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Abstract: In recent years, many new enzymes, like glutaminyl cyclase (QC), could be associated with
pathophysiological processes and represent targets for many diseases, so that enzyme-inhibiting
properties of natural substances are becoming increasingly important. In different studies,
the pathophysiology connection of QC to various diseases including Alzheimer’s disease (AD)
was described. Algae are known for the ability to synthesize complex and highly-diverse compounds
with specific enzyme inhibition properties. Therefore, we screened different algae species for the
presence of QC inhibiting metabolites using a new “Reverse Metabolomics” technique including
an Activity-correlation Analysis (AcorA), which is based on the correlation of bioactivities to mass
spectral data with the aid of mathematic informatics deconvolution. Thus, three QC inhibiting
compounds from microalgae belonging to the family of sulfolipids were identified. The compounds
showed a QC inhibition of 81% and 76% at concentrations of 0.25 mg/mL and 0.025 mg/mL,
respectively. Thus, for the first time, sulfolipids are identified as QC inhibiting compounds and
possess substructures with the required pharmacophore qualities. They represent a new lead structure
for QC inhibitors.

Keywords: glutaminyl cyclase (QC) inhibitor; microalgae; sulfolipids; AD; reverse metabolomics;
Scenedesmus sp.; natural product

1. Introduction

Glutaminyl cyclases (QC, EC 2.3.2.5) belong to the class of acyl transferases (EC 2.3.2). These
enzymes catalyze the intramolecular cyclization of N-terminal L-glutamine residues of peptides
and proteins into pyroglutamic acid (5-oxo-prolyl, pGlu*, pE) releasing ammonia, as well as the
intramolecular cyclization of N-terminal glutamate residues into pyroglutamic acid [1–3]. Such a type
of post-translational modification stabilizes the peptides and proteins, protects them from proteolytic
degradation, and can be important for their biological activity [4,5].

The enzyme QC was first isolated and described by Messer and Ottesen from the latex of the plant
Carica papaya in 1964 [6]. However, the physiological functions of the plant QC are not completely
studied. It was suggested, that this enzyme may plays a role in the plant defense against pathogenic
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microorganisms [7]. Furthermore, different types of QCs were identified in bacteria, plants and
animals [1,2,8,9], as well as in mammalian tissues [10–12]. In the latter case, QC is expressed especially
in areas of the central nervous system, such as the pituitary, hypothalamus, hippocampus, striatum
and exocrine glands like thyroid and thymus [1,2,10]. A number of peptide hormones and chemokines
such as Orexin A, gastrin, gonadotropin, TRH, MCP-1 to 4, FPP, fibronectin and neurotensin are
substrates of QC.

Although the physiological function of several QC enzymes is still ambiguous, different
studies described the pathophysiological connection of human QC to various diseases like arthritis,
osteoporosis and Alzheimer’s disease (AD) [13,14]. QC are responsible for the formation of
pGlu-modified Aβ peptides in AD, which are more neurotoxic, hydrophobic and resistant to
aminopeptidase degradation compared to unmodified Aβ peptides and thus accumulate in AD
brains [15–19]. Recent work revealed that the N-terminal pGlu-formation is catalyzed by QC not
only in vitro but also in vivo [20–23]. Moreover, QC is detected in neuronal populations with a highly
reduced number of synapses and neurons, which are biochemical characteristics of AD. A direct
correlation between the overexpression of QC and the vulnerability of neuronal populations could be
described [24]. Inhibition of QCs may have therapeutic potential to treat disorders associated with
protein aggregation and (neuro) inflammation and thus might be regarded as a therapeutic approach
in the treatment of AD [25].

The aim of this study was the identification, characterization and isolation of new QC inhibiting
compounds from algae. Preliminary studies showed a positive effect of some algal extracts in QC
inhibition. However, all attempts to identify the bioactive principles(s) by the traditional methods,
i.e., bio-activity guided isolation or total separation and high-throughput screening of constituents,
failed. For the identification of the active constituent in complex extracts this is not uncommon.
Therefore, a new technique developed in house (by LAW) termed “reverse metabolomics” was
used, in which metabolomics methods are combined with strategies of natural product isolation.
The methodology is based on the correlation of chromatographic or spectroscopic profiles of total or
partial extracts, especially metabolite profiles, with bioactivity profiles of extracts by chemo-informatic
methods (activity correlation analysis, AcorA). This approach enables the direct identification of
known and unknown activity-relevant metabolite signals in complex mixtures without their prior
separation, and the subsequent directed isolation of the most relevant hit compounds based on this
information [26,27].

Therefore, the metabolite profiles obtained by ultra-performance liquid chromatography
electrospray ionization mass spectrometry (UPLC-ESI-MS) and direct infusion electrospray ionization
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) were correlated with QC
inhibiting data.

