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Abstract The use of combinatorial optimization tech-

niques with computational design allows the development of

automated methods to design biological systems. Automatic

design integrates design principles in an unsupervised

algorithm to sample a larger region of the biological network

space, at the topology and parameter levels. The design of

novel synthetic transcriptional networks with targeted

behaviors will be key to understand the design principles

underlying biological networks. In this work, we evolve

transcriptional networks towards a targeted dynamics, by

using a library of promoters and coding sequences, to design

a complex biological memory device. The designed

sequential transcription network implements a JK-Latch,

which is fully predictable and richer than other memory

devices. Furthermore, we present designs of transcriptional

devices behaving as logic gates, and we show how to create

digital behavior from analog promoters. Our procedure

allows us to propose a scenario for the evolution of multi-

functional genetic networks. In addition, we discuss the

decomposability of regulatory networks in terms of genetic

modules to develop a given cellular function. Summary. We

show how to use an automated procedure to design logic and

sequential transcription circuits. This methodology will

allow advancing the rational design of biological devices to

more complex systems, and we propose the first design of a

biological JK-latch memory device.

Keywords Computational design � Digital behavior �
Synthetic biology � Systems biology �
Transcriptional networks

Introduction

In the last years, there has been a tremendous work on

inferring the topologies of transcription networks (Babu

and Teichmann 2003) with the hope of elucidating their

design principles. Studies of recurrent network motifs

showed that their dynamics could provide useful functions

(Mangan and Alon 2003; Brandman et al. 2005). These

reverse-engineering studies have uncovered those princi-

ples and they have provided the framework to plan the

design of synthetic circuits. The exponential decrease of

DNA synthesis cost, together with the new development of

standardized genetic parts (Endy 2005), will provide

the technological means to design large genetic networks.

The easiest way to construct such genetic parts is to use the

available genomic knowledge, although there has also been

some work on creating synthetic parts such as promoters

with modified or added operator sites (Buchler et al. 2003;

Bintu et al. 2005a, b), modified ribosome binding sites

(Basu et al. 2004), or codon-optimized coding regions

(Basu et al. 2005). Protein engineering has also been pro-

viding new coding sequences for several decades now,

corresponding to new designed proteins with specified

functions that sometimes have even no similarity with any

known natural protein sequence (Kuhlman et al. 2003;

Looger et al. 2003; Jaramillo et al. 2002).
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The construction of transcriptional networks could also

take advantage from the design of promoter sequences

having a combinatorial regulation. In fact, there are already

some examples on the design of synthetic promoters reg-

ulated by two transcriptional factors (Joung et al. 1994;

Mayo et al. 2006). Currently, most of the designed tran-

scriptional networks (Elowitz and Leibler 2000; Gardner

et al. 2000; Atkinson et al. 2003) have been engineered

using rational design techniques (Hasty et al. 2002), lim-

iting the use of computational modeling to the solving of

dynamical equations. The design of such networks would

highly benefit from the use of computational methods to

automatically design new circuits. For instance, we could

evolve our circuits by replacing elementary parts, such as

promoters, from a catalogue of these. Furthermore, the

design of genetic circuits from modular components allows

designing a panoply of transcriptional circuits from a few

elementary components. This is exemplified by the com-

binatorial generation of 125 transcriptional networks, some

of them working as logical devices, using only a library of

five promoters controlling three transcriptional factors

(Guet et al. 2002). They characterized the behavior of their

three-gene networks under two inductors and discovered

that some of the networks behaved like a logic gate of type

NAND, NOR or NOT. Sometimes transcriptional networks

having the same topology would give completely different

behavior. Each promoter only contained one operator site,

so it could only receive one transcription factor. Their

results suggested that a given circuit topology could show

several behaviors. In this work we perform a computational

evolution that will allow us to generate similar transcrip-

tional circuits to those found in that previous work (Guet

et al. 2002). An important question in understanding the

mechanism of living systems is the design principle of

regulatory networks having a given behavior. Analyzing

our functional genetic networks, designed following a

combinatorial optimization procedure, we can unveil new

of such principles.

