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A B S T R A C T   

Copper-mediated cell death presents distinct pathways from established apoptosis processes, 
suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a 
predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict 
colon cancer outcomes while examining immune interactions and intercellular signaling. We 
obtained colon cancer-related human mRNA expression profiles and clinical information from the 
Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox 
proportional hazards modeling alongside the least absolute shrinkage and selection operator 
technique. We elucidated the underlying mechanisms by examining the tumor mutational 
burden, the extent of immune cell penetration, and intercellular communication dynamics. Based 
on the model, drugs were predicted and validated with cytological experiments. A 13 
lncRNA–cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used 
to validate the predicted representative mRNAs with high correlation coefficients with copper- 
induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends 
in Kaplan–Meier survival estimates. Analysis of immune cell infiltration suggested that survival 
was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macro-
phages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 
macrophages was significantly associated with better overall survival. Combined single-cell 
analysis suggested that CCL5–ACKR1, CCL2–ACKR1, and CCL5–CCR1 pathways play key roles 
in mediating intercellular dialogues among immune constituents within the neoplastic micro-
habitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this 
discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to 
assess the prognosis, unravel the immune mechanisms and cell communication, and improve 
treatment options, which may provide a new idea for treating colon cancer.   

1. Introduction 

Colorectal carcinoma (CRC) is the third most common oncologic fatal condition [1]. From 1990 to 2019, incidence of colorectal 
carcinoma increased twofold or greater in 157 out of 204 nations and regions. Mortality rates paralleled this surge, climbing from an 
estimated 518,126 (493,682–537,877) to 1.09 million (1.02–1.15 million) across 129 of the surveyed 204 territories [2]. CRC includes 
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colon and rectal cancers [3]; however, these cancers differ in many ways, especially in terms of tumor biology, recurrence patterns, and 
treatment modalities [4]. Only a few effective therapeutic targets are available for treating patients with colon cancer. Treatment 
strategy and prognostic assessment of colon cancer have been intensely investigated. Therefore, exploring other possible therapeutic 
targets is crucial. 

Copper is one of the most abundant basic transition metals in the human body [3]. Abnormalities in copper homeostasis may be 
caused by genetic mutations, aging, or environmental factors and produce various pathological sequelae, including cancer, inflam-
mation, and neurodegeneration [5]. Dysregulation in copper homeostasis is implicated in oncogenesis, with tumor tissues exhibiting 
increased copper levels compared to nontumorous counterparts [6]. Elevated copper content within neoplastic tissues of the breast, 
pulmonary, digestive, oral, thyroid, hepatic, reproductive, and prostatic systems has been documented, implying a contributory role in 
tumorigenesis, vasculature formation, and tumor metastasis [7,8]. Limiting copper availability impairs cancer cell metabolism [9], and 
targeting copper metabolism is a potential target for cancer therapy [10]. Recent investigations indicate that copper-triggered 
apoptosis deviates fundamentally from established cell death pathways, including necroptosis, ferroptosis, and pyroptosis. This 
form of cell death is closely linked to the citric acid cycle through the modulation of protein lipoylation [11,12]. Specifically, in 
colorectal cancer, decreased glycolytic activity coupled with enhanced mitochondrial respiration indicates a growth-inhibitory 
environment, highlighting the significance of copper ion dynamics in prognostic evaluations and the development of novel cancer 
treatments [13]. Based on this new approach to cell death, the study sought to develop new methods of treatment and prognosis 
assessment for patients with colon cancer. 

Long-noncoding RNAs (lncRNAs) are >200 bp in length and play important regulatory roles in controlling a wide range of cellular 
functions [14], including crucial immune processes such as the recruitment of immune cells, the identification and response to an-
tigens, and the subsequent eradication of tumors [12,15–17]. lncRNAs also influence the growth and distant spread of various 
neoplastic cell types, establishing them as valuable markers for cancer diagnosis and prognosis [18–20]. Particularly in colorectal 
neoplasms, lncRNAs contribute to cellular invasion, dissemination, and secondary tumor formation [21,22]. Therefore, identifying key 
regulators of copper-induced cell death is an important step toward treating colon cancer. lncRNAs associated with cuproptosis present 
promising opportunities as novel biomarkers and as potential targets for developing innovative treatment strategies in colon cancer 
management. 