2. Results

The application of the activity correlation analysis (AcorA) for the identification of QC inhibitors
from algae necessitates both homologies and variances in the metabolite compositions of the algae
extracts, i.e., extracts should be different but also have some common constituents in varied quantities
for optimal deconvolution later, referring here specifically to differential mass spectral data and
bioactivities among samples. The necessary variations and homologies were achieved by different
sources of the biological extracts, using (six) not too distinct but still different, algae species from
different classes, families, and genera as well as by harvesting the biomasses at two different growth
phases (exponential growth and stationary growth phase). Additional variations were introduced by
modifications of the extraction procedure, where the algal biomass of the exponential growth phase
(GP) and stationary growth phase (SP) of each species were extracted by two solid-liquid-extraction
procedures (Single solvent extraction (s) and multi-step solvent extraction (m)) using n-hexane,
methanol and water. A pre-screening of different algae extracts resulting from the solvents n-hexane,
methanol and water demonstrates that crude methanolic extracts constitute the most frequent and
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prominent inhibition properties. Methanol extracts of several algae strains seem to be particularly rich
in effective compounds and produce the most promising metabolite profiles [28]. From 24 methanol
extracts of the algae Scenedesmus rubescens, Scenedesmus producto-capitatus, Scenedesmus accuminatus,
Scenedesmus pectinatus, Tetradesmus wisconsinensis and Eustigmatos magnus from exponential growth
phase (GP) and stationary growth phase (SP), 24 chlorophyll-free methanolic solutions were prepared
and were selected for correlation analyses at a concentration of 0.2 mg/mL. The results of the QC assay
are given in the following Table 1.

Table 1. QC inhibition activities [%] of the chlorophyll-free methanol extracts of 6 different algae
species harvested at two growth phases (exponential growth phase (GP) and stationary growth phase
(SP)) by two extraction procedures (s = single solvent extraction, and m = multi-step solvent extraction).

Algae Extract
Inhibition of QC

Enzyme Activity [%] *
cextract = 0.2 mg/mL

Algae Extract
Inhibition of QC

Enzyme Activity[%] *
cextract = 0.2 mg/mL

Sc. producto-capitatus sGP 59 Sc. pectinatus mGP 32
Sc. producto-capitatus mGP 24 Sc. pectinatus sGP 43
Sc. producto-capitatus sSP 15 Sc. pectinatus mSP 21
Sc. producto-capitatus mSP 35 Sc. pectinatus sSP 63

Sc. rubescens sGP 65 Tetradesmus wiscon. mGP 39
Sc. rubescens mGP 23 Tetradesmus wiscon. sGP 72
Sc. rubescens sSP 56 Tetradesmus wiscon. mSP 19
Sc. rubescens mSP 22 Tetradesmus wiscon. sSP 16

Sc. accuminatus sGP 44 Eustigmatos magnus mSP 0
Sc. accuminatus mGP 26 Eustigmatos magnus sSP 0
Sc. accuminatus sSP 57 Eustigmatos magnus mGP 56
Sc. accuminatus mSP 22 Eustigmatos magnus sGP 61

* Inhibition of QC enzyme activity = QC activity without inhibitor/extract − residual QC activity after
measurement; (QC enzyme activity [%] − residual activity [%]).