The combination of computational and combinatorial

techniques has already been used in other disciplines to

generate complex behaviors. In particular, an essential

aspect of networks is the evolution and design or their

dynamical behavior. Work on Artificial Life or on hard-

ware evolution (Taubes 1997; Raichman et al. 2003) shows

how automated methods could be used to design emergent

complexity (Kahtan and Alon 2005). In biology, an evo-

lutionary method to engineer electronic circuits was

suggested for the design of genetic circuits with oscillatory

behavior (Mason et al. 2004), although the used model was

purely Boolean. A more accurate model introduced protein

species together with biochemical reactions, and allowed to

design networks with a specified function (Francois and

Hakim 2004). They obtained switches and oscillators

mostly based on protein–protein interactions but without

external inputs to control its behavior. Recently, it has been

proposed a methodology to evolve circuits with a targeted

asymptotic behavior by computing the steady state of the

system (Paladugu et al. 2006). Here, we propose to go

beyond those results by considering a general time

response and addressing transcription regulation to imple-

ment genetic networks that could be eventually

synthesized. In addition, our networks can be controlled by

external signals.

An interesting step towards the design of complex bio-

logical circuits is the ability to design networks with digital

behavior, where the output gene concentrations could be

described as Boolean functions of the inputs. Moreover,

genetic circuits sharing the same topology could behave

very differently depending on their kinetic parameters.

Therefore, rational design techniques that only take into

account network topology considerations are not sufficient

to ensure a given dynamics. This would force us to enu-

merate all possible parameter combinations to design gene

networks with a targeted behavior, which is impossible due

to the exponential explosion of possible models. To address

this issue, we have developed an algorithm that searches

the space of artificial transcriptional networks to find the

optimal circuits with a targeted temporal behavior. During

our simulation, we add or subtract genes, change kinetic

constants or the combinatorial regulation logic at promot-

ers. We evolve in time each generated circuit and we use

the average deviation to an expected temporal function as a

scoring function. We use Monte Carlo Simulated Anneal-

ing (Kirkpatrick et al. 1983; Metropolis et al. 1953)

method to do an optimization in the space of all possible

genetic circuits.

A toggle switch was presented in (Gardner et al. 2000)

by implementing a two-gene core repressor–repressor. In

fact, this topology implements a RS-Latch. A further step

was designing a D-Latch based on the previous circuit with

a rational approach (Fritz et al. 2007). In this work, we

propose to go beyond those results by designing a more

complex memory device: a JK-Latch. This device is richer

than a D-Latch because it has two inputs to control its

behavior, and it is more predictable than a RS-Latch

because all the entries of the truth table are defined. In

addition, we have applied our methodology to design some

motifs by targeting digital behaviors such as logic gates in

order to compare our results with the ones found in Nature.

For simplicity, we have focused on the design of tran-

scription networks, neglecting post-translation regulation.

Already those networks can generate an arbitrary complex

behavior, as they have recently been suggested to form a

programmable computing machine, belonging to the class

of Boltzmann machines (Foster 2001). Importantly, one

inconvenient of those networks is their slow response,
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making difficult to use cascades of many stages (Hooshangi

et al. 2005), as it is usually done when designing electrical

circuits. Therefore, the implementation of a transcription

logic in the promoter region will play an important role in

generating complex behavior.

Methods

Mathematical model

Multiple approaches are available to describe biological

networks, particularly transcriptional circuits. We consider

for this work a deterministic and continuous model to

describe the regulatory interactions between genes. Further

works will take into account stochastic effects on the sys-

tem. A whole description of these networks considers all

the species involved in the processes of transcription,

translation, and regulation, such as DNA, mRNA and

proteins (see Fig. 1). In general, a regulation between a

transcription factor (repressor or activator) and a gene can

be modeled according the following differential equations

d

dt
½V � ¼ q½U�n � r½V�; ð1Þ

d

dt
½D� ¼ l½V : D� � h½V �½D�; ð2Þ

d

dt
½R� ¼ u½D� þ w½V : D� � k½R� � d½R�; ð3Þ

d

dt
½Y � ¼ k½R� � b½Y �; ð4Þ

where U is the non-active form of the regulator and V its

active form (i.e., transcription factor). q and r are the

kinetic coefficients for n-merization. If a regulator does not

n-merize, this description is also valid with U = V, n = 1,

q = r. D is the DNA, R the mRNA, and Y the folded

protein from that regulated gene. h and l are the kinetic

coefficients for binding and unbinding between the

transcription factor and the promoter, respectively. u and

w are the transcriptional kinetics from free and occupied

DNA, respectively. We assume that DNA is not degraded,

mRNA does it with kinetics d, and protein with b. k is the

translational kinetics. We have considered that the cellular

resources, such as RNA-Polymerases, Ribosomes,

nucleotides and amino-acids, are sufficient to sustain a

synthetic system and could be assumed constant. Thus, the

transcription and translation rates only depend on the

amounts of DNA and mRNA, respectively. We add an

additional mass balance equation,

½Dt� ¼ ½D� þ ½V : D�; ð5Þ

as the amount of DNA within the cell is conserved. Those

equations can be rewritten for more than one transcription

factor.