The intricacies of cell mortality induced by copper in tumors are under investigation, with the specific contributions of lncRNAs 
related to cuproptosis in colon cancer yet to be elucidated. Leveraging bioinformatic techniques, this study probes into the functions of 
cuproptosis-connected lncRNAs within the context of colon cancer. Our research specifically focused on colon cancer and established a 
more robust predictive model for cuproptosis-related lncRNAs. Distinct from prior studies, our work delves deeply into the immune 
patterns and cellular communication associated with cuproptosis-related lncRNAs within the colon cancer milieu. Moreover, we 
provide cytological validation of the mRNAs interacting with these lncRNAs, reinforcing the biological relevance and potential 
therapeutic implications of our findings. This combination of a focused approach to treat colon cancer and the use of advanced 
analytical methods, along with cellular-level validation, underscores the novelty and significance of our study in cancer research. 

2. Materials and methods 

2.1. Collection of sample information 

Our analysis encompassed a compendium of 452 colon carcinoma transcriptomes procured from the TCGA repository as of August 
18, 2022 (https://portal.gdc.cancer.gov/). The selection criteria for these samples mandated comprehensive clinical details, including 
sex, age, and tumor staging. Both mutational profiles and additional clinical data, such as survival durations and statuses, were also 
retrieved from the TCGA database. Annotations for lncRNAs were sourced from the GENCODE database (https://www.gencodegenes. 
org/), and genes related to copper-mediated apoptosis were compiled based on prior literature [11]. 

2.2. Evaluating variance in expression of lncRNAs linked to cuproptosis 

Employing a suite of analytical tools, specifically the “limma,” “dplyr,” “ggalluvial” and “ggplot2” packages, we constructed a 
Sankey diagram to elucidate the connections between genes implicated in cuproptosis and their associated lncRNAs. Pearson corre-
lation analysis was conducted, setting the significance threshold at an absolute Pearson R value of >0.5 and a p-value of <0.001. 

2.3. Cuproptosis-associated lncRNAs modeling construction and validation 

Construction and Validation of Models for lncRNAs Associated with Cuproptosis. 
TCGA’s colon cancer datasets were segregated into equal parts for training and testing purposes, establishing the framework for risk 

model development and subsequent performance assessment. LncRNAs with statistical significance (p < 0.05) correlating to overall 
survival (OS) outcomes were identified using univariate Cox regression analyses. To develop the predictive models while minimizing 
overfitting, we employed the “glmnet” R package for Cox regression and applied LASSO regression techniques to highlight the most 
predictive set of lncRNAs [23] The categorization of samples into training and validation sets facilitated the empirical assessment of 
the model’s precision. Risk scores were computed as follows: 
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Risk Score=
∑j

i=1
coeffienti × expressioni (2) 

Utilizing median risk scores and their associated coefficients, we stratified patient risks into dichotomous groups (low and high 
risks). OS and progression-free survival (PFS) prognostications were conducted using Kaplan–Meier (KM) survival estimates through 
the “survival” and “survminer” R functions. ROC (receiver operating characteristic curve) curves and AUC (area under the curve) 
metrics, derived from “survival,” “rms,” “pec,” and “timeROC,” were implemented to gauge model precision. The concordance index 
(C-index) was determined using a compilation of R resources, including “rms,” “dplyr,” “survival,” and “pec,” to assess prognostic 
accuracy. We utilized the C-index function from the pec package to compute time-dependent C-index values for each model. This 
function assesses the concordance of the survival models and produces C-index values over a sequence of evaluation times (0–10 years) 
using bootstrap resampling (B = 1000). 

2.4. Establish and evaluate nomogram and calibration 

We generated nomograms to visualize univariate and multivariate Cox analysis results by employing the “rms,” “regplot,” and 
“survival” functions within R. The fidelity of these graphical representations was examined, supplemented by calibration plots to 
further appraise the models. 

2.5. Gene set enrichment analysis 

The expression patterns of cuproptosis-associated lncRNAs for colon cancer samples were classified using the principal component 
analysis (PCA) to show the spatial distribution of different groups, and results were visualized using the “scatterplot3D” package in R 
software. 

In addition, for differentially expressed genes (DEGs) in the low- and high-risk groups, Gene Ontology (GO) analysis and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways for differential expression in both groups were performed using “org.Hs.eg.db,” 
“clusterProfiler,” and “enrichplot” packages in R software. 

2.6. Tumor mutational burden analysis 

We procured the tumor mutational burden (TMB) profiles from the TCGA repository and deployed the “maftools” toolkit within R 
to scrutinize and assimilate the data, subsequently discerning the disparities in TMB and corresponding survival prognostications 
across distinct risk stratifications. 