A total number of 22 extracts showed QC inhibition in a range of 15% to 72%. The results (Table 1)
obtained by the QC-assay were directly correlated with the MS-based metabolite profiles using
AcorA [26,27]. The metabolite profiles of the extracts were determined in triplicate by UPLC/ESI-MS
and ESI-FTICR-MS both in the positive and negative ion mode. Based on the pre-processed mass
spectrometric data and the QC inhibition data, the resulting hit lists from activity correlation analysis
were evaluated regarding bioactivity relevant peak clusters (Table 2). Due to the fact that the
QC inhibitors were identified by the correlations with the negative ion mode UPLC/ESI-MS and
ESI-FTICR-MS data, only these are presented. Comparison of the hit lists from UPLC/(−)ESI-MS and
ESI-FTICR-MS, shown in Table 2, after annotation of the MS spectra exhibited a positive correlation of
similar activity relevant peak clusters to the bioactivity. The hit list of the UPLC/ESI-MS data in the
negative ion mode consisted of 4652 peaks, of which 131 peaks possessed a correlation coefficient >0.6.
The hit list of the ESI-FTICR-MS data in the negative ion mode showed only 41 peaks, of which 27 had
a correlation coefficient >0.5 and therefore exhibit a positive correlation with the QC inhibition activity.
Based on three equal activity relevant peak clusters, compounds 1–3 could be identified using AcorA.
The first activity relevant compound 1 at m/z 815.49982 (815.49827) ([M − H]−, calcd. m/z 815.498472
for C43H76O12S) correlates on rank 1 (correlation coefficient 0.75) of the negative ion ESI-FTICR-MS
data hit list together with its isotope peaks at m/z 816.50348 on rank 7 with a correlation coefficient
of 0.68. The same compound 1 correlates on rank 4 at m/z 815.49982 with a correlation coefficient of
0.83 together with its isotope peaks at m/z 817.6333 on rank 22 with a correlation coefficient of 0.74 in
the hit list of the negative ion UPLC/ESI-MS data. A further bioactivity relevant compound 2 at m/z
817.51617 (817.51596) ([M − H]−, calcd. m/z 817.514122 for C43H78O12S) shows a correlation on rank
13 with a correlation coefficient of 0.63 in the negative ion ESI-FTICR-MS data hit list as well as on
rank 8 in the negative UPLC/ESI-MS data hit list with a correlation coefficient of 0.80. In addition,
its isotope peaks at m/z 819.53126 correlate on rank 14 in the negative ion ESI-FTICR-MS hit list and at
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m/z 818.5999 with an equal correlation coefficient of 0.80 on rank 9 in the negative ion UPLC/ESI-MS
hit list. A compound 3 at m/z 793.51536 (793.51441) ([M − H]−, calcd. m/z 793.514122 for C41H78O12S)
correlates on rank 19 of the negative ion ESI-FTICR-MS data hit list with its isotope peaks at m/z
794.52123 on rank 9 as well as at m/z 795.52035 with a correlation coefficient of 0.64 on rank 10.

These identified activity relevant compounds 1–3 were further investigated by targeted
UPLC/ESI-MSn fragmentation studies. The characteristic fragment ions are listed in Table 3. In their
MS2 spectra, the fragment ion [b] at m/z 537.2 ([M–H–C16H32O2]−) could be detected and indicated
a loss of a C16:0 fatty acid chains. Furthermore the mass spectral fragmentation of the compounds 1 and
2 shows ions at m/z 559.2 [a1] ([M–H–C18H30O2]−) and at m/z 561.2 [a2] ([M–H–C18H32O2]−), which
indicates the loss of a second fatty acid chain. Moreover, a key ion at m/z 225 [d] could be detected in
the MS3 spectra of compounds 1–3. This fragment ion [d] results after loss of the fatty acid chains and
a glyceride ester bond and is proposed to be the [M − H]− of C6H9O7S. Furthermore the fragment
ions [c] from double loss of C16/18 fatty acid moieties at m/z 283 ([M–H–C16H32O2–C16H32O2]−,
[M–H–C16H32O2–C18H30O2]−, or [M–H–C16H32O2–C18H32O2]−) was also present in the MS3 spectra
of the compounds 1, 2, or 3. Beyond the MS3 and MS4, fragmentation studies of compounds 1–3
represent key ions at m/z 207 [e] (C6H7O6S−), m/z 165 [f] (C4H5O5S−), m/z 125 [g] (C6H5O3S−) and
m/z 81 [h] (HO3S−).
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Table 2. Hit list of the top ranked (depending on Spearman’s rank correlation coefficient rs) activity relevant peak clusters based on UPLC/ESI-MS data and
ESI-FTICR-MS data both in the negative ion mode correlated with the QC inhibition activity.

UPLC/ESI-MS FTICR-ESI-MS

Rank rs
[M − H]−

(m/z)
RT

min
Possible

Compound Rank rs
[M − H]−

(m/z)
Possible

Compound
Elemental

Composition
Calcd. [M − H]−

(m/z) DBE

1. 0.75 815.49982
815.49827 * 1 C43H76O12S 815.498472 * 5.0

4. 0.83 815.7333 7.22 1

7. 0.68 816.50348 Isotope p.
m/z 815.50

8. 0.80 817.6666 7.70 2

9. 0.80 818.5999 7.70 Isotope p.
m/z 817.67 9. 0.64 794.52123 Isotope p.

m/z 793.52

10. 0.64 795.52035 Isotope p.
m/z 793.52

13. 0.63 817.51617
817.51596 * 2 C43H78O12S 817.514122* 4.0

14. 0.63 819.53126 Isotope p.
m/z 817.52

15. 0.75 794.7333 8.86 Isotope p.
m/z 793.73

19. 0.56 793.51536
793.51441 * 3 C41H78O12S 793.514122* 2.0

22. 0.74 817.6333 7.22 Isotope p.
m/z 815.73

* The elemental formulas were calculated based on the elemental composition of high-resolution FT-ICR-MS data out of m/z by repeated direct measurement of the extracts.
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Table 3. Negative ion UPLC/ESI-MSn data of compounds 1–3 and a SQDG standard (Lipid
Products (GB)).

