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Abstract: γδT cells have recently gained considerable attention as an attractive tool for cancer adoptive
immunotherapy due to their potent anti-tumor activity and unique role in immunosurveillance.
The remarkable success of engineered T cells for the treatment of hematological malignancies has
revolutionized the field of adoptive cell immunotherapy. Accordingly, major efforts are underway to
translate this exciting technology to the treatment of solid tumors and the development of allogeneic
therapies. The unique features of γδ T cells, including their major histocompatibility complex
(MHC)-independent anti-cancer activity, tissue tropism, and multivalent response against a broad
spectrum of the tumors, render them ideal for designing universal ‘third-party’ cell products, with the
potential to overcome the challenges of allogeneic cell therapy. In this review, we describe the crucial
role of γδ T cells in anti-tumor immunosurveillance and we summarize the different approaches used
for the ex vivo and in vivo expansion of γδ T cells suitable for the development of novel strategies
for cancer therapy. We further discuss the different transduction strategies aiming at redirecting or
improving the function of γδ T cells, as well as, the considerations for the clinical applications.

Keywords: γδ T cell; gamma delta T cell; expansion; immunotherapy; allogeneic; third-party;
adoptive cell therapy; transduction; bisphosphonate; phosphoantigen

1. Introduction

γδ T cells are the prototype of ‘unconventional’ T cells, containing a T cell receptor (TCR)
composed of γ and δ chains with diverse structural and functional heterogeneity. With both innate-
and adaptive-like properties, γδ T cells bridge innate and adaptive immunity [1] and participate in
various immune responses to overcome a myriad of challenges. The innate like properties of γδ
T cells mirror those of natural killer (NK) cells, expressing the NK receptor NKG2D, and showing
cytotoxicity against stressed and abnormal cells, such as viral infected and tumor cells [2]. Interestingly,
in most target-response processes, the highly variable γδ TCR is involved which is a distinct feature of
adaptive immunity. Human γδ T cells normally comprise only 1–5% of circulating T lymphocytes
but undergo rapid expansion in response to tumor, inflammation, and invading pathogens such as
cytomegalovirus (CMV) [3] and malaria [4]. In addition, γδ T cells demonstrate cytotoxic activity via
the granzyme-perforin axis and antibody (Ab)-dependent cellular cytotoxicity (ADCC) via FcγRIII
(CD16) expression [5]. γδ T cells release cytokines such as TNF-α, IFN-γ, and IL-17 [6], prime T cells at
the tumor site by playing the role of antigen presenting cells (APC) [7], as well as interacting with B
cells in promoting immunoglobulin (Ig) class switching. Several studies have shown that γδ T cells
can robustly kill a wide range of tumor cells from both solid and hematopoietic malignancies [8,9] and
that their infiltration into the tumors is the most positive prognostic marker in many cancers [10].
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γδ T cells are known to recognize stress induced molecules, typically expressed by malignant
cells [11]. Ligand recognition by the γδ TCR often requires expression of accessory costimulatory stress
molecules on both T lymphocytes and target cells which, therefore, provides a mechanism preventing
harmful self-reactivity [12,13]. Unlike conventional αβ T cells, γδ T cells recognize their target antigens
irrespective of major histocompatibility complex (MHC) haplotype, and mediate anti-tumor response
without causing graft versus host disease (GvHD) [14]. These combined characteristics render γδ T
cells ideal candidates for cancer therapy with exciting possible application as a third-party product [15].
Emergence of synthetic biology and novel engineering approaches has provided ample opportunity to
genetically modify and manipulate immune cells. These strategies can be employed to optimize the
unique anti-tumor function of γδ T cells for future cancer therapies.

1.1. Human Adult γδ T Cells Subsets

Human γδ T cells are divided into two main subsets based on their TCR usage of the Vδ1 chain
or Vδ2 chain. Most of γδ T cells in human blood use the Vδ2 chain [16] which is typically paired
with the Vγ9 chain [17]. Once activated, Vδ2 cells are a source of pro-inflammatory cytokines such as
IFN-γ and TNF-α and typically recognize pyrophosphate antigens produced by bacteria [16]. Vγ9Vδ2
T cells account for 50–95% of the peripheral γδ T cells within the 1–5% γδ T cells in circulation.
The Vγ9Vδ2 T cells are specially adapted for tumor immunity through potent and broad tumor
cytotoxicity, MHC-independency, relative resilience to the suppressive role of programmed cell death-1
(PD-1), low IL-17A production, and activation of NK cells cytotoxicity [18]. Vδ2 γδ T cells have a
semi-invariant TCR and mainly behave in an innate-like manner. In adult humans, the γ repertoire of
Vγ9Vδ2 T cells is public, whereas the δ repertoire is private [19–21].

Vδ1 γδ T cells represent the predominant T cell subset in solid tissues and the second most frequent
subset in peripheral blood (1–3% of lymphocytes) next to Vγ9Vδ2 T cells. Vδ1 T cells mainly reside in
mucosal epithelial tissues, comprising approximately 40% of all intra-epithelial lymphocytes in the
large intestine, and display potent anti-tumor activity. The Vδ1 TCR repertoire in adult humans is often
private, primarily consisting of a few clones, sharing adaptive immunity features [22–24]. Vδ1 cells via
their NKG2D receptors recognize MHC class I related polymorphic molecules such as MICA/MICB [16]
and UL16-binding protein (ULBP) which are induced upon stress, damage, or transformation of cells.
By engaging NKG2D receptor, MICA/B and ULBP act as a ‘kill me’ signal for the cytotoxic T cells [25]
(Figure 1).
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provides additional costimulatory signals for γδ T cells. 