2.7. Delving into tumoral immune characteristics and dysfunction exclusion metrics 

In order to delineate the immune landscape, colon carcinoma expression datasets were processed through CIBERSORT (http:// 
cibersort.stanford.edu/), applying a thousand simulations to quantify the prevalence of 22 immune cell variants [24]. Investigating 
the interplay between our prognostic model and immune cell infiltrates, we computed infiltration scores for each specimen using 
ssGSEA facilitated by the “gsva” package in R. KM analyses followed, revealing the association between the proportions of immune 
cells and patient outcomes. 

For enhanced prognostication in the context of immune-based therapies, we retrieved the Tumor Immune Dysfunction and 
Exclusion (TIDE) metrics from the TIDE portal (http://tide.Harvard/University.edu), offering a superior predictive accuracy for 
immunotherapeutic responses when compared to conventional biomarkers [25,26]. 

2.8. Single-cell sequencing data processing and cell-communication analysis 

Raw data for single-cell sequencing were obtained from the NCBI Gene Expression Omnibus (GEO) database, specifically the 
GSE110009 dataset, which includes 3585 cells from six patients with colon cancer. Quality control was performed by excluding cells 
with fewer than 200 or more than 2500 detected genes, fewer than 1000 or more than 10,000 UMIs (unique molecular identifier), and 
more than 5 % mitochondrial reads to remove low-quality cells and potential doublets. Data were normalized using the LogNormalize 
method and scaled to regress out unwanted variations, such as UMI counts and mitochondrial gene content. Dimensionality reduction 
was conducted using PCA, and UMAP (uniform manifold approximation and projection) was used for visualization. Clustering was 
performed using the Louvain algorithm. Doublets were predicted and filtered out using DoubletFinder. Immune cell-type deconvo-
lution was performed using the CIBERSORT algorithm, and the results were visualized with violin plots. Annotation of cell-type 
clusters was done using the “celldex,” “SingleR,” and “Seurat monocle” packages and visualized on t-SNE plots [27,28]. CellChat 
was used to visualize cellular interactions, which included approximately 2000 ligand–receptor interactions [29]. 

2.9. Potential sensitive drug prediction 

The drug sensitivity data used in our study were obtained from the Genomics of Drug Sensitivity in the cancer database. This 
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database provides comprehensive information on the response of various cancer cell lines to a wide range of anticancer drugs, 
measured in terms of the half-maximal inhibitory concentration (IC50). Drug IC50 values were used for drug sensitivity measurements 
[30]. In the final stages of our analysis to assess therapeutic efficacy against colon cancer, we estimated the IC50 of anticancer drugs 
using the “pRRophetic” algorithm in R. We analyzed whether there was a significant drug sensitivity to conventional treatments 
between the two groups. This was crucial for assessing the clinical relevance of the treatment options. 

2.10. Cell viability assays and RT-qPCR of mRNA associated with lncRNAs in vitro 

The starBase databases were used to predict interactions between lncRNAs and mRNAs [31,32]. Further refinement of our pre-
dictions hinged upon contrasting mRNA expression levels in tumorous versus healthy tissue obtained from the TCGA colon cancer 
database. We applied Spearman’s rank correlation for a robust analysis of the interplay between lncRNAs and variably expressed 
mRNAs. Correlations were visualized using heatmaps generated by the ggplot2 package in R, enabling the selection of the 
lncRNA–mRNA pairs with the strongest associative signals. 

Cell line cultivation involved two colon cancer variants, HCT116 and SW620, sourced from the Cell Bank of the Chinese Academy 
of Science. HCT116 cells thrived in McCoy 5A medium enriched with 10 % fetal bovine serum and 1 % penicillin–streptomycin so-
lution, whereas SW620 cells thrived in Dulbecco’s modified Eagle medium with the same supplementation. Cells in the logarithmic 
phase of growth were used for subsequent experimental investigations. Cell densities were determined at 5000 cells per well in 96-well 
culture plates and 2 × 105 per well in six-well plates. Subsequent experimental manipulations were performed when cells were at 60%– 
70 % confluence. 