Compound [M − H]−

(m/z)
Scan Mode

[m/z]
m/z Relative Intensity (%)
[Fragment Ion Schema 1]

1 815 MS2 [815]
MS3 [815→ 537]

537 ([b], 100), 559 ([a1], 38)
225 ([d], 100), 207 ([e], 7), 165 ([f], 12),

283 ([c], 26)

2 817 MS2 [817]
MS3 [817→ 537]

537 ([b]), 100), 561 ([a2], 32)
225 ([d]), 100), 165 ([f], 30), 207 ([e], 9),

283 ([c], 3)

3 793
MS2 [793]

MS3 [793→ 537]
MS4 [793→ 537→ 225]

537 ([b], 100), 225 ([d], 20)
283 ([c], 42), 207 ([e], 53), 225 ([d], 100)

207 ([e], 52), 165 ([f], 60),
125 ([g], 100), 81 ([h], 27)

SQDG
standard 815

MS2 [815]
cMS3 [815→ 537]
MS3 [815→ 559]

537 ([b], 100), 559 ([a1], 90)
225 ([d], 100), 165 ([f], 58), 207, ([e],30)

225 ([d], 100), 283 ([c], 38)

The compounds 1–3 show similar fragmentation patterns to the SQDG standard. A common mass
spectral fragmentation pattern for the [M − H]− ion of compound 1 (C43H76O12S) at m/z 815.498472,
[M − H]− ion of compound 2 (C43H78O12S) at m/z 817.51617 and the [M − H]− ion of compound 3
(C41H78O12S) at m/z 793.51536 is proposed in Scheme 1.
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Scheme 1. Proposed fragmentation scheme for [M − H]– ions of the compounds 1–3 observed in the
MS1, MS2, MS3 and MS4 experiments in the negative ion mode.

Based on the compared mass spectrometric data (high resolution ESI-FTIC-MS, e.g., comparison
of the isotope pattern of the compounds and their theoretically calculated values, postulated
fragmentation patterns and database analogy), the compounds 1–3 could be identified as
1,2-di-O-palmitoyl-3-O-(6′-deoxy-6′-sulfo-D-glycopyranosyl)-glycerol (1), 1-O-palmitoyl-2-O-
linolenyl-3-O-(6′-deoxy-6′-sulfo-D-glucopyranosyl)-glycerol (2) and 1-O-linolyl-2-O-palmitoyl
-3-O-(6′-deoxy-6′-sulfo-D-glucopyranosyl)-glycerol (3), i.e., the compounds are sulfolipids. Targeted
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UPLC/ESI-MSn fragmentation studies of a SQDG standard (Lipid Products (GB)) shows the molecular
ion [M − H]− at m/z 815 such as compound 1. In the MS2 spectra of the SQDG standard the fragment
ion [b] at m/z 537.2 ([M–H–C16H32O2]−) and the fragment ion at m/z 559.2 [a1] ([M–H–C18H30O2]−)
could be also detected, being caused by the loss of two fatty acid chains. Equally the key ion at m/z
225 [d] ([M − H]− of C6H9O7S), which represents the sulfoquinovosyl head group—an identification
structure element of SQDG—could be detected in the MS3 spectra. Sulfoquinovosyldiacylglyceride
(1,2-di-O-acyl-3-O-(6′-deoxy-6′-sulfo-D-glycolpyranosyl)-sn-glycerols) are esterified with two fatty
acids. In their mass spectra the neutral losses of the respective fatty acids (palmitic acid, linoleic
acid or linolenic acid) with the formation of the characteristic fragment C6H9O7S at m/z 225 may
be found [29–32]. The natural SQDGs have an α-anomeric glycoside conformation [33]. An exact
assignment of the position of the acyl groups on the glyceride, is not unequivocally possible by mass
spectrometric investigations. Taking this into account [34], possibly the higher peak intensity of
fragment ion [b] at m/z 537.2 in comparison to fragment ion [a] suggests the position of the palmitic
acid to be at the sn-2-postion. Based on this and other references the positions postulated in the
literature are assumed also here [29,35–37]. Thus for compound 1 at sn-1-position linolenic acid (C18:3)
and at sn-2-position palmitic acid (C16:0), for compound 2 at sn-1-position linoleic acid (C18:2) and at
sn-2-position palmitic acid (C16:0) and for compound 3 at sn-1-position and sn-2-position palmitic
acid (C16:0) are proposed.

