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Background: CD4+ memory T cells (CD4+ MTCs), as an important part of the

microenvironment affecting tumorigenesis and progression, have rarely been

systematically analyzed. Our purpose was to comprehensively analyze the

effect of CD4+ MTC infiltration on the prognosis of colon adenocarcinoma

(COAD).

Methods: Based on RNA-Seq data, weighted gene co-expression network

analysis (WGCNA) was used to screen the CD4+ MTC infiltration genes most

associated with colon cancer and then identify hub genes and construct a

prognostic model using the least absolute shrinkage and selection operator

algorithm (LASSO). Finally, survival analysis, immune efficacy analysis, and drug

sensitivity analysis were performed to evaluate the role of the prognostic model

in COAD.

Results:We identified 929 differentially expressed genes (DEGs) associatedwith

CD4+ MTCs and constructed a prognosis model based on five hub genes

(F2RL2, TGFB2, DTNA, S1PR5, and MPP2) to predict overall survival (OS) in

COAD. Kaplan–Meier analysis showed poor prognosis in the high-risk group,

and the analysis of the hub gene showed that overexpression of TGFB2, DTNA,

S1PR5, or MPP2 was associated with poor prognosis. Clinical prediction

nomograms combining CD4+ MTC-related DEGs and clinical features were

constructed to accurately predict OS and had high clinical application value.
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Immune efficacy and drug sensitivity analysis provide new insights for

individualized treatment.

Conclusion: We constructed a prognostic risk model to predict OS in COAD

and analyzed the effects of risk score on immunotherapy efficacy or drug

sensitivity. These studies have important clinical significance for individualized

targeted therapy and prognosis.

KEYWORDS

colon adenocarcinoma, immunotherapy, CD4 + memory T cell, weighted gene
coexpression network analysis, gene

Introduction

Colon cancer is one of the most common gastrointestinal

malignancies in humans. GLOBOCAN 2020 estimated

1,148,515 new cases and 5,76,858 deaths due to colon

cancer, ranking fifth among 36 cancers globally, accounting

for 6 and 5.8%, respectively (Sung et al., 2021). Among all

histological subtypes, colorectal adenocarcinoma accounts for

more than 90% of colon cancer types (Barresi et al., 2015).

Surgery and chemotherapy have improved the overall survival

(OS) of colon cancer to a certain extent, but postoperative

recurrence and emergence of acquired drug resistance have

affected the prognosis of patients. The development of colon

cancer is a multistep process caused by gradual accumulation of

mutations in tumor suppressor genes, oncogenes, and

epigenetic changes (Migheli and Migliore, 2012). In recent

years, with in-depth exploration of tumor markers and

biomarkers, clinical treatment decisions for colon cancer

have changed greatly. A series of markers have been shown

to play an important role in the early diagnosis of cancer,

monitoring the efficacy of treatment and follow-up of possible

recurrence. It is now easier to choose the most appropriate

strategy for managing colon cancer (Lech et al., 2016). For

example, microsatellite instability-high (MSI-H) was shown to

be a predictor of improved overall survival (OS), and

chromosome 18q deletion was associated with worse

prognosis (Popat and Houlston, 2005; Kim et al., 2007).

Patients with mutations in the tumor suppressor gene

p53 had better OS when treated with adjuvant chemotherapy

than those treated with surgery alone (Russo et al., 2005). KRAS

mutation was confirmed to be correlated with non-

responsiveness to cetuximab and panitumumab (Di Fiore

et al., 2007), and BRAF mutations make patients resistant to

anti-EGFR monoclonal antibodies and predict worse prognosis

(Roth et al., 2010). Although targeted therapy has been

incorporated into the treatment regimen for colon cancer,

there is currently no comprehensive drug selection strategy

to identify patients who will benefit the most. Therefore, it is of

great significance to construct diagnostic and predictive

biomarker models to identify the best prognostic biomarkers

and help the selection of therapeutic drugs.

The occurrence and development of cancer are closely related

to the complex tumor microenvironment (TME). Immune cells

in the immune system which contain immune parameters related

to survival are an important component of the

microenvironment (Galon et al., 2013). Recently, several

studies have confirmed that the molecular profile of immune-

related genes in TMB may be a promising biomarker for

predicting OS in cancer patients. (Huang R et al., 2020). In

general, understanding the interaction of cancer and immune

cells can help patients assess whether they would benefit from

clinical treatment, especially immunotherapy. At present, the

choice of treatment options and prognosis evaluation of colon

cancer mainly depend on pathological tissue type, TNM stage,

and biomarkers (Angell et al., 2020). Although these prediction

methods are widely used in clinical practice, they still cannot

provide complete prognostic information. For example, patients

with the same histological tumor stage may have a significantly

different clinical prognosis. Therefore, individualized treatment

can maximize the benefits and minimize the harm to patients,

resulting in optimal survival status and relatively long

survival time.