Figure 1. Mechanisms of γδ T cells activation. Bisphosphonates (BP) and nitrogenous-BP (N-BP) block
the farnesyl pyrophosphate synthase (FPPS) enzyme in isoprenoid biosynthesis pathway in target cell
or antigen presenting cells (APC) which leads to the accumulation of isopentenyl pyrophosphate (IPP)
and its metabolites. IPP and geranyl pyrophosphate (GPP) react with cytoplasmic tail of butyrophilin-3
subfamily molecules (e.g., BTN3A1) and stir a change which is detectable by γδ TCR. IPP metabolites
can also be converted into an ATP analog (ApppI). ApppI can be presented at the cell surface and be
recognized by the γδ TCR; however, the molecular mechanism of this process is not yet clear. Some of
the known ligands for Vδ1 and Vδ2 T cells are shown here. Cell stress and bacterial pathogens induce
expression of MHC class I chain-related protein A and protein B (MICA/MICB) molecules which react
with NKG2D on Vδ1. MICA also binds to NKG2D on Vγ9Vδ2 T cells. Several members of BTN family
such as BTN3A1, BTN3A2, and BTN2A can bind to Vδ2 TCR and activate Vδ2 T cells. This activation is
often via mechanisms involving multimerization of BTN molecules and exerting a synergistic effect.
Moreover, UL16-binding protein (ULBP) which is a ligand for NKG2D receptor, as well as involvement
of CD28 and 4-1BB receptors with their ligands provides additional costimulatory signals for γδ T cells.
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Most studies on human γδ T cells have focused on the Vδ2 and Vδ1 subsets, although there
are other subsets of γδ T cells with different distribution in various tissues. Of these, the Vδ3 cells
represent a minor subset found in blood (≈0.2% of lymphocytes), liver, and gut, that is often described
as Vδ1−Vδ2−. Vδ3 T cells expand in presence of CMV and have been shown to induce dendritic cells
(DC) and B cell maturation [26]. Other γδ T cells subsets expressing different Vδ chains such as Vδ4,
Vδ5, Vδ6, Vδ7, and Vδ8 [27] have been found which pair with different Vγ chains. Vγ2, Vγ3, Vγ4,
Vγ5, and Vγ8 located within the g locus on chromosome 7 in humans, are occasionally used for γ gene
rearrangement [28]. These subsets have been found in patients with various infections, but they are
rare and have not been sufficiently studied mainly due to the lack of effective expansion techniques
and specific antibodies [29]. The current advances on single cell sequencing technology may provide
an opportunity to identify and explore these rare subsets within different tissues.

1.2. The Hybrid αβ/γδ T Cells

The immunological dogma is that conventional αβ and γδ T cells originate from common
precursors in the thymus, then develop into cells expressing either αβ or γδ TCR and occupy a specific
and highly conserved niche within the immune system. The mechanisms underlying the divergence
and lineage fate are not completely defined. Expression of aberrant TCR chains has been demonstrated
among αβ and γδ T cell populations in mice [30–32]. For example, in-frame TCR δ rearrangements
have been identified in αβ T cells [33], and functional TCR β rearrangements have been detected in
γδ T cells [34]. Such aberrant TCR chain expression in mice may be explained by the fact that (i) the
murine TCR α/δ locus co-expresses α and δ TCR, thus implying productive rearrangement of TCR α

and TCR δ on different alleles, and (ii) the TCR γ locus is repeatedly duplicated which may result in
multiple rearrangements. Pellicci et al. characterized a population of human T cells, named δ/αβ T
cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α
domains, paired with an array of TCR-β chains. They demonstrated that these cells, which represent
≈50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based antigens presented by human
leukocyte antigen (HLA) and CD1d, respectively [35].

Intriguingly, Ziegler et al. documented a population of Vδ1+CD4+ γδ T cells expressing stem
cell and progenitor markers, i.e., CD34 and CD38, that are able to develop into functional αβ T cells.
The route taken by this process involves the re-organization of the Vδ1+ γδ TCR into the αβ TCR, as a
consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components.
The authors monitored TCR changes in Vδ1+CD4+ clones and observed that, under inflammatory
stimuli, these cells downregulated the TCR-γ and TCR-δ chains and simultaneously rearranged
TRBV and TRAV segments. Such trans-differentiation process was readily detectable in vivo in
inflamed tissue providing a conceptual framework for extrathymic T cell development. Thus, the αβ

T cells reconstituted with this mechanism may be unable to induce GvHD, since they acquire a
“self-education” [36].

Interestingly, Bertaina et al. reported that the key signature protein of proteotype γδ T cells in
transplanted patients treated with ZOL [37], is Bloom (BLM), which is important in development,
maintenance, and function of αβ T lymphocytes [38]. Mutations in BLM are responsible for
Bloom Syndrome, a disorder characterized by immunodeficiency and propensity to develop cancer.
The essential role of BLM in early αβ T cell differentiation was evidenced by the impairment of T cell
differentiation, proliferation, and response to antigens in BLM-deficient mice. Thus, in addition to the
fact that ZOL increased the Vδ1 percentage and induced BLM in γδ T cells [37], ZOL may induce a
‘reservoir’ of αβ T cell progenitors for the development of αβ T cells in vivo.

Very recently, Edwards et al. identified a discrete population of T cells that coexpressed αβ

and γδ TCRs. These hybrid αβ-γδ T cells were transcriptomically distinct from conventional γδ T
cells, poised to migrate to sites of inflammation, and were responsive to MHC class I/II-restricted
peptide antigens or to stimulation with IL-1β and IL-23. In line with these findings, hybrid αβ-γδ T
cells protected against infection with Staphylococcus aureus and, by recruiting encephalitogenic Th17
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cells, triggered autoimmune pathology in the central nervous system [39]. The hybrid αβ/γδ T cells
are a newly discovered population that may illuminate new immunological scenarios and novel
therapeutic perspectives.

1.3. γδ T Cells: An Appealing Source for Adoptive Cell Immunotherapy

γδ T cells are attractive candidates for adoptive cell immunotherapy due to their unique
biology. The following features pinpoint the favorable characteristics of γδ T cells over αβ T
cells for cancer treatment.

First, γδ T cell tumor recognition and killing is not dependent on the expression of a single
antigen. In contrast, they recognize a broad spectrum of antigens on various cancer cells through
their diverse innate cytotoxicity receptors expressed on their cell membrane [40]. This broad response
reduces the chances of tumor immune escape by single antigen loss. In addition, this property provides
opportunity for designing immunotherapies for tumors lacking well-defined neo-antigens and without
the need of further genetic engineering.

Second, γδ T cells recognize their target cells in an MHC-independent manner leading to low
or absent risk for alloreactivity and GvHD, thus allowing the development of universal third-party
allogeneic cell products for several malignancies.

Third, γδ T cells home in a wide variety of tissues wherein they can rapidly respond to the target
and release effector cytokines. This natural tissue tropism of γδ T cells, especially of the Vδ1 subset,
provides migratory advantage over αβ T cells and higher ability to infiltrate and function in tumors
hypoxic environments [41].

Furthermore, growing evidence indicates that γδ T cells interact with APCs and other immune
cells, while also playing the role of APCs by priming the antigens for αβ T cells thereby enabling the
orchestration of a cascade of immune responses against tumors [42].

These features make unmodified γδ T cells an attractive source for adoptive cell immunotherapy.
However, genetic engineering strategies may also be applied to enhance their cytotoxicity and
redirect them toward specific targets. For example, using γδ T cells, either as a vehicle for chimeric
antigen receptors (CARs) or αβ T cell-derived TCRs [43], may provide exciting results by combining
tissue resident property and innate-like recognition of γδ T cells with antigen-specific activation and
engagement of multiple costimulatory signals. To date, the major obstacle to the broad application
of γδ T cells for adoptive cell immunotherapy remains effective strategies of in vivo or ex vivo
expansion [44,45].