Because reverse metabolomics only gives the most likely correlation, a causal relationship of
compound and effect has to be proven. To confirm an inhibitory effect against the QC, of the sulfolipids
1–3, it was necessary to isolate them and to examine them in detail. For this purpose, the methanolic
extract of Sc. accuminatus eSP was selected and the sulfolipids were isolated using NH2 cartridges
(SPE) [36]. 25 mg of methanolic extract of Sc. accuminatus eSP was added to NH2-conditioned cartridges
and a two-step elution was conducted. Subsequently, a Folch wash was carried out to eliminate the salts,
like ammonium acetate, and to transfer the sulfolipids into the organic methanol/dichloromethane
phase. The sulfolipids thus obtained (6.5 mg) were investigated by UPLC-MS. For reference, a SQDG
standard (Lipid Products) was used. The mass spectrometric analysis of the sulfolipids by UPLC-MS
in the negative ion mode showed a characteristic base peak at RT of 9.9 min in the chromatogram.
The MS1 confirmed molecular ions [M − H]− at m/z 794 and 815 is congruent with sulfolipids 3 and
1. These and the SQDG standard were tested at two concentrations in the QC assay. Both, isolated
sulfolipids and the SQDG standard, were able to inhibit QC at concentrations of 0.25 mg/mL and
0.025 mg/mL with 81%/76% and 77%/76%, respectively. The results of the QC assay confirmed that
these sulfolipids act as QC inhibitors and thus have potential as lead compounds against diseases
associated with QC, namely Alzheimer’s disease.

3. Discussion

The reverse metabolomics approach with AcorA was applied to identify QC inhibiting metabolites
produced by different algae strains. The applied method allowed the identification and characterization
directly from complex crude extracts without further purification steps. It is strongly suggested, that the
identified QC inhibitors are sulfolipids, which are already identified from various microalgae (mainly
Rhodophyta) like Porphyridium purpureum [35], Heterosigma carterae, Phaeodactylum tricorntum [37],
Heterosigma caterae [38], and Pavlova lutheri [39], as well as from the macroalgae Gigartina tenella [40]
and Caulerpa racemosa [41]. Furthermore, the occurrence of sulfolipids is known from cyanobacteria
e.g., Lyngbya lagerheimii [42], Oscillatoria raoi [43], Arthrospira platensis, Nostoc punctiforme, Scytonema
hofmanni [36], and from spinach (Spinacia oleeracea) [44]. In photosynthetic organisms, SQDGs are
important compounds of the thylakoid membrane and they are necessary for the unrestricted
function of the photosystem II [45–52]. Sulfolipids demonstrate a broad activity spectrum like
immunosuppressive [43] and antiviral effects (e.g., against HIV) [36,42,53]. Furthermore, antineoplastic
effects and inhibitory activity of the enzymatic activities of DNA polymerases pol α and pol β as well as
the α-glucosidase and the caspase are known [40,54–57]. Brahmi et al. detected a telomerase inhibitory
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activity (anticarcinogenic) of SQDGs isolated from the cyanobacterium Microcystis aeruguinosa [58].
In addition, anti-inflammatory activity and anti-proliferative effects on various human (cancer) cell
lines are described [59–64] as well as a prophylactic effect against Mycobacterium tuberculosum infection
is known [44]. As part of a patent, the effect of sulfolipids in inflammatory skin diseases, especially
psoriasis is described [65]. In the present study, we could demonstrate for the first time that SQDGs
exhibit QC inhibitory effects. The new activity for this compound class could be elucidated by
application of AcorA, a new chemoinformatic method which allows the direct identification of known
and unknown activity-relevant metabolites and their spectroscopic clusters in complex mixtures like
algal crude extracts. The evidence for an actual QC inhibition of sulfolipids (1–3) could be provided
through a successful isolation with subsequent testing of QC inhibition.

Previously known QC inhibitors are primarily described in patents of the company Probiodrug
AG. The application of QC inhibitors for the treatment of Alzheimer’s disease has proven to be
successful in different transgenic animal models [20,66,67]. One competitive QC inhibitor PQ912 for
the treatment of Alzheimer’s disease successfully completed clinical trial phase 1 [68] and currently
is tested in clinical trial phase 2 [23]. All known QC inhibitors were synthesized or achieved by
structure based design and bioisosteric replacement as well as homology modeling. In publications by
Buchholz et al., 2006, 2009 [69,70] studies of substructures of QC inhibitors were performed. From this
it can be deduced that for QC inhibitors following substructures with pharmacophore characteristics
are necessary:

• Metal binding group (MBG)
• Flexible linker with minimum length (propyl-linker)
• Core structure (scaffold) decorated with functional groups at certain positions e.g.,

3,4-dimethoxyphenylthiourea, which additionally can form hydrogen bonds and lipophilic
interactions within the enzyme pocket.