T cell immunity is a hot research topic in recent years. CD4+

memory T cells (CD4+ MTCs) are closely associated with the

prognosis in breast cancer (Deng et al., 2019), gastric cancer

(Ning et al., 2020), lung adenocarcinoma (Choi and Na, 2018),

and pancreatic cancer (Gu et al., 2020), but the role in colon

adenocarcinoma (COAD) is unclear. Common detection

methods for immune infiltration include flow cytometry and

immunohistochemistry, but they cannot comprehensively

measure the immune effects of different immune cell types.

The wide application of high-throughput sequencing makes

transcriptomic data more accessible and provides large

amounts of resources for the analysis of immune cell

infiltration (Lv et al., 2022). Predictive biomarker screening

based on a database has been widely used in various diseases

and achieved good results, especially in cancer-related fields.

Weighted gene co-expression network analysis (WGCNA) is a

comprehensive biological analysis method used to describe the

correlation pattern between genes in microarray samples and

pairwise relationships between gene transcripts. WGCNA can

also be used to find clusters or modules of highly related genes,
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analyze correlations betweenmodules and clinical characteristics, and

identify biomarkers or therapeutic targets (Langfelder and Horvath,

2008; Yang et al., 2021a). This method has been successfully applied

to analyze gene expression data from various types of cancers, such as

breast cancer (Tian et al., 2020), lung cancer (Ding et al., 2019),

melanoma (Wan et al., 2018), hepatocellular carcinoma (Yang et al.,

2021a), glioblastoma (Zhou J et al., 2021), oral squamous cell

carcinoma (Yang et al., 2021b), and ovarian cancers (Su et al.,

2021). Compared with other signature construction methods,

WGCNA pays more attention to the strong associations between

genes and can more accurately identify the prognostic-related hub

genes, which provides a novel method for us to construct a higher-

resolution prognostic model and a new idea for predicting disease

prognosis (Panahi and Hejazi, 2021). As a feature selection method,

the least absolute shrinkage and selection operator (LASSO) is

increasingly used in colon. We usually use LASSO regression

analysis to mitigate the over-fitting of genes with prognostic value

(Narala et al., 2021). To improve the accuracy of prediction and the

generalization of statistical models, LASSO eliminates unnecessary

covariates in a combined nonlinear and interactive manner

(Obermeyer and Emanuel, 2016; Pavlou et al., 2016). Compared

to traditional statistical models, LASSO has a better ability to identify

key predictors of clinical features.

In this study, we screened the CD4+ MTC-related differentially

expressed genes (DEGs) by WGCNA and then used LASSO-Cox

regression analysis to identify hub genes and construct a prognostic

model. We used the prognostic model to predict OS and established

nomograms to improve prediction capacity. We also discussed the

specific role of CD4+ MTC-related hub genes in colon

adenocarcinoma (COAD) and predicted the effectiveness of

immunotherapy and potential therapeutic drugs. Finally, we

explored the function and biological signaling pathway of CD4+

MTC-related genes. These results will provide more precise

treatment strategies for prognosis of colon cancer.

Materials and methods

Data collection and preprocessing

437 transcriptome data files (including 398 COAD and

39 normal samples), 385 clinical data files, and 399 gene

mutation data files of the colon cancer training set were

downloaded from the Cancer Genome Atlas database (TCGA,

https://portal.gdc.cancer.gov/). The retrieval strategy is shown in

Supplementary Table S1. Public microarray data and clinical data

of the testing set (GSE40967-GPL570) were downloaded from the

Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.

nih.gov/geo/) by using the keywords “colon cancer,” “survival,” and

“Homo sapiens”. Then, we use Perl software for preliminary

processing of the TCGA data. We first extracted gene expression

data from transcriptome files of 398 tumor samples. These data were

then analyzed to identify DEGs between normal andCOAD samples.

Second, the clinical features of each sample were extracted from

385 clinical samples, including survival status, OS, age, gender, and

TNM stage. Subsequently, we merged the gene expression data and

clinical data based on the sample IDs and finally obtained a total of

379 training set samples (Supplementary Table S2). Similarly, we

screened 579 samples with complete clinical features from 585 GEO

samples and merged them with the microarray data (Supplementary

Table S3). In addition, we also obtained tumor mutational burden

(TMB) data from 399 samples (Supplementary Table S4). TMB is

defined as the total number of somatic gene coding errors, base

substitutions, gene insertions, or deletion errors detected per million

bases (Yarchoan et al., 2017). Finally, the cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and programmed cell death protein 1

(PD-1) immunotherapy score data were downloaded from the

Cancer Immunome Database for further analysis (TCIA, https://

tcia.at/).

Immune cell infiltration and co-expression
network construction

The “CIBERSORT” (Newman et al., 2015) algorithmwas used to

quantify the tumor-infiltrating immune cells from cancer RNA-seq

data, and the relative proportions of 22 types of immune infiltrating

cells were determined from the reference data set (the gene

expression characteristic set of 22 immune cell subtypes) (Chen

et al., 2018). Also, we searched the genes in normal samples and

COAD circularly to identify the DEGs between the two groups. Both

|logFC|S 1.0 and adjusted p < 0.05 were used as the thresholds for

DEGs. Based on the results of immune cell infiltration in DEGs, a co-

expression network was constructed by R package “WGCNA”(18)

and Pearson correlations (Botía et al., 2017) to understand correlation

patterns between genes and identify important modules associated

withCOAD. In order tomeet the requirements of scale-free topology,

the soft threshold method was used to evaluate the correlation

coefficient and noise filtering capability. The optimal soft

threshold power β is determined by the function in WGCNA.