2. Expansion Strategies

The broad application of γδ T cells for adoptive cell immunotherapy has been hindered by their
low physiological frequency in the periphery, and the difficulty of ex vivo expansion. Considerable
efforts are currently devoted to developing suitable methods for obtaining clinical numbers of γδ T
cells [45]. The expansion strategy of γδ T cells can be bimodal: ex vivo and in vivo. In the first, γδ T
lymphocytes are isolated from peripheral blood mononuclear cells (PBMCs) and stimulated ex vivo
using synthetic phosphoantigen (pAg) or bisphosphonates (BP) such as zoledronic acid [46].

Ex vivo expansion of γδ T cells has been clinically applied and has shown promising results [41].
The second approach involves stimulation and expansion ofγδT cells in vivo by systemic administration
of pAg or nitrogenous-BP (N-BP). These two approaches will be explained in detail in the following
section (Tables 1 and 2).
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Table 1. In vitro studies using phosphoantigens or bisphosphonates for γδ T cells expansion.

pAg or BP (conc.) Additional Stimuli Cytokine (conc.) Transduction Subset Target Citation

ZOL (5 uM) IL-2 (100 IU/mL) - - - Baker FL. 2020 [47]
Synthetic HMBPP (0.1–1.0

nM)
IL-2, IL-4, IL-7, IL-15,

IL-21, IFNα/β etc. - Vγ9Vδ2 - Vermijlen D. 2007 [48]

IPP (2 ug/mL) Irradiated lymphoma
cells

IL-12/IL-4 or
IL-4/IL-12 - - - Wesch D. 2001 [49]

ZOL (5 uM) IL-2 (200 IU/mL) - - Cholangiocarci-noma Berglund S. 2018 [50] *
HMBPP (0.1–10 ng/mL) IL-2, IL-7, Il-15, IL-21 - - - Eberl M. 2002 [51]

IPP (variable) IL-2, IL-7, IL-15 - Vγ9Vδ2 - Caccamo N. 2005 [52]

IPP (50 uM) aAPC, anti-γδ T
mAbs IL-2, IL-21 - Polyclonal Neuroblastoma Fisher J. 2014 [53]

Pamidronate (10 µg/mL) IL-2, IL-23, IL-1β, IL-6 - - - Zhang H. 2020 [54]
ZOL (5 µM),

PMA/Ionomycin (750
ng/mL)

- - Vδ2, Vδ1 - Beucke N. 2019 [55]

ZOL, IPP (20 µg/mL) Anti-γδ TCR mAb IL-2, IL-15 - Vδ2 - Schilbach K. 2020 [56]
HMBPP (20 ng/mL) Feeder cells IL-2, IL-21 Retroviral Vγ9Vδ2 - Wu K. 2019 [57]

IPP (2–5 ug/mL) IL-2 (100–1000 U/mL) Lentiviral - - Wang RN. 2019 [58]
ZOL (5 uM) IL-2 (100–200 IU/mL) Retroviral - - Fisher J. 2019 [59]

ZOL (40 ug/mL), Con-A (1
mg/mL) IL-2, IL-4 Retroviral Vδ2, Vδ1 - Capsomidis A. 2017 [42]

ZOL (5 uM), OKT3 IL-2 (1000 IU/mL) RNA electroporation - Melanoma Harrer DC. 2017 [60]

ZOL (1 ug/mL) Irradiated feeder cells IL-2 (100 IU/mL),
IL-15 (10 ng/mL) Retroviral - - Rischer M. 2004 [61]

ZOL (1 uM) IL-2 (50 U/mL) Lentiviral - Glioblastoma Lamb LS. 2013 [62]
ZOL (5 µM) IL-2 (300 IU/mL) RNA electroporation Vγ9Vδ2 - Shimizu K. 2015 [63]

ZOL (5 uM) Engineered K562
feeder cells IL-2 (300 IU/mL) RNA electroporation Vγ9Vδ2 - Xiao L. 2018 [45]

ZOL, zoledronate; HMBPP, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate; IPP, Isopentenyl pyrophosphate; Con-A, concanavalin-A; mAb, monoclonal antibody. * Used umbilical
cord as source.
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Table 2. Clinical studies using phosphoantigens or bisphosphonates for γδ T cells activation and expansion.

pAg or BP (conc.) Treatment Strategy Cytokine Subset Target Citation

ZOL (0.05 mg/kg,1–3
doses)

IV infusion, then in vitro
expansion - Vδ2, Vδ1 Leukemia Bertaina A. 2017 [37]

ZOL (4 mg starting dose) IV infusion +
chemotherapy - - Breast cancer Aft R. 2010 [64]

ZOL (5 uM) Ex vivo expansion and IP
injection IL-2 (1000 IU/mL) Vγ9Vδ2 Gastric cancer Wada I. 2014 [65]

ZOL (4 mg, every 21 days) IV infusion + Ca and vit.
D supplement IL-2 (0.6 × 106 IU), SQ - Prostate cancer Dieli F. 2007 [66]

ZOL Ex vivo expansion and
adoptive transfer IL-2 (1000 IU/mL) - Non-small cell lung

cancer
Nakajima J. 2010 [67],

Sakamoto M. 2011 [68]

ZOL (5 uM) Ex vivo expansion and
adoptive transfer IL-2 (1000 IU/mL) Vγ9Vδ2 Solid tumors Noguchi A. 2011 [69]

ZOL (4 mg starting dose) IV infusion IL-2 (7 × 106U/m2), SQ Vγ9Vδ2 Renal carcinoma Lang JM. 2011 [70]

ZOL (4 mg starting dose)
IV infusion post-CD4/CD8

depleted leukapheresis
product infusion

IL-2 (1 × 106 U/m2), SQ - Hematological
malignancies Wilhelm M. 2014 [71]

ZOL (5 uM) Ex vivo expansion and
adoptive transfer IL-2 (1000 IU/mL) Vγ9Vδ2 Colorectal cancer Izumi T. 2013 [72]

ZOL (4 mg starting dose) IV infusion IL-2 (2 × 106 IU/m2) -
Renal cell carcinoma,

melanoma, acute myeloid
leukemia

Kunzmann V. 2012 [73]

Pamidronate (90 mg
starting dose) IV infusion IL-2 (3 × 106 IU/m2) - Non-Hodgkin lymphoma

or multiple myeloma Wilhelm M. 2003 [74]

2M3B1-PP (100 uM) Ex vivo expansion and
adoptive transfer IL-2 (100 IU/mL) - Renal carcinoma Kobayashi H. 2007 [75]

2M3B1-PP (100 uM) +
ZOL (4 mg)

Ex vivo expansion and
adoptive transfer, + ZOL

IV infusion

IL-2 (100 IU/mL), IL-2 (1.4
× 106 IU) Renal carcinoma Kobayashi H. 2011 [76]

BrHPP (IPH1101,
Phosphostim) (3 uM)

Ex vivo expansion and
adoptive transfer

IL-2 (20–60 ng/mL), (2 ×
106 IU/m2), SQ Vγ9Vδ2 Metastatic renal cell

carcinoma Bennouna J. 2008 [77]

ZOL, zoledronate; IV, Intravenous; IP, intraperitoneal injection; 2M3B1-PP, 2-methyl-3-butenyl-1-pyrophosphate; BrHPP, Bromohydrin Pyrophosphate; SQ, subcutaneous.