However, we simplify the model to get a more reduced

formulation, despite of introducing more non-linearity. We

suppose that the intermediate species have low temporal

rates (i.e., d[V]/dt = d[D]/dt = d[R]/dt = 0), and we

define the following parameters

Kn ¼ lr
hq
; ð6Þ

a ¼ k
dþ k

u½Dt�; ð7Þ

c ¼ k
dþ k

w½Dt�: ð8Þ

Thus, we can write the following effective differential

equation for the protein dynamics

d

dt
½Y � ¼ a

1

1þ ½U�
K

� �n þ c
1

1þ ½U�
K

� ��n � b½Y �; ð9Þ

where a and c are the rate of protein synthesis at low and

high U concentrations, respectively. Therefore, the

temporal evolution of a transcription factor concentration

([Yi]) of the network can be written as

d

dt
½Yi� ¼ aiRi � bi½Yi� þ ci; ð10Þ

where ai is the synthesis (transcription–translation) rate of

gene i, bi its degradation rate, and ci its basal rate. The

function Ri is the regulatory factor that contains the

information about the regulation of a given promoter by

other transcription factors (see Table 1).

We have chosen the following expression for the regu-

latory factor of gene i:

Ri ¼ c00 þ c10RiA þ c01RiB þ c11RiARiB; ð11Þ

where cpq are a set of coefficients defined to match a given

asymptotic behavior (see Table 1) and RiA and RiB are

given by

Fig. 1 Biological scheme of a transcriptional regulation. Greek

letters denote the kinetic constants of the different biochemical

reactions
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Rr
iA ¼

1

1þ ½YA�
KiA

� �niA
; ð12Þ

in case of having a protein that represses transcription and

by

Ra
iA ¼

YA

KiA

� �nij

1þ ½YA�
KiA

� �niA
; ð13Þ

in case of activating transcription. KiA is the activation or

repression coefficient and niA is a Hill coefficient. In

Table 2 we show the different ranges for the parameter

values and their units used this work. We have only con-

sidered the cpq corresponding to the choice of promoters in

Table 1, although we will later show the use of another

choice of cpq. Those promoters asymptotically implement

digital behaviors. The parameters cpq could also be fitted

against experimental data. In addition, we could also have

considered promoters regulated by more than two tran-

scription factors.

In addition, we choose to design transcriptional net-

works composed of promoters regulated by less than three

transcriptional factors. We can find promoters with syner-

gistic regulation by two transcriptional factors in E. coli

and in S. cerevisiae: in E. coli, the promoter controlling

gene fucAO is synergistically activated by CRP and

fucPIKUR (Bronsted and Atlung 1996), the promoter

controlling gene cirA is activated by CRP and repressed by

fur (Griggs et al. 1990), and the transcription factors fnr

and arcA repress gene sdhCDBA (Park et al. 1997). On the

other hand, in yeast, the promoter controlling gene PDR5 is

activated by PDR1 and PDR3 (Katzmann et al. 1994), and

the promoter controlling gene GAL1 is activated by GAL4

and repressed by MIG1 (Nehlin et al. 1991), and the

transcription factors MOT3 and ROX1 repress gene DAN1

(Sertil et al. 2003).

Optimization procedure

We have developed a software to computationally design

transcriptional networks with a target behavior (Rodrigo

et al. 2007). We design circuits with a targeted dynamics by

solving an optimization problem where we generate different

circuits that are scored according to a distance from the

expected time-behavior. We start from a circuit of random

topology and random parameters. We use Simulated

Annealing (Kirkpatrick et al. 1983) as an optimization pro-

cedure, which is implemented though the use of Monte Carlo

algorithm with Metropolis updating and an exponential

cooling schedule (Metropolis et al. 1953).

We randomly consider two different types of moves

during a Monte Carlo step. In the first type of move, we

randomly modify a parameter in the network model by a

constant amount (positive or negative). For each parameter,

the shift depends on its current value. For simplicity we did

not consider the possibility of having different transition

probabilities for every parameter. Moreover, this shift is

adjusted to have an acceptance probability of 50%, which

improves the convergence. For the second type of moves we

modify the network topology by randomly choosing among

Table 1 List of promoters used in this study

The first column shows the promoter’s label together with its name.