The topological overlap matrix (TOM) and corresponding

dissimilarity matrix (1-TOM) visualize the network graph for

module detection. Subsequently, a scale-free topology plot was

generated under the optimal soft threshold power, and a

clustering tree of co-expressed gene modules was established, with

the main parameters as cutHeight = 10,000, minSize = 10. DEGs

closely related to 22 types of immune infiltrating cells were obtained

by WGCNA to represent the expression profiles of module genes.

Identification of hub genes and
construction of a prognostic model

We extracted the target module of CD4+ MTC infiltration

DEGs from the co-expression network according to the p-value

of the correlation coefficient. The correlation was deemed
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significant when the false discovery rate (FDR) was p < 0.05

(Chen et al., 2021). Based on the gene expression in TCGA and

GEO preprocessing results, the expression levels of target module

DEGs in each sample were obtained. Then, we performed a

univariate Cox regression analysis on the TCGA training set to

screen out DEGs which were significantly associated with OS

(Supplementary Table S5). Subsequently, LASSO regression

analysis was performed on these DEGs to remove genes that

were highly correlated and prevent the overfitting of the model.

Next, DEGs with the least error in LASSO regression were

determined by cross-validation. Based on the results of

LASSO, we constructed a Cox model to obtain the prognostic

hub genes andmodel formula. Then, the risk score was calculated

using the model formula, and the training set was divided into

high- and low-risk groups according to the median value of the

risk score. Similarly, the GEO validation set was also divided into

high- and low-risk groups to verify the accuracy of the prognostic

model.

Predictive ability of the model

We validated the prognostic value of the model by

Kaplan–Meier (K–M) analysis. The accuracy of the prognostic

model in predicting 1-, 3-, and 5-year OS rates was assessed by

time-dependent receiver operating characteristic (ROC) curve. In

addition, multivariate and univariate Cox regression analyses were

performed to verify whether the risk score could be used as a

prognostic indicator independent of other clinical features. We

also performed survival analysis for each hub gene to determine

the impact of their differential expression on the prognosis of

COAD. Furthermore, based on the results of independent

prognostic factors, we used “regplot” and “rms” packages to

draw nomograms and calibration curves. Each prognostic factor

corresponds to a score, and the scores of all prognostic factors were

added to obtain a total score. Then, the total score was used to

predict the 1-, 3-, and 5-year survival of COAD, and the calibration

curve was used to verify the accuracy of the nomogram.

Correlation analysis of risk score with
immune cell infiltration, immunotherapy,
and drug sensitivity

Based on pan-cancer immune cell infiltration data from the

TCGAdatabase (Supplementary Table S6), the correlation of immune

cells with risk scores was analyzed.We also analyzed the correlation of

each hub gene with immune cell infiltration and immune checkpoint.

After downloading the CTLA-4 and PD-1 immunotherapy scores of

COAD patients downloaded from the TCIA website, we compared

the difference in immunotherapy efficacy between high- and low-risk

groups. The higher the immunity score, the more patients benefit

from immunotherapy. Finally, the pre-prepared installation package

“pRRophetic” was used to predict drug sensitivity for COAD. The

“pRRophetic” package is mainly used to predict the phenotype and

drug sensitivity of external cell lines by using gene expression data. It

can also be used to predict clinical data. (i.e., predicting clinical

outcomes based on the cancer genome project cell coefficient). The

half-maximal inhibitory concentration (IC50) value is used to

represent the sensitivity of drugs. The smaller the IC50 value, the

more sensitive the patient is to the drug.

Functional and pathway enrichment
analysis

We used the R package “limma” package and logFC function to

analyze the genes in the prognostic model and screened out DEGs

between high- and low-risk groups. LogFC >0 means the gene is

upregulated in the high-risk group, and conversely, it is upregulated in

the low-risk group. Subsequently, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Dennis et al., 2003)

enrichment analyses were performed based on the data obtained from

risk analysis. The FDR (< 0.05) correction was used to determine the

statistical significance of GO and KEGG terms.

Tumor mutational burden analysis

We analyzed the sorted gene mutation data with the R

package “maftools” and generated the corresponding waterfall

diagram according to the high- and low-risk groups, showing the

30 genes with the highest mutation frequency. R software was

used to verify whether there was a difference in TMB between

high- and low-risk groups, and the association between TMB and

OS was verified by K–M analysis.

Statistical analysis

R (v 4.1.3) (https://www.r-project.org/) and SPSS 23 were

used for statistical analysis, and Strawberryperl (v 5.30.0) (https://

www.perl.org/) was used to sort and merge the downloaded data.