Cells 2020, 9, 1305 8 of 26

Although the main source for isolation of γδ T cells is PBMCs, these cells have also been isolated
from alternative sources, such as umbilical cord blood (UCB) [50].

2.1. Ex Vivo Expansion of Vδ2 γδ T Cells

Using pAg is the most established method for expanding Vδ2 γδ T cells in vitro and
in vivo [17]. The most potent pAg activators for Vδ2 T cells are isopentenyl pyrophosphate (IPP) and
(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), the latter being a natural intermediate of
the non-mevalonate pathway of IPP biosynthesis [78–80]. Small changes in the structure of these pAg,
either on the phosphate or the isoprene moieties, profoundly affect the γδ T cell stimulatory capacity.
Several analogs of these compounds have been synthesized with an intermediate stimulatory capacity
between that of IPP and of HMBPP [81]. The recognition of tumors by γδ T cells is ascribed to the
abnormally elevated production of IPP by tumor cells, as result of changes in the regulation of their
isoprenoid metabolic pathway [82]. These findings support the concept that γδ T cells may cross-react
to phosphorylated metabolites accumulating inside tumor cells and to metabolites released by bacterial
cells in the microenvironment. Importantly, when bacteria infect target cells, they induce alteration of
the host isoprenoid pathway by subverting several regulatory mechanisms [83,84]. These alterations
lead to a transient and acute accumulation of IPP, which is then responsible for the activation of γδ T
cells. Therefore, summarizing, γδ T cells may recognize (i) tumor cells that accumulate IPP; (ii) bacterial
metabolites such as HMBPP, and (iii) cells accumulating IPP following infection with bacteria not
producing HMBPP (Figure 2).
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Figure 2. Various phosphoantigen and bisphosphonate compounds. Some of the most important
pAgs and BPs mentioned in the text are shown here. BPs are a class of chemical compounds with
two PO3 (phosphonate) groups that are widely used to treat osteoporosis (the condition of low bone
density). Zoledronate is one of the most potent N-BPs that have been widely used for in vitro and
in vivo expansion of Vδ2 γδ T cells. (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)
is an essential metabolite in most pathogens including mycobacterium tuberculosis and malaria.
Isopentenyl pyrophosphate (IPP) and geranyl pyrophosphate (GPP) are the intermediate metabolites
in the isoprenoid biosynthesis pathways. Bromohydrin pyrophosphate (BrHPP) is a synthetic alkyl
diphosphate pAg. Pyrophosphates such as IPP and GPP are able to directly stimulate Vδ2 γδ T cells,
while BPs act indirectly via blocking the FPPS enzyme in isoprenoid biosynthesis pathways which
results in IPP and GPP accumulation in the cells (see Figure 1).
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BPs were originally used in the treatment of osteoporosis and other bone disorders [85]; however,
they have shown to prompt several clinical indications including cytotoxic activity as a monotherapy [64]
and activation of γδ T cells [86]. Zoledronic acid (Zoledronate, Zometa, ZOL) is the most potent of the
clinically used N-BP [87]. ZOL has direct effects on tumor cells in vitro through induction of apoptosis
and reduction of viability and proliferation of several cancer cell lines [88]. The various natural and
synthetic pAg compounds are shown in Figure 2.

Though the molecular recognition events are not yet fully explained, it seems that a hydrophobic
alkyl moiety linked to a polar group containing one or more phosphates in these small chemical
compounds, is sensed by γδ T cells consequently activating γδ T cells in a TCR-dependent manner [89].
It has been reported that BPs block the isoprenoid biosynthesis pathway by inhibiting farnesyl
pyrophosphate synthase (FPPS) enzyme and cause the accumulation of prenyl pyrophosphate
metabolites, such as IPP and geranyl pyrophosphate (GPP) within cells [90]. IPP and GPP bind
to the cytoplasmic tail of a B7-family related molecule of the Ig-superfamily, called butyrophilin 3A1
(BTN3A1) [91]. This binding stirs a change in BTN3A1 that is detected by Vδ2 TCR at the cell surface,
leading to cell proliferation and induction of effector functions [92]. Studies have shown that all
the three isoforms of BTN3A molecule, BTN3A1, BTN3A2, and BTN3A3, can stimulate Vγ9Vδ2 T
cells [93], and activate them through mechanisms involving multimerization of BTN3A molecules [94].
Other BTN molecules were discovered to play a role in Vδ2 T cell response to pAgs. In a recent study,
butyrophilin 2A1 (BTN2A1) was identified as a key ligand binding TCR Vγ9 chain and acting together
with BTN3A1 to initiate responses to pAgs. Detection of this heteromeric butyrophilin complexes by
Vδ2 T cells represents a distinct class of immune recognition [95].

IPP metabolites can be converted into an ATP analog (ApppI), which could be presented at the
cell surface and recognized by γδ TCR [96]; however the exact molecular mechanism is unknown.
The proposed mechanisms of γδ T cells activation by pAgs and cellular stress are illustrated in Figure 1.

Vγ9Vδ2 T cells can be simply stimulated and selectively expanded to high cell numbers (up to
800-fold) using pAg or BP plus the appropriate cytokine [61,97]. In clinical studies, the synthetic pAg
BrHPP (3 µM) [77] and 2M3B1-PP (100 µM) have been used for ex vivo expansion of Vγ9Vδ2 T cells
before adoptive transfer [76]. For expanding Vγ9Vδ2 T cells, ZOL have been used ranging from 1 to
5 µM [98]. A different protocol was tested in a recent study, wherein a much higher concentrations of
ZOL (100 µM) was used to pulse PBMC for only a short time (4 h). This protocol resulted in greater
expansion compared to those using continuous low concentrations of ZOL (10 µM) [99]. Some of the
in vitro studies using pAgs and BPs for γδ T cells expansion are listed in Table 1.