The second column shows the standard logic symbol for the tran-

scriptional activation as a function of the input concentrations of

transcription factors A and B. The third column shows the corre-

sponding value of the regulatory function Ri used in Eq. 10. The

fourth column schematically shows the operator sites where the

repressors (black boxes) or activators (white boxes) bind to the pro-

moter. Bottom: Possible promoter transitions during the optimization

procedure

Table 2 Units and range values for the kinetic parameters considered

in our mathematical model (see Eq. 10)

Parameter Units Max value Min value

a lM/min 10 0.1

b 1/min 2 0.001

c lM/min 0.01 0.0002

K lM 5 0.01

n – 3 1
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five possibilities: (i) to replace a promoter (which amounts to

replacing the regulatory function in Eq. 11), (ii) to add a new

regulation between a gene and a promoter, (iii) to remove a

regulation on a given promoter, (iv) to add a new gene and (v)

to remove a gene. In all moves, we randomly choose a gene

and perform the corresponding modification.

To improve the convergence, in move (i) not all tran-

sitions are possible (see bottom of Table 1). For simplicity,

in this work we do not consider promoters regulated by

more than two transcription factors. In move (iii) we select

randomly a regulation of the circuit to be suppressed. To

avoid isolated genes, we also remove genes that do not take

part of the circuit after this move. In move (iv) we also add

a new regulation between the new gene and another

(selected randomly) in the previous circuit. Notice that by

adding genes we increase the circuit’s ability to reproduce

a given behavior, which will produce an evolution towards

large networks. One way to limit the corresponding

explosion in network size is to either add a size penalty in

the scoring function or reduce the probability to add a new

gene. If a gene does not regulate any promoter, we remove

it because it does not affect the behavior of the circuit. That

gene could be regulated or not. In addition, for conver-

gence purposes we take a much higher probability to do a

parameter move (0.99 by default using our algorithm). Like

that, for each generated circuit during the optimization, we

can explore the possible behaviors according to the fixed

range of the parameter values.

For each constructed genetic network, we solve the

dynamics for the protein concentrations and then we

compute a scoring function. If z(t) gives the targeted

behavior and y(t) is the dynamics of the corresponding

circuit, we define as score

U ¼
Ztf

ti

jy� zjvdt; ð14Þ

where v is a weighting factor that takes 0 or 1 values to

only score a region of interest.

Results

Design of a memory device

We have applied our methodology to design a sequential

circuit implemented as a transcriptional network. Such

network is able to store information resulting in a genetic

memory. We have targeted a JK-Latch (Vingron 2003)

which is the preferred type of flip-flop for most logic circuit

designs because its behavior is very rich and completely

predictable under all conditions. For this circuit, there are

two inputs (J and K), which are the setters of each stable

state. When both inputs are activated for a brief time

(producing a pulse) the system switches of state. In fact, if

this situation is prolonged the system could behave as an

oscillator. Essentially, this circuit works as the toggle

switch, already implemented with transcription factors

(Gardner et al. 2000), which could be seen as a RS-Latch,

except for the case in which both inputs are present.

We have designed two biological implementations of JK-

Latches using transcription factors. The first one is guided by

the electronic implementation (see Fig. 2a), where we have

used as logic gates promoters with combinatorial regulation

(see Fig. 2b). This rational approach is applied to engineer a

JK-Latch by implementing on a RS-Latch two positive

feedbacks from the outputs of the system (A and B). In that

case, like in the electronic design, these feedbacks are inte-

grated in two synergistically activated promoters.

Unfortunately, it is not always possible to perform such

rational designs, and in this article we aim to show a new

technique to create alternative designs. As described in the

previous section, we propose to use an unsupervised com-

putational design technique. We have imposed the desired

specifications (as shown in Fig. 3a) to design a novel circuit

(see Fig. 3b) that has no resemblance to the previous rational

design (see Fig. 2b). We have constructed U by adding the

eight scores constructed by using the four possible entries of

the truth table shown in Fig. 3a for each of the two possible

initial conditions (A = 1, B = 0 lM and A = 0,

Fig. 2 (a) Electronic

implementation of a JK-Latch

which is a sequential circuit.