Results

Evaluation of tumor-infiltrating immune
cells

The flowchart of the whole study is summarized in Figure 1.

The RNA-Seq data of TCGA contained a total of 398 COAD

and 39 normal samples, including 19,560 genes. After obtaining

the expression matrix file, the proportion of 22 types of immune

cell infiltration was determined by the “CIBERSORT” algorithm.

Among the 22 types of immune cells, “MacrophagesM0,” “T cells
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follicular helper,” “Macrophages M1,” and “T cells CD4 memory

activated”were more actively expressed in COAD than in normal

samples (Figure 2A). The heatmap shows the relationship

between 22 immune cells in COAD (Figure 2B). The number

in the small square is the Pearson product–moment correlation

coefficient, which is used to measure the degree of linear

correlation between variable X and variable Y. Its value is

between −1 and 1, greater than 0 means positively correlated,

and less than 0 means negatively correlated. 0 means that there is

no linear correlation between the two variables. (For example,

“B cells memory” and “Macrophages M0” are positively

correlated, correlation coefficient = 0.08). Also, the bar plot

shows the proportion of immune cell infiltration in each

COAD. We can conclude that there was a higher proportion

of T cells and macrophages (Figure 2C).

Construction of the gene co-expression
network

We first analyzed all TCGA genes and extracted 8,196 DEGs

between normal samples and COAD. Then, R software was used

to eliminate the normal samples and genes with small fluctuation

values in the data set and checked whether there is any deletion in

the sample data and then removed the offending genes and

samples from the data. Next, we detected outliers through sample

clustering and eliminated them (Figure 3A). “sft$powerEstimate”

function was used to determine the optimal soft-power threshold

(β = 5), and the scale-free fit index of network topology was

obtained by soft-thresholding power analysis (Figure 3B).

Furthermore, we constructed a hierarchical clustering tree by

using the dynamic shearing method and searched genes with

similar expression data for modular clustering to generate a new

hierarchical clustering tree (Figure 3C), and eight modules were

generated. Finally, we draw the correlation plot between

WGCNA modules and immune cells for further analysis

(Figure 3D).

Identification of hub genes and
establishment of a prognostic model

The highest correlation with the CD4+ MTC-related gene

was found in the “greenyellow” module (R2 = −0.35, p <
0.0001), including 929 DEGs in total. According to the gene

names in the “greenyellow”module, we searched in the TCGA

and GEO sets respectively to extract expression levels of each

gene. Also, gene expression files were merged with clinical

data (Supplementary Table S2 and Supplementary Table S3)

to prepare for further analysis. Univariate Cox analysis was

performed on the “greenyellow” module genes and identified

105 CD4+ MTC-related DEGs associated with the OS of

COAD (Supplementary Table S5), and we preferentially

showed 27 DEGs with p < 0.005 in the forest plot

(Figure 4A). We further identified 12 genes by LASSO

regression analysis (Figure 4B). Then, a Cox model (Gill,

1982) was constructed based on these 12 genes, and finally,

five hub genes (TGFB2, DTNA, S1PR5, F2RL2, and MPP2)

and a model formula were obtained. The model formula was

used to calculate the risk score of the training set: risk score =

[TGFB2 × 0.320,583] + [F2RL2× (-0.612,387)] + [DTNA ×

0.411,655] + [S1PR5 × 0.447,946] + [MPP2 × 0.718,418]

(Table 1). According to the median value of the risk score,

the samples of the training set were divided into high- and

low-risk groups to predict the OS of COAD. Similarly, the

samples of the testing set were also divided into two groups to

verify the prediction accuracy of the prognostic model.

Predictive ability assessment of the
prognostic model

We performed a K–M analysis between high- and low-

risk groups on the prognostic model, and the result showed

that patients with lower risk scores had a better outcome (p<

FIGURE 1
Workflow for the whole study.
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0.001, Figure 4C). This conclusion was also confirmed by the GEO

testing set (p = 0.002, Figure 4D). As the risk score increased, the

number of COAD patients who died increased accordingly, and

patients at low-risk generally live longer than those at high risk

(Figures 5A,B). In addition, in our prognostic model, F2RL2 was

confirmed to be a low-risk gene, while TGFB2, DTNA, S1PR5, and

MPP2 were high-risk genes (Figures 5C,D). K–M analysis proved

that all five hub genes were closely related to OS of COAD, and

patients with F2RL2 overexpression or SLC35G2, DTNA, S1PR5,

and MPP2 low-expression had a better OS outcome (Figures 5E–I).

Meanwhile, univariate and multivariate Cox analyses showed

that age, stage, and risk score were independent prognostic

factors associated with the OS of COAD (Figures 6A,B).

Considering the application of the prognostic model in

clinical practice, we developed nomograms to predict the OS

at 1, 3, and 5 years based on the baseline characteristics and

pathological parameters of COAD. Each COAD was individually

matched with a nomogram, which fully embodied the

individualization of clinical application. In the presented

nomogram, the predicted 1-, 3-, and 5-year OS for this

patient was 85.9%, 73.5%, and 54.7%, respectively (Figure 6C).