Cells were incubated with elesclomol (MCE, Shanghai, China) and CuCl2 (Macklin, Shanghai, China) at the appropriate 

Fig. 1. Flow chart of study.  
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concentrations. Cell viability assays were performed using the CCK8 assay (Topscience, Shanghai, China). 
CuCl2 was used in our experiments as a source of copper ions (Cu2+). CuCl2 is commonly used in experimental studies on copper 

metabolism and toxicity. CuCl2 provides a controlled and soluble source of copper ions, making it suitable for experimental use in cell 
culture systems. 

We extracted total RNA utilizing the Trizol extraction method, as specified by Vazyme (Shanghai, China). cDNA synthesis was 
facilitated through reverse transcription protocols provided by Vazyme Biotech. For quantitative polymerase chain reaction analyses, 
we employed the ChamQ Universal SYBR qPCR Master Mix, also supplied by Vazyme, Shanghai, China. mRNA sequences are displayed 
in Supplementary Table 1. The reaction system had a volume of 10 μl, and the manufacturer’s instructions were followed for all 
experimental procedures. Each group had five independent samples, with GAPDH serving as the control. The mRNA relative 
expression levels were determined using the 2− ΔΔCt method. 

2.11. Statistical analysis 

In our study, all statistical computations were executed utilizing R (version 4.0.3). We assessed differences in continuous variables 

Fig. 2. Exploration of prognostic lncRNAs linked to cuproptosis in colon cancer. (A) Associations between cuproptosis-associated genes and 
lncRNAs. (B) KM survival curves depicting OS in the testing cohort. (C) KM survival curves for OS in the training cohort. (D) KM survival curves of 
OS in the total cohort. (E) KM survival curves of progression-free survival in the total cohort. (F, G) KM survival curves for low- and high-risk 
populations by stage. 

Fig. 3. Independence of cuproptosis-associated lncRNAs and developing a predictive nomogram. (A) Cox regression analyses, both univariate and 
multivariate. (B) Time ROC curves predicted at 1, 3, and 5 years intervals. (C) Construction of a nomogram for predicting patient outcomes. (D) 
Calibration curves validating the 1-, 3-, and 5-year OS predictions. 
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across groups via independent t-tests, whereas chi-square tests were employed for categorical data. We conducted KM and log-rank 
tests to support our univariate survival analyses. Moreover, we used Cox proportional hazards modeling for an in-depth multifacto-
rial survival evaluation, considering p-values below 0.05 as statistically significant. 

3. Results 

3.1. Construction and cuproptosis-related lncRNA prognostic markers 

This study’s methodology is graphically depicted in Fig. 1. 
We identified 1988 cuproptosis-associated lncRNAs that met the Pearson analysis criteria. The Sankey diagrams elucidate the 

correlation between genes implicated in cuproptosis and their corresponding lncRNAs (Fig. 2A). The 446 patients were split into 
testing (n = 223) and training groups (n = 223), and their clinical information is shown in Supplementary Table 2. The testing and 
training groups did not differ in any clinical characteristics. 

Following univariate Cox regression analysis, 49 differentially expressed prognostic-related lncRNAs were used to choose. 
Furthermore, 13 cuproptosis-associated lncRNAs were identified from LASSO–COX regression. A risk score was formulated from the 
multivariate Cox regression model by combining the contributions of individual lncRNAs: risk score = AP000679.1 × (− 2.708) +
AC006111.2 × (− 1.030) + AL513550.1 × (0.850) + AC005034.5 × (− 0.649) + THCAT158 × (− 0.841) + AC138646.1 × (0.458) +
LINC00513 × (− 0.296) + LCMT1-AS1 × (0.977) + AC245884.8 × (0.832) + CYP1B1-AS1 × (1.966) + AC103591.3 × (− 0.260) +
AC009041.3 × (− 0.777) + AC106795.2 × (0.791) + LINC02257 × (0.829). 

KM survival analyses revealed a statistical trend favoring improved survival in the low-risk group compared to the high-risk group. 
This pattern was consistently observed across the testing (p < 0.001), training (p = 0.015), and overall study populations (Fig. 2B–D). 
In addition, we found that the high-risk group exhibited diminished PFS compared with the low-risk group (p = 0.028) (Fig. 2E). Our 
findings also confirm that independent of the clinical stage, survival prospects were superior in the low-risk group (p < 0.001) (Fig. 2F 
and G). Conclusively, OS was notably reduced in the high-risk group across all segments of the study cohort. 