(b) Rational design of a

biological memory device

implementing a JK-Latch. The

parameters and corresponding

SBML file with the model can

be found in the supplementary

material
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B = 1 lM). We provide as supporting information the cor-

responding SBML (Hucka et al. 2003) file containing the

parameter values of the designed circuit. Our design was

obtained by an in silico evolution optimizing both the

topology and parameters of the network, without relying on

an analogy between biology and electronics.

The work principle of this circuit relies on the fact that

there are two stable states and the behavior fluctuates as a

flip-flop from one to another according to the external

inputs. In the first state (or state A), protein A is expressed

activating D, which is in charge of repressing B and C (see

Fig. 3c). In the second state (or state B), protein B is

expressed repressing A (see Fig. 3d). In this case, C and D

remain inactivated. According to the specifications of this

circuit, the system remains in its current state when no

inputs are present. When K is present the system is set to

the state A (i.e., no changes are observed if the system is

already in that state, and a flip-flop is produced if the

system is in the state B). On the other hand, the tran-

scription factor J is the setter for the state B. A switch of

state is always produced when the two inputs pulse

simultaneously. In addition, our system has the property to

oscillate when both inputs are continuously present. We

can see this dynamics in Fig. 4 in which we show different

input conditions during a simulation of 1,000 min.

Conditional systems show hysteresis effects. We have

computed the steady state of A after a pulse of K for several

constant values of J. In Fig. 5a, b we show the hysteresis

diagrams for the rationally and computationally designed

JK-Latches, respectively. At low levels of J, the system

behaves as a memory device. However, for J = 0.5 the

system is not appropriate as a memory device because it

relaxes back to its previous state when the input disappears.

In our computational design, when J = 0 the switch point

occurs at K^ 0.7 lM. For higher values of J, this point

increases and the system loses its ability to store information

when we consider a constant J. For J close to 1 lM, the

switching dynamics disappears. Similar results are obtained

based on the rational design. In this case, for J = 0 the switch

point is K ^ 0.45 lM, and a constant leakage of J avoids

reaching A = 1 lM (e.g., A = 0.25 lM for J = 0.5 lM)

but still allows the memory function.

Also, we have performed a stochastic simulation

(Gillespie 1977) of this circuit to see its robustness under

molecular noise (see Fig. 6). We have simulated several

input conditions from different initial conditions. To per-

form such simulation we define a set of effective reactions

involving the whole process of transcription and transla-

tion. We consider two possible reactions: protein synthesis

and protein degradation, neglecting the fluctuations due to

the mRNA dynamics. Hence, their fluxes are Hill functions

of the transcription factors. We provide a MatLab file to

perform this simulation as supporting information. We can

see how the average behavior of the system is maintained

as in Fig. 4. Further simulations could be performed, by

detailing the reaction map and proposing typical parameter

values to complete it, to obtain more accurate stochastic

dynamics as the molecular noise can induce errors in the

dynamics (Kepler and Elston 2001).

Design of digital devices

We have applied our methodology to design genetic

devices behaving as logic gates. Our devices consist on

Fig. 3 (a) Truth table for a JK-

Latch. (b) Computational design

of a biological memory device

implementing the truth table of

a JK-Latch. (c) First stable state

of this device in which protein A
is expressed and B is repressed.

(d) Second stable state in which

protein B is expressed and A is

repressed. The parameters and

corresponding SBML file with

the model can be found in the

supplementary material
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genetic circuits having the concentration of two and one

transcription factors as input and output, respectively. We

have targeted AND, OR, NAND and NOR gates, and in

Fig. 7 we show the resulting circuits. To compute the

objective function we have averaged the score obtained

with each transfer function corresponding to every entry of

the truth table. u1 and u2 are the input transcription factors

and y is the output corresponding to the concentration of

gene a’s product. We have evaluated the score during

100 min. However, to better appreciate the behavior under

different input conditions, we have chosen to plot a tem-

poral dynamics where the input transcription factors

concentrations u1 and u2 take all possible Boolean values

of a two-input truth table. Inputs can be activators or

repressors according to the chosen promoter during the

simulation. In the inset of Fig. 7 we also show the equiv-

alent digital circuits according to the interaction of each

transcription factor with its corresponding promoters. We

provide the parameters of those circuits in the supporting

information.

For the AND device (see Fig. 7, circuit I), the algorithm

selected inducible promoters at the input genes, which

implies that the u1 and u2 would correspond to the con-

centrations of two activator transcription factors. At

t = 200 min we appreciate a little peak due to the simul-

taneous change of the inputs, which it is not unexpected as

the device was evolved using the scores of steady states.