Also, age, stage, and risk score were significantly associated with

OS, which was consistent with the multivariate Cox analysis

result. Subsequently, we use the calibration curve to verify the

prediction accuracy of the nomogram. We can see that the

prediction lines are very close to the diagonal dotted line,

indicating that the nomogram has high accuracy (Figure 6D).

Furthermore, time-dependent-ROC analysis was performed to

assess the predictive power of the risk score. Factors with an area

under the curve (AUC) > 0.5 indicates that the prognosticmodel has

a predictive value, and the greater the AUC, the higher the accuracy

of prediction. Our analysis results showed that the prognostic model

had good predictive value in predicting 1-, 3- and 5- yearOS, and the

prediction accuracy was 3- year (AUC: 0.720) >1- year (AUC:

FIGURE 2
Analysis of immune cell infiltration. (A)Heatmap of the infiltration of 22 types of immune cells in COAD and normal samples. (B)Heatmap of the
mutual infiltration relationship between immune cells in COAD samples. (C) Histogram of the infiltration proportion of immune cells in each COAD
sample.
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0.718) >5- year (AUC: 0.692) (Figure 6E). Likewise, the predictive
power of the prognostic model was superior to that of clinical

predictors such as age and gender (Figure 6F).

Finally, we analyzed the clinical features between high- and

low-risk groups in the prognostic model. The results showed that

there were significant differences in gender and TNM stage

between the two groups. The risk score of females was higher

than that of males, and patients in stage IV had the highest risk

score, while patients in stage I had the lowest risk score. However,

it was worth noting that the risk scores between stage II and III

(p = 0.17) and stage III and stage IV (p = 0.16) were not

statistically significant (Figures 6G–I).

Analysis of the tumor microenvironment
and immune cell function

We compared the prognostic model data with the pan-

cancer immune cell infiltration data and analyzed the

correlation between risk score, hub genes, and immune cell

infiltration by R package “limma”. The bubble plot shows the

results of the analysis performed by different software

(Figure 7A). A correlation coefficient greater than zero is

considered a positive correlation and that less than zero is a

negative correlation. Similarly, the scatter plot suggested that

CD4+ MTC-related DEGs were negatively correlated with

immune scores (Figure 7B). In addition, we analyzed the

association of the TME with risk scores. The COAD TME

score was calculated by the ESTIMATE algorithm (estimation

of stromal and immune cells in malignant tumor tissues using

expression data). The violin plot reported significant

differences in stromal cell scores between the high- and

low-risk groups (p < 0.01), with higher scores in the high-

risk group. But, there were no significant differences in

immune cell score and ESTIMATE score between the two

groups (Figure 7C).

Analysis of 22 types of immune cells showed that a total of

seven types had significant differences in infiltration between the

FIGURE 3
Screening of CD4+ MTC-related co-expression modules. (A) Sample clustering of WGCNA. (B) Scale-free fit index and average connectivity of
the 1–20 soft threshold power (β) were analyzed. (C)Hierarchical clustering tree of genes based on the topological overlap. Different color branches
of the cluster tree represent different modules. (D) Correlation between CD4+ MTCs and genes in each module.
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FIGURE 4
Identification of CD4+ MTC-related DEGs and construction of the prognosis model. (A) Univariate Cox regression analysis result of
103 prognosis-related genes in the study (27 genes with p < 0.005 were preferentially displayed). (B) Lasso regression and cross-validation showed
that the number of genes corresponding to the point with the smallest error was 13. (C) COAD patients with low risk in the prognostic model
predicted better OS outcomes. (D)GEO testing set was used for validation, and the results were consistent with those of the prognostic model.
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high- and low-risk groups (Figure 7D, p < 0.05). “Plasma cells”,

“T cells CD4 memory resting”, “T cells CD4 memory activated”,

“dendritic cells resting” and “mast cells resting” infiltration was

upregulated in the low-risk group, while “macrophages M0” and

“neutrophil” infiltration was upregulated in the high-risk group. In

addition, analysis of immune cell-related functions showed that

“T cell co−stimulation” and “MHC_class_I” functions were more

active in the low-risk group (Figure 7E, p < 0.05).

Immune checkpoint and immunotherapy

Comparing the hub genes and risk score with immune

checkpoints to analyze their correlation, it is noteworthy to

observe that immune checkpoints VTCN1, TNFSF4, TNFSF14,

TNFRSF8, TNFRSF4, NRP1, LAIR1, CD40, CD70, CD276, and

CD200 were positively correlated with risk scores, while TNFSF18,

TMIGD2, ICOS, and HHLA2 were negatively correlated

(Figure 8A). In the prediction of the therapeutic effect of

immune checkpoint inhibitors (ICIs) in COAD, anti-CTLA-4 or

anti-PD-1 or anti-CTLA-4 plus anti-PD-1 treatment was achieved

better OS with a low-risk score (p < 0.005; Figures 8B–E).