Fig. 4. Comprehensive analysis using PCA, GO, and KEGG. (A) General PCA overview of the gene pool. (B) Targeted PCA focusing on genes 
implicated in cuproptosis. (C) PCA of cuproptosis-related lncRNAs. (D) Dissection of lncRNAs related to risk assessment. (E) Exploration of gene 
function via GO enrichment. (F) KEGG pathway analysis. 
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3.2. Independence of cuproptosis-related lncRNAs as prognostic markers 

Both univariate and multivariate Cox regression methodologies were applied to evaluate the forecast potential of our prognostic 
constructs (Fig. 3A). The univariate analysis revealed that age (p = 0.003, HR = 1.029), disease stage (p < 0.001, HR = 2.067), and risk 
score (p < 0.001, HR = 1.015) were prognostically relevant for patient mortality. Comparable trends were observed in the multivariate 
analysis, affirming the significance of age (p < 0.001, HR = 1.039), stage (p < 0.001, HR = 2.230), and risk score (p < 0.001, HR =
1.014). The AUC values reflected predictive reliability with scores of 0.771, 0.750, and 0.781 across 1-, 3-, and 5-year intervals, 
respectively (Fig. 3B). 

3.3. Nomogram for cuproptosis-linked lncRNA prognostication 

Based on this analytical framework, a nomogram was developed to predict OS at the 1-, 3-, and 5-year intervals (Fig. 3C). Cali-
bration assessments of this nomogram displayed a high concordance with its prognostic predictions (Fig. 3D). 

3.4. Comprehensive gene and enrichment profiling 

PCA was systematically employed to profile the entire gene set, focusing on genes related to cuproptosis and lncRNAs for risk 
stratification (Fig. 4A–D). This approach identified 13 lncRNAs associated with cuproptosis as distinct markers distinguishing low- and 
high-risk cohorts. 

Subsequent comparative analyses of the low-versus high-risk groups utilized GO and KEGG enrichment strategies. GO analysis 
highlighted the predominant roles of these genes in the innate and mucosal immune responses, along with glutamate binding activities 
(Fig. 4E). KEGG analysis mainly identified neutrophil extracellular trap formation, necroptosis, and transcriptional misregulation in 
cancer (Fig. 4F). 

3.5. Mutational landscape associated with cuproptosis-linked lncRNA risk categories 

An analysis of mutational prevalence highlighted APC, TP53, TTN, KRAS, PIK3CA, MUC16, SYNE1, FAT4, ZFHX4, and RYR2 as the 

Fig. 5. Tumor mutational burden (TMB) of low- and high-risk groups. (A) Visualization of TMB in select pivotal genes for the low-risk subset. (B) 
TMB portrayal for predominant genes in the high-risk category. (C) Comparative TMB analysis across risk spectrums. (D) Survival projections 
stratified by TMB risk factors. (E) Integrated TMB and survival prognosis charts. 
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most frequently altered genes (Fig. 5A and B). However, the TMB did not show significant variation between the risk-defined groups 
(Fig. 5C). Notably, patients characterized by high TMB in the high-risk group correlated with poorer survival outcomes (Fig. 5D and E). 

3.6. Immune profile and immunotherapeutic response prediction 

Analysis of immune cell composition revealed differential infiltration levels between the low- and high-risk groups, with a higher 
infiltration of naïve CD4+ T cells in the low-risk group and increased presence of M2 macrophages in the high-risk group (Fig. 6A). 
Fig. 6B illustrates the distribution of 22 immune cell types, as determined by CIBERSORT. A lesser infiltration of naïve B cells, resting 
NK cells, and M0 macrophages was associated with a significant enhancement in OS (Fig. 6C–E). The TIDE metric suggested a more 

Fig. 6. Tumor immune microenvironment mapping of colon cancer. (A) The correlation of risk scores with 22 immune cells. (B) Relative abundance 
of 22 immune cells. (C–E) Kaplan-Meier plots correlating immune cell proportions with survival outcomes. (F) TIDE score for differing risk tiers. 
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Fig. 7. Immune cell types and cell-communication network diagram. (A, B) All 17 cell-type clusters were annotated by CellMarker, according to the 
composition of the marker genes. (C, D) Quantification and intensity assessment of cellular communication channels. (E) Dynamic mapping of 
immune cell dialogues. (F) The distribution of expression level of signal genes. 
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favorable immunotherapeutic response in the low-risk group (Fig. 6F) [25]. 