This device could be easily understood in terms of its

regulations. Initially the output gene a is off as it is con-

trolled by a synergistic AND promoter (type 6 in Table 1)

that requires b and c to be at high concentrations to start

transcription. When the two inputs increase their concen-

tration b and c start to build up and then a is produced. If

either u1 or u2 are at low concentrations then b or c cannot

be produced in enough quantities to induce the transcrip-

tion of a. For the OR circuit (see Fig. 7, circuit II) we

notice that the output almost fits the targeted behavior,

being insensitive to the input changes at t = 200 min and

at t = 300 min. This device has more latency when the

output concentration shifts down because there is a self-

activation on gene a. For the NAND network (see Fig. 7,

circuit III), we obtain two repressors as inputs and the

circuit has symmetry. In the NOR circuit (see Fig. 7, circuit

IV) we have got a repressor and an activator as inputs. The

latencies at t = 0 min and at t = 400 min are different. In

the first case, the system starts from the initial condition

and follows a spontaneous evolution with no inputs actions.

However, the state of the system with the two inputs takes

more time to grow up when their effects stop. We could

reduce this latency, but compromising the steady state

value. Actually, we have seen that we could get gene

networks with small latencies as a result of our optimiza-

tion, although sometimes we could not decrease the latency

(circuits II and IV in Fig. 7) without compromising the

score. In fact, we could lower the latency of circuit IV when

we decreased the activation coefficient corresponding to

Fig. 4 Dynamics for our biological memory device implementing a

JK-Latch. In (a) dynamics of A, in (b) dynamics of B, in (c) dynamics

of J, and in (d) dynamics of K
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the regulation of gene d by gene c (Kdc), but the height of

maximum output expression also decreased.

Sensitivity analysis

To study the robustness of our designed memory devices,

we have performed a sensitivity analysis for the tran-

scription (a) and degradation (b) rates. For that, we plot the

relative score variation ððU� U0Þ=U0Þ versus the relative

parameter value (a/a0 and b/b0) for the different circuit

genes. In Fig. 8a, b we show the robustness of the com-

putationally designed JK-Latch under perturbations on C

and D at the transcription and degradation level. Oppo-

sitely, in Fig. 8c, d we show the robustness of the rationally

designed JK-Latch under perturbations on R and S at the

transcription level and on R at the degradation level. We

note that as our designs were optimized by Simulated

Annealing, they are located in local minima being robust in

a neighborhood of the optimized value.

On the other hand, as it is difficult to map a given net-

work topology to a function, we have studied the parameter

sensitivities for the circuit II from Fig. 7. Figure 9 allows

us to show this fact by performing a functional evolution

just by changing one kinetic parameter. In Fig. 9a we show

how varying the transcription–traslation rate of gene c we

could modify the circuit behavior between OR and AND.

In this case, the OR state is more robust as we can observe

in the figure. In Fig. 9b, the evolution is between OR and

NOR playing with the self-activation coefficient of gene a.

In this case, we observe that the NOR state is more robust.

Fig. 5 Hysteresis cycles for

two different JK-Latches

between the steady state of A
and the pulsing amplitude of K
for several constant values of J.

In (a) computationally designed

network (see Fig. 3). In (b)

rationally designed network (see

Fig. 2) with parameter

optimization using our

algorithm

Fig. 6 Stochastic simulations

(Gillespie 1977) for the memory

device implementing a JK-

Latch. We have considered 100

molecules as 1 unit in terms of

concentration. A is shown in gray

and B in black. In (a) K is set to

high at 50 min while J is always

low starting with the state B, in

(b) J is set to high at 50 min

while K is low starting with the

state A, in (c) J and K are set to

high at 50 min for just 10 min

starting with the state B, and in

(d) J and K are set to high at

50 min starting with the state B
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We could also perform a functional evolution between

AND and NOR by modifying the two considered param-

eters at the same time. Notice that we could then engineer

an AND function from the OR device by simply doing

directed mutagenesis on the ribosome binding site of gene

c, decreasing then its expression rate. Or engineer an NOR

function by decreasing the transcription factor affinity of a

on its promoter region.

Discussion

Circuit implementation and functionality

Our designs of digital devices and of a JK-Latch show that

we can use automatic computational design to engineer

networks without relying on design principles inspired in

the electronic analogy. Our computational approach not

only is able to design combinatorial but sequential circuits.