Meanwhile, we conducted a drug sensitivity analysis and

concluded that bosutinib and cetuximab were more sensitive in

COAD patients with low-risk scores (Figures 9A,B), while

bleomycin (50 uM), dasatinib, foretinib, midostaurin, pazopanib,

saracatinib, shikonin, and talazoparib were more sensitive in the

high-risk score (Figures 9C–I). The specific mechanism of action

and targeted pathway of these drugs can be searched in Genomics

of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/).

Finally, we analyzed the association of TME with risk scores.

Functional and pathway enrichment in the
prognostic model

We conducted GO and KEGG enrichment according to the

analysis results of DEGs between high- and low-risk groups. In

the GO histogram (Figure 10A), we showed the number of risk-

DEGs enriched in the three categories of GO (BP: Biological

Process; CC: Cellular Component; MF: Molecular Function). In

the GO bubble plot (Figure 10B), we showed the number and

difference significance of the functional enrichment of risk-

DEGs. In the circle plot (Figure 10C), the outermost circle

represented the ID of GO, the second circle represented the

number of genes enriched on each GO term, the third circle

represented the number of DEGs enriched on each GO term, and

the inner circle represented the proportion of genes. In the

abovementioned plots, we showed 30 GO functions that were

significantly associated with risk-DEGs and the number of genes

enriched for each function. However, this was different from the

results of GO enrichment analysis. In addition, we performed

KEGG analyses of hub genes and risk scores to assess the

association of these factors with the KEGG pathway and

visualized the results with heat maps (Figure 10D).

Association of tumor mutational burden
with risk score

The TMB analysis was performed through R packages

“BiocManager”, “ggpubr” and “maftools”. In the waterfall

plot, we can observe that COAD in the low-risk group (100%)

has higher gene mutation frequencies than that in the high-

risk group (99.39%) and show the proportion of the top

30 genes with the highest mutation frequency (Figures

11A,B). However, the correlation analysis of TMB with

risk score showed no significant difference between high-

and low-risk groups (Figures 11C,D). Furthermore, K-M

analysis was used to predict the OS of patients with TMB,

and we observed that patients with low TMB have better OS

(p = 0.04; Figure 11E). Also, we found that TMB combined

with risk score had a significant difference in evaluating the

prognosis of patients. Patients with high-TMB/low-risk had

the best prognosis, followed by low-TMB/low-risk, low-

TMB/high-risk, and high-TMB/high-risk (p < 0.001;

Figure 11F).

Discussion

Colorectal cancer is one of the most common types of

malignancies, with the third highest morbidity and mortality

in both males and females (Siegel et al., 2021). Although the

TABLE 1 Information and the corresponding coefficients of hub genes.

Gene symbol Full name Coefficient

F2RL2 Coagulation factor II (thrombin) receptor-like 2 −0.612,387

TGFB2 Transforming growth factor-β2 0.320,583

DTNA Dystrobrevin-alpha 0.411,655

S1PR5 Sphingosine 1-phosphate receptor 5 0.447,946

MPP2 Membrane palmitoylated protein 2 0.718,418
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FIGURE 5
Correlation analysis between risk score and prognosis. (A) Patients in the prognostic model were divided into high- and low-risk groups
according to the median value of risk score. With the increase in risk score, the number of deaths increased correspondingly, and the survival
prognosis of patients with low risk was better. (B) Conclusions of the prognostic model were validated by the GEO testing set. (C) F2RL2 was
confirmed to be a low-risk gene, while TGFB2, DTNA, S1PR5, and MPP2 were high-risk genes. (D) Conclusions of hub genes were validated by
the GEO testing set. (E–I) K-M analysis results of five hub genes: F2RL2, TGFB2, DTNA, S1PR5, and MPP2.
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FIGURE 6
Analysis of prognostic factors and construction of nomogram. (A) Univariate analysis identified prognostic factors, and (B)multivariate analysis
identified prognostic factors as independent predictors. (C) Nomogram used to predict the 1-, 3-, and 5-year survival rate in clinical medicine. (*p <
0.05, **p < 0.01,***p < 0.001). (D) Calibration curve to verify the accuracy of nomogram prediction. (E) ROC curves for OS prediction accuracy. (F)
ROC curves for risk score and clinical features. (G–I) Analysis of clinical features between high- and low-risk groups in the prognostic model:
age; gender; TNM stage.
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overall morbidity and mortality have decreased year by year, the

incidence has shown an upward trend in patients < 50 years of

age (Cheng et al., 2011; Bailey et al., 2015; Siegel et al., 2017).

Surgery, adjuvant chemotherapy, targeted therapy, and

immunotherapy are the main options for treatment of colon

cancer (Benson et al., 2018). With the younger age of colon

cancer incidence population, the individualization and precision

of treatment strategies are promising. Recent studies have

pointed out that the TME plays a key role in cancer

proliferation, invasion, and metastasis and helps predict the

prognosis of the disease (Wang et al., 2021). CD4+ MTCs in

the microenvironment can make a rapid and direct immune

response to protect the host against the invasion of cancer cells

(Hirahara et al., 2021). These findings suggest that it is a potential

therapeutic target (Quail and Joyce, 2013).