2.2. Ex Vivo Expansion of Vδ1 γδ T Cells

To harness polyclonal activity of the γδ T cells, the expansion of a heterogenous population with a
broad range of γδ TCRs is highly advantageous. Lorenzo et al. expanded FACS-sorted Vδ1 T cells
using a cytokine cocktail and OKT-3 mAb, and demonstrated their robust cytotoxicity against acute
myeloid leukemia (AML) cells without inducing antigen loss. Using high-throughput sequencing they
confirmed a polyclonal TCR repertoire [40]. Though Vδ1 expansion is not simply achievable via a
pharmacological activation comparable to the pAg-induced activation of Vγ9Vδ2 T cells, it has been
shown that plant-derived mitogens such as concanavalin-A (Con-A) can expand Vδ1 T cells [42,100].
Siegers et al. achieved a high yield of Vδ1 T cells using Con-A and recombinant human IL-2 and IL-4
(10 ng/mL) on freshly isolated PBMCs, although this result was attributed to the period of Con-A
treatment which led to the apoptosis of Vδ2 cells [101].

In addition, a two-step protocol for the expansion of Vδ1 T cells was established by Almeida et al.
They used magnetically isolated γδ T cells as starting material, and expanded them for 14 days using
anti-CD3 Ab in the presence of IL-1β, IL-4, IL-21, and IFN-γ. Subsequently, cells were transferred
into fresh cell culture medium supplemented with IL-15 and IFN-γ, followed by re-stimulation with
anti-CD3 Ab and cultured for another week. This expansion protocol resulted in an accumulation of
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70% Vδ1 T cells with high expression of NK-receptors and high toxicity against chronic lymphocytic
leukemia (CLL) cells [102].

In another study, three different expansion methods including ZOL, Con-A, and CD3/28 antibodies
were tested to expand γδ T cells from healthy PBMCs pre-transduction. As expected, ZOL preferentially
expanded the Vδ2 subtype (>80% purity by day 13 post-activation). Con-A expanded both Vδ1 and
Vδ2 cells; however, the expansion was not as high as ZOL for Vδ2, and most cultured cells remained
αβ T cells by day 13. CD3/28 antibodies predominantly expanded αβ T cells as expected [42]. Table 1
shows a summarized list of in vitro studies focused on pAg and BP-based expansion of γδ T cells.

2.3. Ex Vivo Expansion Using mAbs

Alternative strategies for expanding or activating γδ T cells that do not respond to pAgs or N-BP,
such as the use of monoclonal antibodies (mAb) are in development [41]. A clearer understanding of
the Vδ2 TCR signaling and its interaction with BTN3A has led to the development of activating mAbs
that potentially remove the need for direct TCR stimulation [103]. Harly et al. demonstrated that 20.1,
a weak agonist Ab specific for CD277 (a member of BTN3 subfamily), mimics pAg-induced Vγ9Vδ2 T
cell activation [104]. These antibodies may simulate a conformational change in the CD277 molecule
that is recognized by Vδ2 TCR [103].

One of the first studies using mAb for expansion of γδ T cells, was performed by Lopez et al.
They developed an expansion strategy based on anti-CD2-mAb which generated IL-21-dependant
signals. This approach led to the expansion of a large population of viable and functional γδ T cells as
well as protecting the γδ T cells from mitogen-induced apoptosis (ADCC). The γδ T cells expanded by
this approach, retained their anti-tumor activity against a broad range of hematologic and solid primary
tumors and cell lines [105]. To date, the use of anti-γδ TCR mAbs for expansion of γδ T cells has not
been successful in vitro. ImCheck Therapeutics is focused on therapeutic Abs that target different
members of butyrophilins (BTN/BTNL) family for γδ T cells-based cancer treatment. The activating
Abs have been designed to bind certain BTN/BTNL molecules, thereby activating Vγ9Vδ2 T cells for
cancer immunotherapy. The antagonist Abs targeting BTN/BTNL molecules are underway for treating
auto-immune disease. Currently, there are several companies focusing on generating mAbs for the
selective expansion of γδ T cells subset for adoptive cell immunotherapy, but no phase I clinical trials
have been opened with these products.

2.4. γδ T Cell Modulation with Different Substances

Several substances have been used to modulate γδ T cell differentiation and to augment their
anti-tumor reactivity including interleukins, TGF-β, vitamin C, and Abs. PAgs commonly used for the
γδ T cells expansion, were found to also skew the profile of Vγ9Vδ2 T cells towards a Th1 like profile,
with a characteristic production of IFN-γ and TNF-α [106]. Such Th1-like phenotype can be further
shaped by additional factors to serve the needs of immunotherapy. The modulatory effects of different
substances on γδ T cells profile are depicted in Figure 3.
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IL-15, IL-21 and vitamin C skew the profile of γδ T cells toward Th1-like profile meaning increased
proliferation, survival, and cytotoxicity. Transforming growth factor-β (TGF-β) enhances Th1-like
profile, as well as inducing γδ T cells migration and synapse formation with target cells. Monoclonal
antibodies (mAb) and bispecific Abs targeting a tumor associated antigen when used in combination
with γδ T cell therapy, can direct γδ T cells to the tumor cells and enhance the formation of cell–cell
immunological synapse leading to increased cytotoxicity. Ab, antibody; Vit. C, vitamin C.

2.4.1. Interleukins

IL-2 cytokine has been most frequently used for supporting the expansion and survival of Vγ9Vδ2
T cells [107]. Its working concentration ranged from 100 to 300 IU when combined with pAgs and
from 100 to 1000 IU when used with ZOL; and it requires repetitive replenishment in the culture media
every 2–3 days [46,98].

Growing evidence indicates that IL-15 is more efficient at expanding γδ T cells with an effector
phenotype compared to IL-2. Moreover, effector memory Vγ9Vδ2 T cells derived from renal cell
carcinoma tumors were efficiently expanded using BrHPP combined with IL-15, but not IL-2 [108].
In addition, IL-15 induced higher toxicity in BrHPP activated Vγ9Vδ2 T cells against different adherent
tumor cells compared to IL-2. This was further supported by the IL-15-mediated overexpression
of surface CD56 [109] which is believed to be a marker of γδ T cells cytotoxicity [110]. Similarly,
IL-15 in combination with IL-2, boosted the proliferation as well as the in vitro anti-tumor activity of
ZOL-expanded Vγ9Vδ2 T cells [111]. Taken together, these studies encourage the use of IL-15 instead
of, or in combination with, IL-2 for the expansion of Vγ9Vδ2 T cells, especially with a boosted effector
potential, which may enhance the therapeutic efficacy of the Vγ9Vδ2 T cell.