The design of such memory systems has a big relevance in

biology because the cell is able to react against a given

external stimulus taking into account the previous condi-

tions. We notice that natural-occurring promoters do not

behave as perfect step functions but have a smoother

behavior. This requires a careful fine-tuning of parameters

during the design process. We have shown how to use our

procedure by considering promoters with such smooth

response (as in Fig. 7 circuit V).

We could understand the working principle of our

computational JK-Latch by considering the relevant sub-

circuits. Firstly, we find a toggle switch between D and B

(as B represses D by means of A), which will become the

core of our biological memory. Nevertheless, the ability to

switch when both inputs are present, but independently of

the previous state, requires a more complex topology. In

fact, the oscillatory behavior when both inputs are present

is a non-trivial consequence of such specification, since we

targeted a switch that changed state when pulsing with both

inputs at the same time. This behavior can be reached in a

small region of the parameter space though. In addition, we

note that, instead of using two positive feedbacks as the

rational design proposes, our design relies on the feedback

of A on D. Furthermore, our circuit just requires the use of

three two-regulated promoters, instead of four as the

rational design proposes, which is convenient for the

experimental implementation.

However, the in vivo implementation of a circuit which

has been designed in silico usually requires many experi-

ments in order to tune the desired behavior (Weiss 2001)

and to avoid possible cross talks (Buchler et al. 2003).

Fig. 7 Biological devices designed with digital targeted behavior. (a)

Digital electronic circuit diagrams corresponding to the designed

genetic networks. (b) On top, the time variation of the concentration

of two genes, u1 and u2, chosen to be the device input genes. Below

there are the resulting optimal regulatory genetic networks that more

closely follow a given targeted behavior. Genes are noted with letters,

and promoters with numbers according to their type (see Fig. 1). Two

promoters in circuit V are noted with h (considered as hybrids),

because they do not belong to the default set from Fig. 1. We targeted

devices showing an AND, OR, NAND and NOR logic in terms of the

input (u1 and u2) and output (a) genes. On the right, there are the

corresponding time-variation of the reporter output gene concentra-

tion y. Dashed line represents the targeted behavior, and solid line the

obtained evolution from the optimal genetic network. The parameters

can be found in the supplementary material

b
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Moreover, a constant fine-tuning of the model by using

experimental feedbacks will introduce more accuracy even

with in vitro environments (Kim et al. 2006). It could be

possible to incorporate this experimental feedback into our

automatic design procedure by developing a new algorithm

that would design circuits by assembling models of bio-

logical parts (Rodrigo et al. 2008). This will require a

repository of already characterized synthetic or natural

parts. Fortunately, recent combinatorial work has shown

the easiness of creating large amounts of promoter parts by

generating a set of promoters together with their experi-

mental characterization (Cox III et al. 2007). Our

computational design of a JK-Latch could be implemented

by using araC as K, and k-cI as J for the external con-

trolling signals. Subsequently, luxR-luxI could work as A,

using luxPRcI-OR1 as promoter of D (Basu et al. 2004), and

k-cro as B with the PRM as promoter of A (Hasty et al.

2002). Finally, lacI could be C and tetR be D, imple-

menting the lacI and tetR operator sites on the promoter

region of B, and the araC and tetR sites on the promoter of

C (Cox III et al. 2007). Nevertheless, the use of such

biological parts will require experimental fine-tuning to

obtain the specified behavior. In fact, previous works

(Weiss 2001) needed to use site-directed mutagenesis in

the ribosome binding sites or in the operator sites to evolve

the whole system. In addition, directed evolution tech-

niques can evolve the behavior of the system by fine-tuning

the kinetic parameters (Yokobayashi et al. 2002; Nomura

and Yokobayashi 2007).

Could natural genetic networks be understood

as systems of devices?

Could natural circuits have a selective pressure for a given

network motif or for a given dynamical function? We have

found several circuits with targeted AND behavior. If a

selective pressure existed for a given network module

behavior, then some circuits within a module would get

rewired by evolution while maintaining their functionality.