The QC inhibiting sulfolipids (1–3) have suitable structural characteristics for a QC inhibitor.
In Figure 1, the structures of a known QC inhibitor (4) and of the sulfolipids are compared.
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Figure 1. Comparison of the structural characteristics of the QC inhibitor 1-(3-(1H-imidazol-
1-yl)propyl)-3-(3,4-dimethoxyphenyl)thio-urea with the QC inhibiting sulfolipids (1–3). [brown box:
metal binding group; grey box: flexible linker; green box: scaffold incl. decoration].

As shown in Figure 1, the identified sulfolipids in principal provide structural characterizations
(substructures) suitable for known QC inhibitors. The negatively charged sulfonate group at the
6-hydroxyl position of the glucose probably acts as a metal binding group. Of course, the polyhydroxy
elements may also bound to the metal ion; the ether portion acts as a linker in this very preliminary
comparison. However, the assumption depicted in Figure 1 could be enforced by docking studies
(not shown). Thus the sulfonate group suggests itself as a metal binding group, not known before
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for QC inhibitors. The glucose probably acts as core structure (scaffold). The hydroxyl groups may
acting as hydrogen acceptors and donors and allow directed interactions in the active site of the
enzyme. Starting from the metal binding group it links the scaffold and has an optimal length of
3 methylene units to the 5-hydroxy group of glucose. The necessary flexible linker between the metal
binding group and the core structure is also present in the sulfolipid structure. The QC inhibitor 4
has an even more flexible linker with a length of three methylene units to the NH group of the core
structure (N1 of the thiourea moiety). The 5-hydroxy group, as well as the NH group, according to the
models, will probably act as hydrogen bond donors. By reason of the experimental proof, supported
by substructures with somewhat similar pharmacophore qualities, they present a new lead structure
for QC inhibitors.

In summary sulfolipids share common, necessary substructures with pharmacophore
characteristics of known QC inhibitors and they may be an initial point in developing new
QC inhibitors.

4. Materials and Methods

4.1. Cultivation of the Microalgae

The microalgae strains Scenedesmus rubescens (SAG 5.95), Scenedesmus producto-capitatus
(SAG 21.81), Scenedesmus accuminatus (SAG 38.81), Scenedesmus pectinatus (SAG 2003), Tetradesmus
wisconsinensis (SAG 3.99), and Eustigmatos magnus (SAG 36.89) were originally purchased from the
culture collection of Göttingen University Germany (SAG). The algae were cultivated by using
Setlik medium (2.02 g/L KNO3, 0.34 g/L KH2PO4, 0.99 g/L MgSO4·7H2O, 0.0185 g/L Fe-EDTA,
0.01 g/L Ca(NO3)2·4H2O, 0.00309 g/L H3BO3, 0.0012 g/L MnSO4·4H2O, 0.0014 g/L CoSO4,
0.00124 g/L CuSO4·5H2O, 0.00143 g/L ZnSO4, and 0.00184 g/L (NH4)6Mo7O24·4H2O) in a 100 L
tubular photobioreactor (IGV GmbH, Nuthetal, Germany) 100 GS/PL with constant illumination of
a photon flux density of 90 µmol/m2·s (<OD 20) respectively 150 µmol/m2·s (>OD 20) at pH 7. The
pH value was regulated by the addition of CO2.

The harvests of biomass of the growth phase were carried out between day 7–10 by centrifugation.
For obtaining the biomass of the stationary growth phase new Setlik medium was applied to the rest
of the algae culture after harvesting and the culturing continued (fed-batch-method). After reaching
the stationary phase (SP), which was achieved between 9 and 14 days depending from the alga,
the biomass was harvested by centrifugation.

4.2. Preparation of Crude Extracts

The freeze-dried algal biomasses of the exponential growth phase (GP) and stationary growth
phase (SP) of each algae species were extracted by two solid-liquid-extraction procedures (single
solvent extraction (s) and multi-step solvent extraction (m)).

In the first extraction procedure (s) each biomass (10 g) was ground with mortar and pestle using
sea sand (biomass:sea sand = 1:2) and extracted triply with 600 mL each of methanol. In the second
extraction procedure (m), each ground and with n-hexane pre-extracted biomass (10 g), was extracted
triply with each 600 mL of methanol. The methanol extracts of both procedures were concentrated to
dryness in a rotary evaporator under reduced pressure and re-dissolved with methanol to a defined
concentration [28].

4.3. Sample Preparation

Chromabond SA-cartridges (Macherey & Nagel, Düren, Germany) were used to remove
chlorophyll from the crude extracts (Macherey & Nagel Application-No.: 300010). The resulting
pre-cleaned extracts were evaporated to dryness and redissolved in methanol followed by a solid
phase extraction on Chromabond C18ec-cartridge (Macherey & Nagel) using methanol as a solvent.
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The obtained processed extracts were evaporated to dryness and dissolved in methanol for assaying
and mass spectrometry measurements.