In our study, we constructed a co-expression network based

on gene expression in 398 TCGA-COAD samples. Through the

“CIBERSORT” algorithm and WGCNA analysis, we

preliminarily determined that the “greenyellow” module

containing 929 DEGs was most significantly associated with

CD4+ MTC infiltration. Subsequently, the optimal five hub

genes (F2RL2, TGFB2, DNTA, S1PR5, and MPP2) were

identified by univariate Cox-LASSO regression analysis, and

model formulas were obtained. According to the model

formula, TCGA-COAD patients were divided into high- and

low-risk groups, and the prognostic risk model was constructed.

In addition, K-M analysis was performed on the prognostic risk

model to assess whether there was a significant difference in OS

between the high- and low-risk groups. The result showed that

patients in the low-risk group benefited more from OS and had a

better prognosis than those in the high-risk group. More

importantly, we validated this result with the GEO testing set,

and K–Manalysis also showed that patients in the low-risk group

predicted better OS. This conclusion is consistent with the

analysis results of our prognostic risk model, indicating that

the TCGA prognostic risk model constructed by us has high

accuracy in predicting the OS of COAD patients, which provides

an important reference value for our clinical application.

F2RL2 is a G protein-coupled receptor that regulates

protease-activated receptor-3 involved in inflammatory and

immune responses (Zhou et al., 2019). It has been reported as

a prognostic marker for oral squamous cell carcinoma (Huang

SN et al., 2020), metastatic breast cancer (Liu et al., 2021),

pancreatic cancer (Chen et al., 2022), and glioma (Lvu et al.,

2020), and down-regulated F2RL2 expression has been detected

in rectal cancer (Supiot et al., 2013). TGFB2 is a protein-coding

FIGURE 7
Analysis of immune cell infiltration and immune cell-related functions. (A) Bubble plot of immune cell infiltration related to the risk model was
obtained by different software analyses. (B) Scatter plots of the correlation between the hub gene and CD4+ MTC infiltration. (C) Violin plot of tumor
microenvironment score (**p < 0.001). (D) Differential analysis of immune cell infiltration in the prognostic model (*p < 0.05, **p < 0.01, and***p <
0.001). (E) Differential analysis of immune cell-related functions in the prognostic model (**p < 0.01).

Frontiers in Genetics frontiersin.org12

Tang et al. 10.3389/fgene.2022.915282

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.915282


FIGURE 8
Results of immune checkpoints and immunotherapy efficacy analysis. (A)Heatmaps of immune checkpoints associatedwith hub genes and risk
score (*p < 0.05, **p < 0.01, and***p < 0.001). (B–E) Violin plot of the association between immunotherapy effect and risk score: control group; anti-
PD-1 group; anti-CTLA4 group; anti-PD-1/anti-CTLA4 group.
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FIGURE 9
Analysis of drug sensitivity. (A-j) bosutinib; cetuximab; bleomycin (50 uM); dasatinib; foretinib; midostaurin; pazopanib; saracatinib; shikonin;
talazoparib.

Frontiers in Genetics frontiersin.org14

Tang et al. 10.3389/fgene.2022.915282

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.915282


gene of TGF-β2. It is considered to be the most critical factor

in epithelial–mesenchymal transition and is involved in the

key biological processes of growth, proliferation, migration,

and invasion of malignant cells (Dave et al., 2011; Abraham

et al., 2018; Yang et al., 2020), especially in suppressing

antitumor immune response. Recent studies have shown

that TGFB2 expression is upregulated in gastric cancer,

non–small cell lung cancer, gallbladder cancer, colorectal

carcinoma, and high-grade glioma, which is associated with

poor prognosis (Bogdahn et al., 2011; Zhang et al., 2020; Liao

et al., 2021; Song and Zhou, 2021). Therefore, targeted

TGFB2 therapy for cancer patients may be a promising

strategy. Currently, several therapies that specifically

inhibit TGFB2, such as antisense phosphorothioate

oligodeoxynucleotide trabedersen (AP12009), have entered

clinical development in patients with advanced cancers

(Jaschinski et al., 2011). DTNA is a scaffold protein that

maintains the structural integrity of the heart and skeletal

muscle (Cao et al., 2017) and has been proven to predict the

survival prognosis of bladder cancer (Zhang et al., 2021),

hepatocellular carcinoma (Huang SN et al., 2020), gastric

adenocarcinoma (Qin et al., 2019) and esophageal cancer (Fu

et al., 2021). Liu et al. (Liu et al., 2017) also found that DTNA

had a reference value in early colon cancer screening.

S1PR5 is a G protein-coupled receptor, belonging to one

of the five subtypes of S1PRs, which is distributed in many

tissues and cells of the human body, especially in immune

cells (Takabe and Spiegel, 2014; Patmanathan et al., 2017).