IL-21, a cytokine previously known to enhance NK and CD8+ T cell cytotoxicity, was found
to significantly promote the proliferation of pAg-induced Vγ9Vδ2 T cells in a dose-dependent
manner. IL-21 was shown to enhance proinflammatory response and anti-tumor cytolytic activity
of γδ T cells [112]. It also promotes γδ T cells mediated B cell maturation [48]. Vγ9Vδ2 T cells
from AML patients exhibited lower expression of IL-21R, which affected their response to IL-21.
This was confirmed by the need for a higher dose of IL-21 for expansion and lower increase in STAT1
phosphorylation compared to Vγ9Vδ2 T cells from healthy volunteers. Remarkably, AML Vγ9Vδ2 T
cells displayed significantly higher Tim-3 expression compared to healthy Vγ9Vδ2 T cells which was
further intensified by pAgs and IL-2. [113]. Interestingly, Tim-3 blockade could restore the proliferation
and the STAT1 phosphorylation in Vγ9Vδ2 T cells in response to IL-21. These data indicate that IL-21
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could significantly expand the Vγ9Vδ2 T cells, but its potency was restricted due to simultaneously
increasing the expression of checkpoint inhibitor, Tim-3 [57].

The central role of interleukin-7 (IL-7) in maintaining the T cell homeostasis is well established [114].
IL-7 exert a pivotal role in modulating γδ T cells function by (a) controlling homeostasis and tissue
distribution in both human and mice [115], (b) supporting the development and survival of cutaneous
resident γδ T cell population [116] and (c) upregulating γδ T cell’s BTLA expression with consequent
apoptosis induction [117]. Moreover, IL-7 is associated with selective expansion of IL-17-producing
γδ T cells [118]. In a recent study, involvement of IL-7 in the enrichment of IL-17-producing γδ T
cells (γδ17 T cells) in the lymph nodes of old mice was reported [119]. This IL-7/IL-17 synergy is also
required for the γδ T cell response to the viral hepatitis infection in vivo [120]. Studies reported that
Vδ1 T cells are highly expanded by IL-7, appointing IL-7 as the best candidate cytokine for Vδ1 T cells
expansion [121].

2.4.2. Transforming Growth Factor-β (TGF-β)

TGF-β is a pleiotropic cytokine with important role in variety of immune responses. Studies
have shown that TGF-β augments the proliferation and cytotoxicity of purified Vδ2 T cells in vitro.
In addition, expression of CD54, CD103, INF-γ, IL-9, and granzyme B were upregulated, while
CD56 and CD11a/CD18 were downregulated in Vδ2 T cells. Upregulation of E-cadherin-binding
molecule, CD103 (αE/β7 integrin) enhanced the γδ T cells synapse formation with tumor cells, and its
blockade diminished the TGF-β-induced cytotoxicity of γδ T cell. Altering the adhesion profile of γδ
T cells, suggests the essential role of TGF-β in promoting migratory capacity and tissue homing of γδ
T cells [109].

2.4.3. Vitamin C

Vitamin C (L-ascorbic acid) is an important vitamin engaged in many different biological processes
and is known for its antioxidant and epigenetic modulatory role. Recently, the effect of vitamin C (VC)
and its more stable analog, L-ascorbic acid 2-phosphate (pVC) on proliferation and effector function
of ZOL- or synthetic pAgs-expanded γδ T cells was investigated. VC or pVC had a relatively mild
effect on proliferation of purified γδ T cells and absent effects on ZOL-induced PBMCs. VC and pVC
reduced apoptosis, enhanced cellular expansion and cytokine production (e.g., IFN-γ) during primary
stimulation of a 14 days period of γδ T cell culture. The modulatory effect of VC and pVC can be
harnessed in order to optimize γδ T cells generation for cellular therapy [122].

2.4.4. Monoclonal Antibodies

Studies have shown that Vγ9Vδ2 T cells are capable of mediating Ab-dependent cellular
cytotoxicity (ADCC) via their Fc receptor (FcRIIIA, CD16). This mechanism can be exploited by
combining mAb and γδ T cells in cancer therapy. Using tumor associated antigens (TAA)-specific Abs,
Vγ9Vδ2 T cells can be directed to the tumor site. A pre-clinical study, focusing on human mammary
gland carcinoma, showed that treatment with adoptive transfer of BrHPP + IL-2-expanded Vγ9Vδ2
T cells alone had a slight impact on tumor growth; however, when combined with trastuzumab
(anti-Her2 Ab), the outcome was significantly improved [123]. Similarly, dinutuximab, an anti-GD2
mAb, increased the tumor lysis activity of γδ T cells by 30% in a neuroblastoma murine model [124].

In a phase I/II clinical trial of low grade follicular lymphoma, rituximab (anti-CD20 Ab) was
administered in combination with in vivo BrHPP-activation of Vγ9Vδ2 T cells, and resulted in improved
treatment efficacy [125]. Rituximab and two other mAbs (obinutuzumab and daratumumab) were also
tested in B cell malignancies in order to improve γδ T cell therapy. Obinutuzumab was found to be
most effective in prompting ADCC by γδ T cells against B cell lymphoma cells [98].

Another exciting Ab-based approach is employing bispecific Ab targeting both TAA and Vγ9,
hence bridging Vγ9Vδ2 T cells with the tumor cells [126]. Using a bispecific Ab engaging both HER2/neu
and γ9 in combination with adoptive transfer of Vγ9Vδ2 T cells in a pancreatic ductal adenocarcinoma
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xenograft mouse model, a significant reduction in tumor growth was achieved, while the single arm
Vγ9Vδ2 T cell therapy was not effective [127].

2.5. In Vivo (Systemic) Expansion of γδ T Cells

γδ T cells have complex biology and tissue specific tropism; therefore, they may not behave
in in vitro culture as they would under physiologic conditions. This makes interpreting the results
of γδ T cells from in vitro studies challenging [128]. To harness the γδ T cell anti-tumor activity,
many researchers have attempted to activate γδ T cells in vivo for the treatment of a broad range of
tumors. Bertaina et al. have shown that systemic administration of ZOL, to expand Vδ2 γδ T cells
in vivo, resulted in increased cytotoxic anti-tumor ability of Vδ2 cells and better overall outcomes in
transplanted pediatric leukemia patients. From a clinical point of view, patients who received repeated
infusion of ZOL (three or more) showed better survival when compared to those who received 1–2
ZOL infusions [37]. The authors analyzed the effects of ZOL on γδ T cells in vivo, using classical
phenotypical and functional assays, synergistically integrated with innovative proteomic tools of
sample preparation, as well as analytical conditions including high-resolution mass spectrometry,
statistical and network analysis. These novel proteomic approaches applied to clinical studies and
high-resolution mass spectrometry revealed an in vivo evolution of γδ T cell proteotype mediated
by ZOL. In particular, proteomic analysis of γδ T cells purified from patients showed upregulation
of proteins involved in activation processes and immune response, paralleled by downregulation
of proteins involved in proliferation. Such effects were already evident after the first ZOL infusion
but were further boosted by the subsequent infusions. These outcomes mirrored the phenotypic
changes observed through flow cytometry in both Vδ1 and Vδ2 subsets. ZOL influenced, unexpectedly,
the phenotype and function not only of Vδ2 cells, which selectively recognize pAgs, but also of the Vδ1
population [37].