SQDG standard were purchased from Lipid Products (Nutfield, Redhill, UK).

4.4. Glutaminyl Cyclase (QC) Inhibition Assay

The determination of the catalytic QC-enzyme activity was accomplished by utilization of
the fluorogenic substrate Gln-AMC (N-glutaminyl-7-amino-4-methyl-coumarin) and the supporting
enzyme pyroglutaminyl aminopeptidase (pGAP), as well as purified human QC.

QC cyclizes Gln-AMC to pGlu-AMC which serves in a second step as substrate for pGAP.
The removal of AMC from pGlu-AMC is than detected at λex = 380 nm; λem = 460 nm [71].

In this coupled optical assay the increase of the free AMC was continuously analyzed for more
than 12 min at 30 ◦C. The assay was conducted in microtiter plates by adding 100 µL 0.25 mM substrate,
50 µL 0.2 mg·mL−1 extract, 25 µL supporting enzyme pGAP and 25 µL QC with a final volume of
250 µL per well. Because of the QC pH value dependency, 50 µL Tris buffer (0.1 M; pH 8) was added.
The exact procedure was published by Schilling et al. [72,73].

All assay investigations were done in triplicate and if inhibition activities were more than 20% vs.
control, it was classified as QC-active.

An influence of an inhibition of the supporting enzyme pyroglutaminyl aminopeptidase (pGAP)
could be excluded by investigations.

4.5. Mass Spectrometry

4.5.1. UPLC/ESI-MS

The mass spectrometry analysis of the methanol crude extracts were obtained by an Acquity
UPLC-system (Waters GmbH, Eschborn, Germany) equipped with an ion trap (LCQ Deca XP MAX,
Thermo Finnigan, Thermo Fisher Scientic Inc., San Jose, CA, USA). The ionization was effected by
electro spray ionization (4 kV, 275 ◦C, 27 V, nitrogen flow rate 35–40 arb. units). The separation on
a RP-18 HSS T3 1.8 µm, 1.0 × 100 mm (PartNo: 186003536, Serial No.: 01183023815308; Waters) column
were accomplished by using a gradient system starting from water/acetonitrile 95:5 (each of them
containing 0.2% CH3COOH) to 100% acetonitrile within 7.5 min. After continuous flow of 100%
acetonitrile to 8.2 min the solvent gradient system of water/acetonitrile 95:5 was reached at 12 min.
The measurements were done at a flow rate of 0.150 mL/min and a column temperature of 40 ◦C.
The sample was introduced with partial injection in needle overfill modus and with an injection volume
of 1 µL. ESI-MS spectra were acquired in negative and positive ion electrospray ionization mode by
scanning over the m/z range 100–1000 Da in triplicate. Data dependent MS2 and MS3 experiments
were performed by selection of the ions of the highest intensity, whereas the intensity had to be larger
than 105 a.i., and using a normalized collision energy of 35% or 45% in negative ion mode and 35%
in the positive ion mode (activation Q: 0.250; activation time: 30.0 msec). Isolation width was set at
±2 Da. The data were evaluated by the software Xcalibur 2.0 and 2.0.7 (Thermo Scientific, Waltham,
MA, USA).

4.5.2. ESI-FTICR MS

The high resolution ESI mass spectra of the extracts were obtained from a Bruker Apex III Fourier
transform ion cyclotron resonance (FTICR) mass spectrometer (Bruker Daltonics, Billerica, MA, USA)
equipped with an Infinity™ cell, a 7.0 Tesla superconducting magnet (Bruker, Karlsruhe, Germany),
an RF-only hexapole ion guide and an external APOLLO electrospray ion source (Agilent, off axis spray,
voltages: endplate, 3.700 V; capillary, −4.200 V; capillary exit, 100 V; skimmer 1, 15.0 V; skimmer 2,
10.0 V). Nitrogen was used as drying gas at 150 ◦C. The sample solutions were introduced continuously
via a syringe pump with a flow rate of 120 µL·h−1. All data were acquired with 512 k data points and
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zero filled to 2048 k by averaging 32 scans. The XMASS Software (Bruker, Version 6.1.2) was used for
evaluating the data.

