10,22 it will be
important (1) to replicate the presymptomatic
findings, before now shown only in mice,10 in other
at-risk FAD and sporadic AD cohorts (e.g., in
amyloid-positive older controls); and (2) to deter-
mine the clinical outcomes in these individuals to

assess the predictive value and time course of in-
creases in serum NfL.

While our results are encouraging, there are a num-
ber of issues regarding the utility of NfL as a bio-
marker of early AD. While as a group the
presymptomatic carriers had higher mean NfL than
noncarriers, there was a degree of overlap in observed

Figure 3 Scatterplots of serum neurofilament light (NfL) against cognitive and imaging measures across all
mutation carriers

Spearman r and the associated p value are shown for each scatterplot. Estimated change in IQ was calculated by sub-
tracting the current IQ (measured by the Wechsler Abbreviated Scale of Intelligence) from the predicted premorbid IQ
(measured by the National Adult Reading Test). CDR SOB 5 Clinical Dementia Rating Scale sum of boxes; MMSE 5 Mini-
Mental State Examination; RMT 5 Recognition Memory Test.
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values. The utility of serum NfL to diagnose pre-
symptomatic AD at the individual level therefore re-
mains uncertain and needs reassessment in
independent cohorts. The changes in serum NfL
through the course of the disease were analyzed in
cross-sectional data only, so it is also not known
whether serum NfL tracks progression at an individ-
ual level. Also, while our findings support the use of
serum NfL as a marker of neurodegeneration in
AD, NfL is not a specific marker to AD and has been
shown to increase in a number of other conditions,
including HIV-associated dementia, PSP, FTD, and
ALS.19,25,30,40 It may therefore be that serum NfL will
be most useful for identifying and tracking AD-
related neurodegeneration when combined with a test
to confirm underlying AD molecular pathology, e.g.,
CSF tau/Ab1-42 or amyloid PET.

Our study has limitations. The sample size was
not large, owing primarily to the relative rarity of
FAD mutations. However, this remains one of the
largest single-center FAD cohorts yet reported. For
a number of participants, not all cognitive and imag-
ing assessments were completed. However, minimal
changes were seen when rerunning the analyses to
include only those participants who had completed
all assessments. We estimated the age when each
mutation carrier would be expected to develop
symptoms based on parental age at onset, which
is closely associated with actual age at onset14; how-
ever, this remains a proxy measure, and it is only

with longitudinal follow-up that age at onset can be
confirmed.

We show, using an ultrasensitive assay, that serum
NfL concentration is increased in FAD prior to symp-
tomatic disease, and correlates with the number of
years to/from predicted symptom onset. Serum NfL
also correlated with neuroimaging and cognitive
markers of disease severity. Our findings support
the further investigation of serum NfL as an easily
accessible biomarker of early AD-related
neurodegeneration.
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