Administration of pAgs or N-BP in combination with IL-2 has been a common strategy for
expanding Vδ2 γδ T cells in the body. Systemic administration of BrHPP or N-BP (ZOL or pamidronate),
in combination with IL-2 has been tested in more than eight clinical trials so far and results have proven
safety of the treatment. A successful expansion and maturation of Vδ2 T cells towards IFN-γ-producing
effector phenotype was observed in most patients [41].

Data has also demonstrated that IL-2 plays a critical role in the in vivo expansion of γδ T cells. In a
study by Dieli et al. ZOL alone or in combination with low-dose IL-2 was used for in vivo expansion
of γδ T cells in metastatic hormone-refractory prostate cancer. The results showed no expansion of
γδ T cells in the group treated with ZOL alone, whereas in the group treated with ZOL plus IL-2, 5/9
patients showed an increase in γδ T cells population and improved clinical outcome [66]. Some of the
clinical studies focused on activating γδ T cells via systemic infusion of pAgs and BPs or adaptive
transfer of pAg- and BP-expanded γδ T cells for cancer therapy are listed in Table 2.

3. Toward Engineering γδ T Cells: Transduction Strategies

The emergence of synthetic biology has offered a broader set of tools for cellular engineering and
reprogramming immune cells. Many engineering strategies have been developed for αβ T cells which
might be also used for modifying γδ T cells.

To date, retrovirus has been widely used to transduce γδ T cells mainly due to availability of
packaging cell lines which can be stably transduced to produce high virus titer [129]. High transduction
efficiencies are achieved using a moloney murine leukemia virus-based vector, SFG [97], along with
the RD114 [130] or GALV envelope vectors. To enter the cell nucleus, most retroviruses require the
dissolution of the nuclear envelope which only occurs during mitosis. Therefore, retroviruses application
becomes mainly restricted to highly proliferating cells [131]. Nevertheless, this has not limited their
application for Vδ2 γδ T cells, since they can be activated prior to transduction. Other subsets of γδ T
cells such as Vδ1, can be potentially transduced following Con-A driven expansion, but the results has
been variable and less predictable [42].
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The use of viruses always runs the risk of insertional mutagenesis [132]. Lentiviruses hence have
received more attention because of their safer insertional profile [131]. Lamb et al. compared two
different lentiviral vectors for transducingγδT cells and showed a higher transduction efficiency (65% vs.
42%) with simian immunodeficiency virus (SIV) vector compared to human immunodeficiency virus
(HIV)-based vector using the same envelope (VSV G) [62]. Wang et al. established a lentiviral-based
protocol for transducing γδ T cells after expansion with IPP and IL-2 [58].

To assure that viral gene integration does not occur at the oncogenic loci, while exploiting the
potential advantage of targeted integration at a specific loci (TCRα), other editing technologies such as
CRISPR/Cas9 have been designed and tested to improve engineered chimeric antigen receptor (CAR)
αβ T cells function [133,134]. This strategy has not yet been tested in γδ T cells.

The use of non-viral vectors avoids many of the defenses that cells normally employ against
viral vectors. Non-viral transduction methods such as the Sleeping Beauty (SB) Transposon system
uses transposase enzymes to insert a new transgene randomly into the target cell [135,136]. Although,
transduction efficacy using SB technique has been lower than viruses [137], it provides selective
advantages for particular hosts. SB uses electroporation for gene transfer, hence does not require a
proliferative status. Deniger at al. used SB to transfer a CD19 CAR gene into a polyclonal population
of γδ T which were subsequently expanded using CD19+ artificial APCs (aAPCs). These CAR γδ

T cells expressing different Vδ genes, displayed enhanced killing of CD19+ leukemia xenografts in
mice compared with untransduced γδ T cells. SB, unlike proliferation-based transduction methods,
did not skew the γδ T cell population toward a particular subset [138]. This may be advantageous
when aiming to maintain a particular Vγ/Vδ subset such as non-Vδ2 γδ T cells in order to harness their
tropism toward epithelial cells for treating epithelial tumors.

While viral or transposon-based techniques provide stable transduction and therefore long-term
persistence of engineered T cells, transient CAR expression strategies have been suggested to reduce
CAR T cell toxicity. mRNA transduced CAR αβ T cells were used to target mesothelin in patients [139],
although repeated infusions of CAR T cells were required to replenish the reservoir of circulating CAR
T cells as expression was lost in few days [43]. Similarly, mRNA transfection by electroporation was
used to generate γδ T cells expressing NKT cell derived TCRs [63] and, HLA-A2/gp100-specific TCR
or CARs for targeting melanoma. Expression peaked at 24 h and returned to baseline by 72 h post
transduction [60]. The in vivo persistence of these cells was not studied.

4. Preclinical and Clinical Experience: The Lesson Learned

γδ T cells have been expanded ex vivo and studied in pre-clinical cancer models by numerous
groups and their cytotoxicity was demonstrated against a variety of cancer cells derived from breast
tumor, lung carcinoma, and liver cancer [140]. A study by Liu et al. showed that γδ T cells are capable
of recognizing and lysing prostate cancer cells via innate mechanisms independent of MHC [141].
Due to their high frequency in peripheral blood and easy expansion, Vγ9Vδ2 subset of γδ T cells have
been predominantly studied in vitro and in xenograft mouse models of a range of tumors. In general,
the best treatment outcomes were achieved when Vγ9Vδ2 cells were expanded ex vivo prior to
infusion, when γδ T cell infusion was performed at the same time as tumor cell implantation, or at
early timepoints such as once tumors were first palpable (<100 mm3 volume), and when the repeated
administration of pAg or N-BP drugs plus cytokine (typically IL-2) was implemented.

A handful of clinical trials using γδ T cells for cancer treatment have been performed and several
are in progress. Immunotherapies based on Vγ9Vδ2 T cells have been examined for hematological
malignancies (NCT02656147), head and neck cancer [142], hepatocellular carcinoma (NCT00562666),
renal carcinoma [70,77], mammary carcinoma [143], prostate cancer [66], neuroblastoma [144], and lung
cancer [145,146] among others. These clinical studies confirmed the clinical benefit of approaches
aiming at activating the anti-tumor cytotoxicity of Vγ9Vδ2 T cells. Notably, they revealed that adoptive
transfer of γδ T cells is safe and feasible [147]. In most γδ T cell’s clinical trials, objective responses
were observed but the rates of complete remissions were low and long-term disease-free survival data
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were minimal. The details of different approaches used in γδ T cells clinical trials are beyond the scope
of this review, but the lessons we learned from them are briefly described. The overall analysis of
the clinical studies shows the safety profile of γδ T cell therapies. However, the efficacy was highly
variable. Additionally, it is difficult to compare the efficacy since there is immense variation in the
utilized strategies including the different protocols used to expand γδ T cells (ex vivo or in vivo) or the
delivery method (e.g., ZOL with or without IL-2 or other cytokines, γδ T cells alone, or in combination
with stimulating drugs).