3.7. Identification of different types of immune cells in colon cancer cell-communication analysis 

The t-SNE algorithm is based on the SNE framework [33], which could recover well-separated clusters [34]. Based on the cell-type 
signatures, the analysis identified seven cell types, notably T cells, macrophages, B cells, and NK cells. (Fig. 7A and B). Furthermore, we 
examined the number and strength of significant receptor–ligand interactions between different cell types to predict intercellular 
communication (Fig. 7C and D). The results indicate a close link between epithelial cells, endothelial cells, macrophages, NK cells, T 
cells and other cell populations. These include pathways such as CCL, CALCR, ANGPTL, BMP, and the complement signaling pathway 
network. Central to these interactions were ligand–receptor pairs such as CCL5− ACKR1, CCL2− ACKR1, CCL5− CCR1, CCL20− CCR6, 
CCL3− CCR1, CCL18− ACKR1, and CCL15− CCR1 (Fig. 7E). In our study, the distribution of genes linked to signaling within the 
identified pathways was charted (Fig. 7F). We observed that CCL5 was predominantly produced by an array of cells, including T cells, 
macrophages, B cells, while its associated receptor, CCL3, was primarily active in macrophages and lymphocytes. The expression of 
CCL15 was concentrated in epithelial cells, with CCL20, its interacting receptor, being extensively present across a spectrum of cells 
such as macrophages and endothelial cells. CCL2 is mainly expressed on endothelial cells, macrophages, and tissue stem cells, and the 
corresponding receptor CCL18 is mainly expressed on macrophages. CCR1 is mainly expressed on macrophages, whereas CCR6 is 
mainly expressed on T cells, with their shared receptor ACKR1 prevalent in endothelial cells. 

3.8. Therapeutic drug sensitivity 

Drug sensitivity assessment revealed distinct IC50 values among the low- and high-risk groups. Notably, drugs such as cisplatin, 
CEP-701, and salubrinal demonstrated greater efficacy in the high-risk group, indicating an increased susceptibility of these cells to the 
therapeutic agents. The risk score was inversely proportional to the IC50 (Fig. 8A–C). 

3.9. Experimental verification 

Our study provided an in-depth analysis of the relationships between lncRNAs and mRNAs in the context of cancer. The volcano 
plot in Fig. 9A demonstrated mRNA differential expression analysis. Significantly upregulated genes are shown in red and clustered 
mainly on the right, indicating positive-fold changes. Conversely, significantly downregulated genes are shown in blue and clustered 
on the left, indicating negative-fold changes. A heatmap revealed the correlation strengths, with the most significant lncRNA–mRNA 
pairs being AC245884.8–MSH5, THCAT158–CACNA2D1, AC006111.2–MSH5, CYP1B1–AS1-CLMP, LINC02257–CLMP, 
LINC00513–GTF2IRD1, and AL513550.1–MSH5 (Fig. 9B–Supplementary Table 3). Given the crucial role of copper-induced tumor cell 
death [11,35], we investigated the potential of copper therapy to enhance its destructive effect on tumors. To verify this, we conducted 
biological experiments using two colon cancer cell lines. Our findings demonstrate that the drug acting as a copper carrier exhibited 
cytotoxic effects on cells after 12 h in the presence of CuCl2 (Fig. 9 C, D) However, no notable impact occurred when the drug was used 
alone. This observation supports the notion of copper-induced tumor cell death, which is consistent with previous literature [36]. In 
addition, we predicted the target genes related to lncRNAs with biological functions in our obtained lncRNA model. Through Spearman 
analysis, we obtained the four most strongly associated genes: MSH5, CLMP, CACNA2D1, and GTF2IRD1. In our in vitro cell experi-
ments, copper-enhanced therapy promoted the expression of tumor suppressor CLMP (Fig. 9 G, H) and the downregulation of 
expression of MSH5 (Fig. 9 E, F), CACNA2D1 (Fig. 9 I, J), and GTF2IRD1 (Fig. 9 K, L) in HT116 and SW620 cells. 

Fig. 8. Correlation of drug efficacy with low- and high-risk groups in colon cancer. (A) Cisplatin, (B) CEP− 701, and (C) salubrinal.  
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4. Discussion 

Colon cancer treatment remains highly challenging despite the application of surgery and chemoradiotherapy. A detailed study of 
copper metabolism describes its close relationship with tumor origin and developmental stage [37]. Copper levels are higher in tumor 
cells than in normal cells [38,39]. Copper-deficiency therapies prevent tumor progression in clinical trials [40], and anticopper drugs 
have shown promising anticancer effects [41,42]. The accumulation of copper within cells leads to the assembly of mitochondrial 
lipid-acylated proteins and the depletion of Fe–S clusters, ultimately resulting in a specialized form of cell death known as cuproptosis 
[11]. These studies have raised new hopes for improved cancer treatment, and the advent of cuproptosis may produce a paradigm shift 
in the landscape of cancer treatment. 