For instance, it could be that some AND circuits would

occasionally appear in evolution substituted by another

AND circuit. We notice that several of our results in Fig. 7

showing digital behaviors appeared very often in natural

gene networks. It is interesting that two of them (I and V in

Fig. 7b) were found very often in E. coli and S. cerevisiae

as network motifs. Circuit I was found 28 and 26 times in

Fig. 8 Parameter sensitivity

analysis for the computationally

designed JK-Latch (a, b), and

for the rationally designed JK-

Latch (c, d). Subindex 0 refers

original values
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E. coli and S. cerevisiae, respectively, as a coherent feed-

forward loop (FFL) system (Mangan and Alon 2003) where

it was suggested this Circuit could function as an AND gate

able to filter out pulses in the input. For instance, the

topology of circuit I appears in the genes (corresponding to

our genes a, b and c) appCBA, appY and arcA in E. coli,

and in the genes PDR5, PDR3, and PDR1 of S. cerevisiae.

Likewise the topology of the circuit V is found in the genes

CYC7, ROX1 and TUP1 in S. cerevisiae, but it is not

present in E. coli (Mangan and Alon 2003).

On the other hand, it could happen that natural gene

circuits would not rely on functional modules (Hartwell

et al. 1999) but on a complex intertwined network of

interactions, as it would usually happen with evolutionary

design (Bosl and Li 2005). In this later case, maybe the

only way to design a system of devices would be by using

an evolutionary design procedure. We could then use

directed evolution of gene circuits (Yokobayashi et al.

2002) or in a combination with a computational procedure.

More work is needed to elucidate this point.

Functional evolution of genetic networks

Our optimization procedure also allows us to analyze the

evolvability of genetic devices. Here we consider the circuit

II of Fig. 7, where we have modified a single parameter, a, in

order to change the device function to behave as an AND gate

(see Fig. 9a). This parameter was related to the expression of

gene c and this sensitivity provides an evolvable mechanism

for device function, as mutations affecting its expression will

have a dramatic effect in the device function. Therefore, the

transcription–translation efficiency of that gene would be

under a strong selection pressure, which could be the general

rule in biology, according to the experimental evidence from

recent work where protein expression levels were found to be

shaped by evolution (Dekel and Alon 2005). Moreover, by

changing a few parameters we could get a NOR gate as well,

inverting completely the initial behavior (see Fig. 9b).

We could propose a scenario for the evolution of device

function by considering the situation d in Fig. 9. This cir-

cuit shows an intermediate behavior between AND and OR

digital devices (when a is around 0.15 lM/min), but rap-

idly converged to OR (when a is higher) or AND (when a
is lower). Then, if we consider the case where the input

concentrations always remain below a threshold (such as

0.7 lM) then the device would work as a perfect AND

gate. On the other hand, if the concentrations were always

above another threshold (such as 0.5 lM) then the device

would work as a perfect OR gate. Hence, by shifting the

expression level of the input transcriptions factors, either

Fig. 9 We plot the scores of

circuit II (see Fig. 7) by

computing them using AND

(solid line), OR (dashed line)

and NOR (dotted line)

behaviors. We have performed a

parameter scan of (a) the

transcription–translation rate of

gene c (a) taking the activation

coefficient of promoter of gene

a (K) equal to 1.2 lM, and (b)

the activation coefficient of

promoter of gene a (K) taking

the transcription–translation rate

of gene c (a) equal to 10 lM/

min. Behavior of the system

versus the input concentrations

when a is (c) 0.1 (the value of

the optimum for AND in (a)),

(d) 0.15, and (e) 0.4 lM/min

(the value of the optimum for

OR in (a)), remaining K
constant
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dynamically or by evolution (Dekel and Alon 2005), we

could change the function of the device while maintaining

all the circuit properties. This promiscuity in system

function could play a mayor role in the evolution of bio-

logical systems. In fact, a device could simultaneously

have several functions and a change in the environment

could switch between them. In this way, if during evolution

the environment would not change enough then the alter-

native function could be lost.

Further applications

Our methodology could also be adapted to the inference of

regulatory networks provided a specific device function is

known. Another application is to train parameters for given

in vivo genetic circuits (Feng et al. 2004). In future appli-

cations we could refine the mathematical model to include

stochastic dynamics and an optimization that would also

score for robust circuits. We could also use our methodology

to understand and derive new types of control systems in

transcriptional and metabolic networks (El-Samad et al.

2005). Finally, our work shows how to design genetic net-

works without the constraint of using components adopting

Boolean values, often used to design transcription networks.

Gene concentrations can adopt a continuous range of values

and only a computational procedure can simultaneously

optimize the design of a circuit and its parameters to fit a

given function. Future automatic design work will have to

incorporate experimental data to build the models to be

explored in the network optimization.
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