The immunotherapies using pAgs or N-BPs and IL-2 have been successful in increasing the number
of circulating Vγ9Vδ2 T cells; nevertheless, there is limited evidence of γδ T cells infiltration into the
target tissue. A reduction in the response of circulating Vγ9Vδ2 T cells to the pAgs injection have
been observed which may be due to activation-induced anergy [148]. This anergy may have occurred
after γδ T cell exposure to the inadequate activatory signals and suboptimal pAgs concentration;
although, repeated stimulation of Vγ9Vδ2 T cells by pAgs may also cause terminal differentiation and
exhaustion which impedes γδ T cell function [149]. The low potency of pAg-based clinical trials may
also be attributed to the poor systemic availability of pAg due to their rapid clearance from plasma.
Researchers have attempted to devise new delivering strategies to increase the treatment potency.
Local administration of pAgs for eliciting a potent tumor immunity via intratumoral, peritumoral,
and intranodal injections have already been tested for various types of cancers. Intranodal injection of
pAgs near a tumor mass which allows for activation of γδ T cells outside of the immunosuppressive
tumor microenvironment, may improve the treatment efficacy [18]. While it has previously been
suggested that γδ T cells are less affected by immunosuppressive tumor microenvironment (TME)
due to lower PD1 expression compared to αβ T cell [150], a recent study has introduced a new
negative checkpoint receptor—T cell Ig and ITIM domain (TIGIT)—expressed by γδ T cells [151].
Moreover, various immunosuppressive mediators in TME such as TGF-β, indolamine dioxygenase,
prostaglandins, or potassium can impair γδ T cells function [107,152,153].

To avoid suboptimal activation of γδ T cells by pAgs in vivo, adoptive transfer of ex vivo expanded
γδ T cells have been tested in several clinical trials and shown efficacy, though the number of γδ T cells
still diminish over time. To maintain the level and function of the transferred cells, co-administration
of ZOL and/or IL-2 have been tested and shown superior efficacy compared to γδ T cells alone [76].
In most of the clinical studies, patient autologous peripheral blood-derived γδ T cells were used;
however, in few studies, allogeneic γδ T cells were utilized. Wilhelm et al. used the γδ T cells derived
from haploidentical donor for the treatment of hematological malignancies. Three out of four patients
showed complete remission with no sign of GvHD, and the γδ T cells persisted for 28 days and
expanded in vivo following ZOL and IL-2 injection [71]. A more recent study employed allogeneic
γδ T cells for the treatment of patients with cholangiocarcinoma and showed promising results [154].
See Table 2 for a list of clinical studies using pAg and BPs as stimulant for γδ T cells.

5. Challenges

Despite considerable efforts, expansion of γδ T cell’s diverse clones and achieving clinically
appropriate numbers still pose a major obstacle to the broad application of γδ T cells for adoptive
cell immunotherapy [44,45]. γδ T cells hold great potential for cancer therapy; however, an average
response rate of only 21% in initial phases of clinical trials denotes limited potency of current γδ T cell
therapies [73,74,155]. Immunotherapy based on unmodified γδ T cells removes the potential toxicity
that is associated with engineered T cell therapies; though disparities in potency hamper both research
and commercial development of γδ-based therapeutics. Additional data and more advanced-phase
trials are necessary to determine the efficacy of γδ T cell-based immunotherapies.

There is some controversy regarding the potential γδ T cell tumor-promoting activity via inhibiting
anti-tumor responses, enhancing tumor angiogenesis, and secretion of IL-17 [155–157]. Whilst recent
studies in mice have reported the pro-tumor and pro-metastasis role of the murine IL-17 producing
γδ T cells, in humans, IL-17+ γδ T cells are rare. Studies have shown that γδ TILs play only a
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trivial role in secreting IL-17 compared to Th17 and CD4+ T cells in the TME [158]. A recent study
demonstrated that positively isolated γδ T cells through TCR crosslinking or prolonged stimulation
with IPP mediated robust suppressive effects on αβ T cells. In contrast, fresh negatively isolated Vδ2+

T cells did not exhibit suppressive behavior, even after stimulation with IL-12/IL-18/IL-15 or the sheer
contact with BTN3A1-expressing tumor cells. This data indicates that while pharmacologic stimulation
of Vδ2+ T cells via Vδ2 TCR for activation and expansion induces Vδ2+ T cells’ potent killing activity,
it simultaneously promotes suppressive γδ T cells function [56]. Better undertesting of the γδ T cells
biology may provide new approaches to polarize pro-tumor γδ T cells toward anti-tumor.

6. Conclusions and Future Perspective

To date, preclinical and clinical studies using γδ T cells for treating a variety of cancers have shown
great promise. Numerous clinical experiences have convincingly shown that γδ T cells provide a safe
and effective platform laying the foundation for allogeneic ‘off-the-shelf’ cell therapies for cancer [41].
The current challenges with the γδ T cells therapy include achieving clinically adoptable numbers and
moderate clinical efficacy. The conventional methods of expansion such as phosphonates or mitogens
are still suboptimal and able to expand only few subsets of γδ T cells. Using alternative methods of
artificial feeder cells have led to expansion of a wider range of γδ T cell subtypes with more versatile
TCR clones, though it requires extensive work. Taking advantage of the novel engineering techniques
for modifying γδ T cells with growth factor receptors in order to improve their proliferation, survival
and persistence while harnessing their intrinsic polyclonal function, could be the future of γδ T cells
immunotherapies. The limited efficacy may be addressed with the combinational therapy approaches
implementing immune checkpoint inhibitors or mAbs [159].

The development of high-throughput TCR screening and engineering approaches enable the
molecular and functional analyses of γδ TCR and provides a better understanding of the dynamic
interplay between TCR γ and δ chains with other coreceptors in recognizing and responding to the
target antigens and ligands. Identification of cancer cell-sensing γδ TCRs from tumor infiltrating γδ

T cells using the modern single-cell isolation and analysis techniques and characterizing their ligands
may open novel opportunities for future cell-based cancer therapies.

Advancement in the isolation and expansion of γδ T cells, as well as optimization strategies via
genetic engineering approaches paves the way to add γδ T cells to the growing armory of cancer
immunotherapeutics. It will be exciting to see the effectiveness of different approaches of γδ T cell
immunotherapy in clinical trials especially ‘off-the-shelf’ cell products over the coming years.
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