Recently, lncRNAs have received considerable attention in tumor development and progression [43–47]. Herein, we identified a set 
of 13 lncRNAs associated with cuproptosis that serve as predictors of OS in patients with colon cancer, including AP000679.1, 
AC006111.2, AL513550.1, AC005034.5, THCAT158, AC138646.1, LINC00513, LCMT1-AS1, AC245884.8, CYP1B1-AS1, 
AC103591.3, AC009041.3, AC106795.2, and LINC02257. Among these, LINC00513 is a new robust regulator for the 
interferon-signaling pathway that promotes disease progression and is associated with immune disorders [48]. Previous studies have 
constructed competing endogenous RNA networks containing AC245884.8 to reveal prognostic lncRNAs associated with immune 
infiltration in CRC [49]. CYP1B1-AS1 plays a regulatory role in immune activity and tumor progression [36,50–52]. In addition, 
LINC02257 is critical for carcinogenesis and significantly affects survival in patients with colon cancer [53–55]. However, few reports 
are available on AP000679.1, AC006111.2, AL513550.1, AC005034.5, THCAT158, AC138646.1, LCMT1-AS1, AC103591.3, 
AC009041.3, and AC106795.2. Therefore, these cuproptosis-associated lncRNAs warrant further investigation. 

We built a cuproptosis-associated lncRNA prediction model that shows good accuracy in OS prediction. The PCA demonstrated that 
these particular lncRNAs are significant markers in distinguishing between patients with lower and higher risk profiles. Furthermore, 
the DEG analysis revealed a predominance of genes involved in immune response pathways, including those linked to neutrophil 
extracellular traps and necroptotic processes. Copper is essential for the maintenance of cellular and humoral immunities [56]. 
Consequently, we analyzed the TMB and immune phenotypes within the tumor microenvironment. Disparities were observed in the 
prevalence of naïve CD4+ T cells and M2 macrophages when comparing immune infiltration in patients of different risk levels. The 
presence of naïve T cells within the tumor microenvironment suggests a retardation in tumor development, with their evolution into 
active effector cells aiding in tumor eradication [57]. Aging of the immune system, or immunosenescence, is identified by a reduction 
in naïve T cells and a decrease in CD4+ and CD8+ T-cell efficacy, which can diminish the immune system’s capacity to combat tumors 
[58]. M2 macrophages are immunosuppressive and protumorogenic and can promote tumor angiogenesis and proliferation [59]. 
Subsequently, we observed a correlation between the presence of certain immune cells within tumors and patient outcomes. Notably, 
PD-L1, identified on naïve B cells marked by CD19+, CD80+, CD86+, MHC-II+, CD44+, and CD69+, contributes to tumoral progression 
by impairing the activity of effector T cells [60,61]. Resting NK cells are generally less lytic against target cells and cannot recognize 
tumor cells for efficient killing [62], which indicates weak antitumorigenic immunity [63]. M0 macrophages can aggregate in tumor 
tissue and stimulate tumor growth [64], and their presence can predict poor survival outcomes [65]. Similarly, M0 macrophages were 
upregulated in tumors, suggesting an association with metastasis and progression in CRC [66]. Moreover, lower scores on the TIDE 
scale correlated with improved responses to immunotherapy in those at lower risk [25]. 

We updated CellChat by selecting receptor–ligand pairs corresponding to DEGs across risk strata. Particularly active were com-
binations such as CCL5–ACKR1 and CCL2–ACKR1. ACKR1, known for its nonspecific binding to a range of inflammatory CC and CXC 
chemokines, including CCL2 and CCL5 [67], was implicated in this network. ACKR1 was the causal link between reducing tumor 
growth, metastasis, and intensity of inflammatory reactions [68,69]. Tumor cells express CCL5 receptors, and serum CCL5 levels are 
closely related to tumor progression and prognosis in patients with gastric cancer and CRC [70]. CCL2–ACKR1, which has proma-
lignant and proinflammatory effects [71], promotes the transfection of monocytes in inflammatory tissues [72]. CCR1 and its ligand 
CCL5 have been associated with cancer cell invasion and metastasis [73,74]. Typically produced by activated macrophages, CCL5 is 
implicated in promoting T-cell infiltration, although there is evidence to suggest that it also plays a role in immune evasion tactics [75]. 
CCL5/CCR1 participates in macrophage and NK migration and T-cell–DC interactions [76]. 