4.6. MS Data Processing and Activity Correlation Analysis (AcorA)

The ESI-FTICR MS files were converted to CDF format (Thermo) whereas the UPLC-MS files
converted to mzXML format using ProteoWizard. The software-package XCMS was implemented
in R (version 2.10.0, https://www.r-project.org/). Data were processed using XCMS with the
following parameters for peakpicking and alignment: method = “MSV”, SNR.method = “data.mean”,
winSize.noise = 500, peakThr = 80,000, snthresh = 3, amp.Th = 0.005, scales = c (1, seq(7,9,3)); minsamp
= 2, mzppm = 7 for FT-ICR-MS and method = “centWave”, mzdiff = 0.3, peakwidth = c (5, 12),
snthr = snthr, verbose.columns = F, prefilter = c (2, 500); minsamp = 2, bw = 5, mzwid = 1 for UPLC-MS.
The data output effected as aligned data matrix, which used for correlation of the bioactivity data and
peak intensities using Spearman rang correlation coefficient (α = 5%). The results were viewed as
tables in Excel (Microsoft) and plots in PDF (Adobe).

4.7. Isolation of Sulfolipids

Sulfolipids were purified with aminopropyl modified silica gel cartridges (NH2-cartridges;
Macherey & Nagel, Düren, Germany). These were pre-conditioned in several steps with
2 mL methanol, 2 mL water, 4 mL 0.1 M hydrochloric acid (incubation for 1 h), 2 mL water,
2 mL methanol, 2 mL dichloromethane/isopropanol/methanol (15:30:50; v/v/v). Samples
have been dissolved in dichloromethane/methanol (1:1; v/v) at a concentration of 20 mg
to be put on the cartridge. Subsequently, a two-step elution was accomplished. In the
first step unloaded compounds were eluted with 9 ml dichloromethane/isopropanol/methanol
15:30:50 (v/v/v) and discarded. The elution of sulfolipids was realized in a second step with
5 mL dichloromethane/acetonitrile/isopropanol/methanol/0.1 M aqueous NH4OAc (10:10:10:50:15;
v/v/v/v/v) [36].

The obtained sulfolipids were evaporated to dryness and subsequently desalted. Therefore
dichloromethane/methanol/0.1 M NaOAc-Puffer pH = 4.0 (8:4:3, v/v/v) was added and vigorously
shaken. After overnight incubation at 4 ◦C, a two-phase system was formed, where the sulfolipids
accumulate in the lower lipophilic phase. This lower sulfolipid phase was removed with
a Pasteur pipette, transferred to a round bottom flask, and concentrated to dryness using a vacuum
rotary evaporator.

5. Conclusions

Algae extracts of different species were investigated regarding their QC inhibiting activity.
Since traditional methods were unsuccessful to identify the active principle, a new approach
called Reverse Metabolomics with Activity-correlation Analysis (AcorA) was carried out, as
this method does allow the identification of active principles in complex mixtures, and even
additive or synergistic relationships can be discovered. Thereby a direct correlation of the
mass spectrometry metabolite profiles (fingerprints) of the UPLC/ESI-MS or ESI-FTICR-MS
data with the QC inhibition value of each extract was applied. The correlation analysis of the
UPLC/ESI-MS and ESI-FTICR-MS data showed similar metabolite peak clusters for three significantly
correlated compounds in the negative ion mode. By additional targeted mass spectrometric
fragmentation analyses, the correlated compounds could be structurally characterized directly from
the complex extracts without purification. Based on these results, the QC inhibiting compounds
were specifically isolated and, by comparison with a reference compound, verified as sulfolipids,
specifically suggested to be 1,2-di-O-palmitoyl-3-O-(6′-deoxy-6′-sulfo-D-glycopyranosyl)-glycerol
(1), 1-O-palmitoyl-2-O-linolenyl-3-O-(6′-deoxy-6′-sulfo-D-glucopyranosyl)-glycerol (2), and
1-O-linolyl-2-O-palmitoyl-3-O-(6′-deoxy-6′-sulfo-D-glucopyranosyl)-glycerol (3). The evidence for
an actual QC inhibition of sulfolipids (1–3) could be provided through their successful isolation with

https://www.r-project.org/
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subsequent testing of QC inhibition. Thus, for the first time QC inhibitors from algae were identified,
characterized and isolated. Likewise, for the first time the inhibitory effect of sulfolipids from algae
against QC was demonstrated. Until now, no natural product with QC inhibitor activity is known,
thus this is the first description of a natural QC inhibitor, present in algae species.
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BACE-1 Beta-secretase 1; beta-site amyloid precursor protein cleaving enzyme 1
calcd. calculated
CH3COOH acetic acid
ESI-FTICR MS electrospray ionization Fourier transform ion cyclotron mass spectrometry
Gln-AMC N-glutaminyl-7-amino-4-methyl-coumarin
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Isotope p. isotope peak
MBG metal binding group
NaOAc sodium acetat
NH4OAc ammonium acetate
pGAP pyroglutaminyl aminopeptidase
pGlu pyroglutamyl
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RT retention time
SP stationary growth phase
QC glutaminyl cyclase
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