Also, d Zhou et al. showed that up-regulation of S1PR5 could

activate the NF-κB/IDO1 signaling pathway and promote the

progression of colon cancer (Zhou H et al., 2021). MPP2 is a

scaffold protein belonging to the membrane-associated

guanylate kinase-P55 (MAGUK) subfamily. MPP2 is

closely associated with cell adhesion and is critical for the

formation of multiprotein complexes involved in cell–cell

communication. MPP2 is known for its junctional function

FIGURE 10
Functional and pathway enrichment analysis. (A-C)Histogram, bubble plot, and circle plot of GO enrichment analysis showed 30 functions that
were significantly associated with differential risk genes and the number of genes enriched on each function. (D) Correlation of five hub genes and
risk score with the KEGG pathway (*p < 0.05, **p < 0.01,***p < 0.001).
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FIGURE 11
Analysis of tumor mutational burden. Mutations in the top 30 genes with the highest mutation frequency in low- (A) and high-risk groups (B).
Boxplots (C) and scatterplots (D) of the correlation between risk score and TMB. (E) K–M analysis of TMB. (F) K–M analysis of TMB combined with a
risk score.
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in epithelial cells (Baumgartner et al., 2009; Rademacher

et al., 2016). At present, the role and mechanism of

MPP2 in cancer are rarely reported. In the only two

in vitro studies on MPP2, Li et al. (2021) confirmed that

MPP2 can be up-regulated through miR-34a demethylation,

promoted liver cancer cell apoptosis, and reduced

proliferation, migration, and invasion. Similarly, Maschietto

et al.reported that the MPP2 gene was downregulated in

relapse Wilms tumors (Maschietto et al., 2011). In our

prognostic risk model, overexpression of MPP2 was

associated with a higher risk score and worse OS. Although

this conclusion is different from the abovementioned results

of liver cancer or Wilms tumors, there is no relevant report on

the role of MPP2 in the occurrence and development of colon

cancer. Therefore, the relationship between MPP2 and colon

cancer and its specific mechanism remains to be explored.

Our findings showed that F2RL2 was downregulated in

high-risk patients and considered to be a protective gene,

while TGFB2, DTNA, S1PR5, and MPP2 were up-regulated in

high-risk patients, suggesting that they were associated with

poor prognosis. In our risk model, age, stage, and risk score

were independent prognostic factors for COAD. The older the

age, the higher the risk score, the higher the cancer stage, and

the worse the prognosis. According to the gene expression

level in the selected panel, we drew a nomogram to evaluate

the survival time of patients. Each sample can get the

corresponding nomogram through software, which is

almost cost-free, portable, and intuitive in clinical

applications.

Current treatments for colon cancer include surgery,

chemotherapy, and targeted therapy. However, existing

clinical studies have reported that EGFR inhibitor

treatment is not conducive to long-term survival and

disease remission (Cunningham et al., 2004; Lièvre et al.,

2006; Van Emburgh et al., 2014). Therefore, the exploration

of immunotherapy is highly expected. ICI therapy has shown

promising results in melanoma and lung cancer (Lichtenstern

et al., 2020). In 2019, ICI drugs were approved for breast

cancer (Schmid et al., 2020). However, there are few reports of

other cancers benefiting from ICI therapy. Nowadays, there is

no large-scale transcriptome data for colon cancer

immunotherapy, so we use RNA-seq in the TCGA database

to calculate Immunophenoscore and then verify the

effectiveness of ICI treatment. Our analysis found that anti-

CTLA-4 or anti-PD-1 or anti-CTLA-4/anti-PD-1 therapy was

more effective in low-risk patients. In addition, we screened

for immune checkpoints associated with risk scores. These

results provide an idea for future immunotherapy studies and

drug selection.

Although our CD4+ MTC infiltration prognosis model

has achieved some important results, it must be admitted that

there are still shortcomings. First, this is a retrospective

analysis using the public database, and we still lack

validation of prospective studies. In addition, our study

considered the influence of immune infiltration and gene

mutation on the progression of colon cancer, but there are

many other epigenetic modifications in the pathology of the

disease. An analysis combining these factors may be of

greater reference value. Furthermore, in future studies, the

potential mechanisms of action associated with hub genes in

our prognostic risk model need to be further validated in vivo

and in vitro. It is worth mentioning that when using the GEO

dataset to validate the TCGA prognostic risk model, the

selection of different datasets may bring some deviation to

our validation results. For example, the sample size of the

GEO dataset is insufficient or some GEO datasets may study

a specific race or different disease stages (AJCC stage or TNM

stage) may be used among different GEO datasets. Therefore,

in order to make the validation results more reliable, we need

to consider the clinical characteristics and sample size of the

samples comprehensively when selecting the GEO dataset.

Conclusion

In summary, we constructed a risk assessment model of five

CD4+ MTC-related gene markers for COAD and drew the

nomogram of the hub gene and clinical independent risk

factors to assess immunotherapy efficacy, disease prognosis,

and survival time of the patient. These results provide a

reference for target selection and individualized

immunotherapy of COAD.
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