Studies have shown that MSH5 [77,78] was highly correlated with poor prognosis of tumors. Mutations in DNA repair genes at the 
MSH5 locus are suggested to be associated with the emergence of lung and colorectal malignancies. Elevated MSH5 expression cor-
relates with increased risk of adverse outcomes in patients with cancer. Additionally, CACNA2D1 expression is associated with stroma 
[79], influencing the progression and microenvironment of colon cancer by regulating fibroblasts. This correlation suggests its po-
tential as a biomarker for disease progression and a novel target for treatment strategies. CLMP plays a pivotal role in mitigating cancer 
progression by orchestrating the growth of colonic epithelial cells and acting as a tumor inhibitor [80]. The influence of CLMP on IEC 
proliferation is mediated by its interaction with the mTOR–Akt–β-catenin signaling cascade, IEC suggesting its integral role in cellular 
homeostasis and tumor suppression. CLMP recruits β-catenin to the cell membrane, independent of cadherin proteins, thereby 

Fig. 9. (A) Volcano plot showing differential mRNA in tumor and normal groups. (B) Thermal imagery capturing the interactions between lncRNAs 
and mRNAs, annotated with statistical relevance by *p < 0.05, **p < 0.01, ***p < 0.001. (C) Viability of HCT116 cells after treatment with ele-
sclomol ± 1 μM of indicated metal. (C) Viability of SW620 cells after treatment with elesclomol ± 1 μM of indicated metal. (E, F) Relative quantity 
of MSH5 mRNA In HCT116 and SW620 cells after treatment with elesclomol ± 1 μM CuCl2 for 24 h. (G, H) Relative quantity of CLMP mRNA In 
HCT116 and SW620 cells after treatment with elesclomol ± 1 μM CuCl2 for 24 h. (I, J) Relative quantity of CACNA2D1 mRNA In HCT116 and 
SW620 cells after treatment with elesclomol ± 1 μM CuCl2 for 24 h. (K, L) Relative quantity of GTF2IRD1 mRNA In HCT116 and SW620 cells after 
treatment with elesclomol ± 1 μM CuCl2 for 24 h. Mean ± SD,n = 5, ***p < 0.001. 
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suppressing CRC tumorigenesis and growth [81]. GTF2IRD1 is highly upregulated in tumor tissues and adjacent tissues, and its 
expression is negatively correlated with the infiltration and antitumor activity of TILs and closely related to poor prognosis of tumors 
[82], with overexpression in neoplastic and surrounding tissues. Studies revealed that GTF2IRD1 is implicated in the regulation of 
genes linked to the cell cycle [83]. This is a potential targeted link between lncRNAs and the intrinsic biological functions of tumors. 

Cuproptosis is recognized as a new type of cell death that has gained widespread attention. Furthermore, some lncRNAs can impact 
cancer evolution in several ways. However, untapped opportunities exist for exploring regions between cuproptosis-associated genes 
and lncRNAs. Herein, we constructed a risk model using 13 cuproptosis-associated lncRNAs to forecast outcomes for patients with 
colon cancer and examined the relationship between mutations, immune infiltration levels, and cell–cell communication. This study 
has some limitations. First, TCGA data is limited and a broader dataset is needed to validate the model of the cuproptosis-related 
lncRNAs. Second, the mechanism of these cuproptosis-related lncRNAs is poorly elucidated. Their role in shaping the progression 
of tumor microenvironment and intercellular communication requires further study. Finally, more experimental validation is needed 
to comprehensively interpret the risk score model and treatment effects. These results provide direction for future therapeutic efforts. 

5. Conclusions 

This study establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the outcomes, unravel the 
molecular mechanisms, and improve treatment options for colon cancer, which may have further clinical applications. Our study 
constructed a new model of 13 lncRNAs related to cuproptosis that may serve to predict the outcomes of patients with colon cancer. 
Insights from this model also pave the way for identifying new therapeutic avenues. Screening for anticancer drugs sensitive to copper 
may enhance patient benefits. The biological functions of the cuproptosis-related lncRNAs need to be further verified. 
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